
Journal of Machine Learning Research 21 (2020) 1-51 Submitted 3/20; Revised 8/20; Published 8/20

Communication-Efficient Distributed Optimization in

Networks with Gradient Tracking and Variance Reduction

Boyue Li, Shicong Cen {boyuel, shicongc}@andrew.cmu.edu
Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Yuxin Chen yuxin.chen@princeton.edu
Department of Electrical Engineering

Princeton University

Princeton, NJ 08544, USA

Yuejie Chi yuejiechi@cmu.edu

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Editor: Michael Mahoney

Abstract

There is growing interest in large-scale machine learning and optimization over decentral-
ized networks, e.g. in the context of multi-agent learning and federated learning. Due to the
imminent need to alleviate the communication burden, the investigation of communication-
efficient distributed optimization algorithms — particularly for empirical risk minimization
— has flourished in recent years. A large fraction of these algorithms have been developed
for the master/slave setting, relying on the presence of a central parameter server that can
communicate with all agents.

This paper focuses on distributed optimization over networks, or decentralized opti-
mization, where each agent is only allowed to aggregate information from its neighbors
over a network (namely, no centralized coordination is present). By properly adjusting the
global gradient estimate via local averaging in conjunction with proper correction, we de-
velop a communication-efficient approximate Newton-type method, called Network-DANE,
which generalizes DANE to accommodate decentralized scenarios. Our key ideas can be
applied, in a systematic manner, to obtain decentralized versions of other master/slave
distributed algorithms. A notable development is Network-SVRG/SARAH, which employs
variance reduction at each agent to further accelerate local computation. We establish
linear convergence of Network-DANE and Network-SVRG for strongly convex losses, and
Network-SARAH for quadratic losses, which shed light on the impacts of data homogeneity,
network connectivity, and local averaging upon the rate of convergence. We further extend
Network-DANE to composite optimization by allowing a nonsmooth penalty term. Numer-
ical evidence is provided to demonstrate the appealing performance of our algorithms over
competitive baselines, in terms of both communication and computation efficiency. Our
work suggests that by performing a judiciously chosen amount of local communication and
computation per iteration, the overall efficiency can be substantially improved.

Keywords: decentralized optimization, federated learning, communication efficiency,
gradient tracking, variance reduction

c©2020 Boyue Li, Shicong Cen, Yuxin Chen, Yuejie Chi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/20-210.html.

Li, Cen, Chen, Chi

1. Introduction

Distributed optimization has been a classic topic (Bertsekas and Tsitsiklis, 1989), yet is
attracting significant attention recently in machine learning due to its numerous applications
such as distributed training (Boyd et al., 2011), multi-agent learning (Nedic et al., 2010),
and federated learning (Konečnỳ et al., 2015, 2016; McMahan et al., 2017). At least two
facts contribute towards this resurgence of interest: (1) the scale of modern datasets has
oftentimes far exceeded the capacity of a single machine and requires coordination across
multiple machines; (2) privacy and communication constraints disfavor information sharing
in a centralized manner and necessitates distributed infrastructures.

Broadly speaking, there are two distributed settings that have received wide interest: 1)
the master/slave setting, which assumes the existence of a central parameter server that can
perform information aggregation and sharing with all agents; and 2) the network setting —
also known as the decentralized setting — where each agent is only permitted to commu-
nicate with its neighbors over a locally connected network (in other words, no centralized
coordination is present). Developing fast-convergent algorithms for the latter setting is in
general more challenging.

Many algorithms have been developed for the master/slave setting to improve communi-
cation efficiency, including deterministic algorithms such as one-shot parameter averaging
(Zhang et al., 2012), CoCoA (Smith et al., 2018), DANE (Shamir et al., 2014), CEASE (Fan
et al., 2019), and stochastic algorithms like distributed SGD (Recht et al., 2011) and dis-
tributed SVRG (Lee et al., 2017; Konečnỳ et al., 2015; Cen et al., 2020). In comparison, the
network setting is substantially less explored. Recent work Lian et al. (2017) suggested that
the network setting can effectively avoid traffic jams during communication on busy nodes,
e.g. the parameter server, and be more efficient in wall-clock time than the master/slave
setting. It is therefore natural to ask whether one can adapt more appealing algorithmic
ideas to the network setting — particularly for the kind of network topology with a high
degree of locality — without compromising the convergence guarantees attainable in the
master/slave counterpart.

1.1. Our Contributions

In this paper, we investigate the problem of empirical risk minimization in the network
(decentralized) setting, with the aim of achieving communication and computation effi-
ciency simultaneously. The main algorithmic contribution of this paper is the development
of communication-efficient network-decentralized (stochastic) optimization algorithms with
primal-only formulations, with the assistance of proper gradient tracking. The proposed
algorithmic ideas accommodate both approximate Newton-type methods and stochastic
variance-reduced methods, and come with theoretical convergence guarantees.

Algorithmic developments. We start by studying an approximate Newton-type method
called DANE (Shamir et al., 2014), which is among the most popular communication-efficient
algorithms to solve empirical risk minimization. However, DANE was only designed for
the master/slave setting in its original form. The current paper develops Network-DANE,
which generalizes DANE to the network setting. The main challenge in developing such
an algorithm is to track and adapt a faithful estimate of the global gradient at each agent,

2

Communication-Efficient Distributed Optimization in Networks

despite the lack of centralized information aggregation. Towards this end, we leverage the
powerful idea of dynamic average consensus (originally proposed in the control literature Zhu
and Martínez (2010) and later adopted in decentralized optimization Qu and Li (2018); Nedić
et al. (2017); Di Lorenzo and Scutari (2016)) to track and correct the locally aggregated
gradients at each agent — a scheme commonly referred to as gradient tracking. We then
employ the corrected gradient in local computation, according to the subroutine adapted
from DANE. This simple idea allows one to adapt approximate Newton-type methods to
network-distributed optimization, without the need of communicating the Hessians.

Our ideas for designing Network-DANE can be extended, in a systematic manner, to obtain
decentralized versions of other algorithms developed for the master/slave setting, by modi-
fying the local computation step properly. As a notable example, we develop Network-SVRG,
which performs variance-reduced stochastic optimization locally to enable further compu-
tational savings (Johnson and Zhang, 2013). The same approach can be applied to other
distribute stochastic variance-reduced methods such as SARAH (Nguyen et al., 2017) to
obtain Network-SARAH. We also demonstrate that Network-DANE can be extended to the
proximal setting for nonsmooth composite optimization in a straightforward manner.

Performance analysis. The proposed algorithms achieve an intriguing trade-off between
communication and computation efficiency. During every iteration, each agent only commu-
nicates the parameter and the gradient estimate to its neighbors, and is therefore communication-
efficient globally; moreover, the local subproblems at each agent can be solved efficiently with
accelerated or variance-reduced gradient methods, and is thus computation-efficient locally.
When the network exhibits a high degree of locality, we show that by allowing multiple
rounds of local mixing within each iteration, an improved overall communication complex-
ity can be achieved as it accelerates the rate of convergence. Theoretically, we establish the
linear convergence of Network-DANE for strongly convex losses, with an improved rate for
quadratic losses, both with and without extra averaging. For Network-SVRG, we establish
its linear convergence for the case of smooth strongly convex losses with extra rounds of
averaging. Similar results are obtained for Network-SARAH for quadratic losses. Our anal-
ysis is highly nontrivial, as it needs to deal with the tight couplings of optimization and
network consensus errors through a carefully-designed linear system of Lyapunov functions,
especially in the context of approximate Newton-type methods which are known be harder
to handle than simple gradient-type methods. Our results shed light on the impacts of data
homogeneity and network connectivity upon the rate of convergence; in particular, the pro-
posed algorithms provably obtain fast convergence if the local data are sufficiently similar.
Table 1 summarizes the convergence rates of the proposed algorithms.

All in all, our work suggests that: by performing a judiciously chosen amount of lo-
cal communication and computation per iteration, the overall efficiency can be remarkably
improved. Extensive numerical experiments are provided to corroborate our theoretical find-
ings, and to demonstrate the practical efficacy of the proposed algorithms over competitive
baselines.

1.2. Related Work

First-order methods, which rely mainly on gradient information, are of core interest to big
data analytics, due to their superior scalability. However, it is well-known that distributed

3

Li, Cen, Chen, Chi

Algorithm
Communication

Rounds

Extra

Averaging

Loss

Functions

β

Network-DANE

O
(
κ(β/σ+1) log(1/ε)

(1−α0)2

)

7

Quadratic

Arbitrary
O
(

log κ · (β2/σ2+1) log(1/ε)

(1−α0)1/2

)

3

O
(
κ2 log(1/ε)
(1−α0)2

)

7

Strongly convex

O
(

log κ · κ(β/σ+1) log(1/ε)

(1−α0)1/2

)

3

Network-SVRG O
(

log κ · log(1/ε)

(1−α0)1/2

)

3 Strongly convex
β ≤ σ/200

Network-SARAH O
(

log κ · log(1/ε)

(1−α0)1/2

)

3 Quadratic

EXTRA O
(
κ2 log(1/ε)

)
7 Strongly convex

Arbitrary

DGD O
(
κ2 log(1/ε)
(1−α0)2

)

7 Strongly convex

Table 1: Communication complexity of the proposed algorithms for quadratic and strongly
convex losses to reach ε-accuracy. Here, σ, L and κ = L/σ are the strong convexity,
smoothness, and condition number of the local loss functions fj , j = 1, . . . , n, β ≤ L
is the homogeneity parameter gauging the similarities of the local loss functions,
and α0 := ‖W − 1

n1n1
>
n ‖ is the mixing rate over the network topology. Here, we

assume the extra averaging step is implemented via the Chebyshev acceleration
scheme (Arioli and Scott, 2014). EXTRA (Shi et al., 2015a) and DGD (Qu and
Li, 2018) are listed as baselines.

gradient descent (DGD) suffers from a “speed” versus “accuracy” dilemma when naïvely
implemented in a decentralized setting (Nedić et al., 2018). Various fixes (see e.g. the pio-
neering approaches such as EXTRA (Shi et al., 2015a) and NEXT (Di Lorenzo and Scutari,
2016)) have been proposed to address this issue. Similar gradient tracking ideas Zhu and
Martínez (2010) have been incorporated to adjust DGD to ensure its linear convergence
using a constant step size Nedić et al. (2017); Qu and Li (2018); Li et al. (2019); Xi et al.
(2017); Yuan et al. (2018b); Scutari and Sun (2019); Xin et al. (2019b). The current paper
is inspired by the use of gradient tracking in these early results. Our paper implements, and
verifies the effectiveness of, gradient tracking for algorithms that involve approximate New-
ton and variance reduction steps, which are far from straightforward and require significant
efforts.

Scaman et al. (2017) proposed a multi-step dual accelerated (MSDA) method for network-
distributed optimization, which is optimal within a class of black-box procedures that satisfy

4

Communication-Efficient Distributed Optimization in Networks

the span assumption — the parameter updates fall in the span of the previous estimates and
their gradients. Further optimal algorithms are proposed in Uribe et al. (2017) and Scaman
et al. (2018) for loss functions that are not necessarily convex or smooth. Their algorithms
require knowledge of the dual formulation. In contrast, our algorithms are directly applied
to the primal problem, which are more friendly for problems whose dual formulations are
hard to obtain. Our algorithms also do not require the span assumption and therefore do not
fall into the class of procedures studied in Scaman et al. (2017). The recent work Hannah
et al. (2018) suggested that algorithms that break the span assumption such as SVRG can
be fundamentally faster than those that do not, and it is of future interest to study if similar
conclusions hold in the distributed/decentralized setting.

The Network-DANE algorithm is closely related to DANE Shamir et al. (2014), which
exhibits appealing performance in both theory and practice. Another recent work further
extended DANE with an additional proximal term in the objective function and strength-
ened its analysis Fan et al. (2019). The proposed Network-DANE adapts DANE to the
network setting with the aid of gradient tracking. During the preparation of this paper,
it was brought to our attention that the SONATA algorithm Sun et al. (2019b), which
also applies gradient tracking and subsumes many existing algorithms as special cases with
convergence guarantees, can be specialized to obtain the same local sub-problem studied
in Network-DANE, up to different mixing approaches. The connections between DANE and
SVRG observed in Konečnỳ et al. (2015) motivate the development of Network-SVRG in
this paper, which can be viewed as implementing the local optimization of Network-DANE

with variance-reduced stochastic gradient methods. The same idea can be easily applied to
obtain network-distributed versions of other algorithms such as Katyusha Allen-Zhu (2017),
GIANT Wang et al. (2018), AIDE Reddi et al. (2016), among others. Compared with de-
centralized SGD Lan et al. (2017); Lian et al. (2017), the proposed Network-SVRG/SARAH

employ variance reduction to achieve much faster convergence.

We note that variance-reduced methods have been adapted to the network setting
recently in Mokhtari and Ribeiro (2016); Yuan et al. (2018a); Xin et al. (2019a); Sun
et al. (2019a); however, they either have a large memory complexity or impose substantial
communication burdens. To be more specific, to decentralize SVRG-type algorithms, these
papers Yuan et al. (2018a); Xin et al. (2019a); Sun et al. (2019a) all require communication
at every step of the inner loop; in contrast, the proposed Network-SVRG algorithm only re-
quires communication at the end of the inner loop, allowing each agent to perform the inner
loop efficiently without synchronization, and is therefore more communication-efficient.

Paper organization and notations. Section 2 introduces the formulation of distributed
optimization in the decentralized setting, in addition to some preliminary facts. Sec-
tion 3 presents the proposed Network-DANE together with its theoretical guarantees, and
briefly discusses its extension to nonsmooth composite optimization. Section 4 introduces
Network-SVRG/SARAH, which invokes the variance reduction idea to further reduce local com-
putation, together with their theoretical guarantees. We provide numerical experiments in
Section 5 and conclude in Section 6. The details of the proofs are deferred to the appendix.
Throughout this paper, we use boldface letters to represent vectors and matrices. In addi-
tion, ‖A‖ denotes the spectral norm of a matrix A, ‖a‖2 represents the `2 norm of a vector
a, ⊗ stands for the Kronecker product, and In denotes the identity matrix of dimension n.

5

Li, Cen, Chen, Chi

2. Problem Formulation and Preliminaries

2.1. Network-Distributed Optimization

Consider the following empirical risk minimization problem:

minimize
x∈Rd

f(x) ,
1

N

N∑

i=1

`(x; zi), (1)

where x ∈ R
d represents the parameter to optimize, `(x; zi) encodes certain empirical loss of

x w.r.t. the ith sample zi and N denotes the total number of samples we have available. This
paper primarily focuses on the case where the function `(·; z) is both convex and smooth for
any given z, although we shall also study nonconvex problems in numerical experiments.

In a decentralized optimization framework, data samples are distributed over n agents.
For simplicity, we assume throughout that data samples are split into disjoint subsets of
equal size. The jth local data set, represented by Mj , thus contains m , N/n samples. As
such, the global loss function can alternatively be represented by

f(x) =
1

n

n∑

j=1

fj(x), with fj(x) ,
1

m

∑

z∈Mj

`(x; z). (2)

Here, fj(x) denotes the local loss function at the jth agent (1 ≤ j ≤ n). In addition, there
exists a network — represented by an undirected graph G of n nodes — that captures the
local connectivity across all agents. More specifically, each node in G represents an agent,
and two agents are allowed to exchange information only if there is an edge connecting them
in G. Throughout this paper, we denote by Nj the set of all neighbors of the jth agent over
G. The goal is to minimize f(·) in a decentralized manner, subject to the aforementioned
network-based communication constraints.

2.2. Preliminaries

Before continuing, we find it helpful to introduce and explain two important concepts.

Mixing. Mathematically, the information mixing between neighboring nodes is often char-
acterized by a mixing or gossiping matrix, denoted by W = [wij]1≤i,j≤n ∈ R

n×n. More
specifically, wij = 0 if agent i and j are not connected, and W satisfies

W>
1n = 1n and W1n = 1n, (3)

where 1n ∈ R
n is the all-one vector. The spectral quantity, which we call the mixing rate,

α0 , ‖W − 1
n1n1

>
n ‖ ∈ [0, 1) (4)

dictates how fast information mixes over the network. As an example, in a fully-connected
network, one can attain α0 = 0 by setting W = 1

n1n1
>
n . Nedić et al. (2018) provides

comprehensive bounds on 1/(1− α0) for various graphs. For instance, one has α0 � 1 with
high probability in an Erdös-Rényi random graph, as long as the graph is connected.

6

Communication-Efficient Distributed Optimization in Networks

Dynamic average consensus. Assume that each agent generates some time-varying

quantity r
(t)
j (e.g. the current local parameter or gradient estimates). We are interested

in tracking the dynamic average

1
n

n∑

j=1

r
(t)
j = 1

n1
>
n r

(t)

in each of the agents, where r(t) = [r
(t)
1 , · · · , r(t)n]>. To accomplish this, Zhu and Martínez

(2010) proposed a simple tracking algorithm: suppose each agent maintains an estimate q
(t)
j

in the tth iteration, and the network collectively adopts the following update rule

q(t) = Wq(t−1) + r(t) − r(t−1), (5)

where q(t) = [q
(t)
1 , · · · , q(t)n]>. The first term Wq(t−1) represents the standard local infor-

mation mixing operation (meaning that each agent updates its own estimate by a weighted
average of its neighbors’ estimates), the second term r(t) − r(t−1) tracks the temporal dif-
ference. A crucial property of (5) is

1
>
n q

(t) = 1
>
n r

(t), (6)

which indicates that the average of {q(t)i }1≤i≤n dynamically tracks the average of {r(t)i }1≤i≤n.
We shall adapt this procedure in our algorithmic development, in the hope of reliably track-
ing the global gradients (i.e. the average of the local, and often time-varying, gradients at
all agents).

3. Network-DANE: Algorithm and Convergence

In this section, we propose an algorithm called Network-DANE (cf. Alg. 1), which generalizes
DANE (Shamir et al., 2014) to the network/decentralized setting. This is accomplished by
carefully coordinating the information sharing mechanism and employing dynamic average
consensus for gradient tracking.

3.1. The DANE Algorithm

The DANE algorithm is a popular communication-efficient approximate Newton method
developed for the master/slave model, initially proposed by Shamir et al. (2014). Here,
we review some key features of DANE. (i) Each agent performs an update using both the
local loss function fj(·) and the gradient ∇f(·) of the global loss function (obtained via the
parameter server). (ii) In the tth iteration, the jth agent solves the following problem to

update its local estimate x
(t)
j :

x
(t)
j = argmin

x∈Rd

{

fj(x)−
〈

∇fj
(
x(t)

)
−∇f

(
x(t)

)
,x

〉

+
µ

2

∥
∥x− x(t)

∥
∥2

2

}

, (7)

where µ ≥ 0 is the regularization parameter.1 Implementing this algorithm requires two
rounds of communications per iteration.

1. In Shamir et al. (2014), the second term in (7) takes the form ∇fj(x
(t)) − η̃∇f(x(t)). We set η̃ = 1

without loss of generality following the analysis in Fan et al. (2019).

7

Li, Cen, Chen, Chi

(a) The parameter server first collects all local estimates {x(t−1)
j }1≤j≤n and computes the

average global parameter estimate x(t) = 1
n

∑n
j=1 x

(t−1)
j ; this is then sent back to all

agents;

(b) The parameter server collects all local gradients evaluated at the point x(t), computes
the global gradient ∇f(x(t)) = 1

n

∑n
j=1∇fj(x

(t)), and shares it with all agents.

The DANE algorithm has been demonstrated as a competitive baseline whose communi-
cation efficiency improves, in some sense, with the increase of data size (Shamir et al.,
2014); see Fan et al. (2019) for its proximal variation and improved theoratical analysis.
To see the reason why DANE is an approximate Newton-type algorithm, consider the case
when the local loss functions in all agents are quadratic and takes the form

fj(x) =
1

2
x>Hjx+ b>j x+ cj , (8)

where each Hj = ∇2fj(x) ∈ R
d×d is a fixed symmetric and positive semidefinite matrix.

The local optimization subproblem (7) in DANE can be solved in closed form, with x
(t)
j

given by2

x
(t)
j = x(t) −

(
Hj + µId
︸ ︷︷ ︸

local Hessian

)−1∇f
(
x(t)

)
. (9)

Clearly, this can be interpreted as

x
(t)
j = local parameter estimate −

(
local Hessian

)−1(
global gradient

)
,

which is an approximate Newton-type update rule (since we invoke the local Hessian to
approximate the true global Hessian). It is worth noting that the algorithm proceeds without
actually communicating the local Hessians.

3.2. Algorithm Development

The DANE algorithm was originally developed for the master/slave setting. In the network
setting, however, agents can no longer compute (7) locally, due to the absence of central-
ization enabled by the parameter server; more specifically, agents have access to neither
x(t) nor ∇f(x(t)), both of which are required when solving (7). To address this lack of
global information, one might naturally wonder whether we can simply replace global av-

eraging by local averaging; that is, replacing x(t) and ∇f(x(t)) by 1
|Nj |

∑

i∈Nj
x
(t−1)
i and

1
|Nj |

∑

i∈Nj
∇fi(x

(t−1)
i), respectively, in the jth agent. However, this simple idea fails to

guarantee convergence in local agents. For instance, the local estimation errors may stay
flat (but nonvanishing) — as opposed to converging to zero — as the iterations progress,
primarily due to imperfect information sharing.

With this convergence issue in mind, our key idea is composed of the following compo-
nents.

2. See Shamir et al. (2014) or Appendix A for a short derivation.

8

Communication-Efficient Distributed Optimization in Networks

Algorithm 1 Network-DANE

1: input: initial parameter estimate x
(0)
j ∈ R

d (1 ≤ j ≤ n), regularization parameter µ.

2: initialization: set y
(0)
j = x

(0)
j , s

(0)
j = ∇fj(y

(0)
j) for all agents 1 ≤ j ≤ n.

3: for t = 1, 2, · · · do
4: for Agents 1 ≤ j ≤ n in parallel do

5: Set y
(t),0
j = x

(t−1)
j and s

(t),0
j = s

(t−1)
j .

6: for k = 1, 2, . . . ,K do

7: Receive information y
(t),k−1
i and s

(t),k−1
i from its neighbors i ∈ Nj .

8: Aggregate parameter estimates from neighbors:

y
(t),k
j =

∑

i∈Nj

wjiy
(t),k−1
i , s

(t),k
j =

∑

i∈Nj

wjis
(t),k−1
i (10)

9: end for
10: Set the local parameter estimate to y

(t)
j = y

(t),K
j .

11: Update the global gradient estimate by aggregated local information and gradient
tracking:

s
(t)
j = s

(t),K
j +∇fj

(
y
(t)
j

)
−∇fj

(
y
(t−1)
j

)

︸ ︷︷ ︸

gradient tracking

. (11)

12: Update the parameter estimate by solving:

x
(t)
j = argmin

z∈Rd

{

fj(z)−
〈
∇fj(y

(t)
j)− s

(t)
j , z

〉
+

µ

2

∥
∥z − y

(t)
j

∥
∥2

2

}

. (12)

13: end for
14: end for

• The first ingredient is to maintain an additional estimate of the global gradient in

each agent — denoted by s
(t)
j in the jth agent. This additional gradient estimate

is updated via dynamic average consensus (11), in the hope of tracking the global

gradient evaluated at y
(t)
j in the jth agent (1 ≤ j ≤ n), i.e. s

(t)
j attempts to track

∇f(y
(t)
j). Here, y

(t)
j stands for the parameter estimate obtained by local neighborly

averaging in the tth iteration (see Alg. 1 for details). As the algorithm converges,

{y(t)
j }1≤j≤n is expected to reach consensus, allowing s

(t)
j (1 ≤ j ≤ n) to converge to

the true global gradient as well.

• In addition, we also allow multiple rounds of mixing within each iteration, i.e. (10),
which is helpful in accelerating convergence when the network exhibits a high degree
of locality. In essence, by applying K rounds of mixing, we improve the mixing rate
from α0 to

α = αK
0 . (13)

As we shall see later, choosing a proper (but not too large) K suffices to achieve
the desired trade-off between the rate of information sharing and iteration complexity,
which helps reduce the overall communication and computation cost. This step of extra

9

Li, Cen, Chen, Chi

averaging can be implemented in an efficient manner via the Chebyshev acceleration
scheme (Arioli and Scott, 2014; Scaman et al., 2017).

Armed with such improved global gradient estimates, we propose to solve a modified local
optimization subproblem (12) in Network-DANE, which approximates the original Newton-

type problem (7) by replacing ∇f(x(t)) with the local surrogate s
(t)
j . The proposed local

subproblem (12) is convex and can be solved efficiently via, say, Nesterov’s accelerated
gradient methods. The whole algorithm is presented in Alg. 1.

Remark 1 It is certainly possible to employ more general mixing matrices in (10). For
instance, in mobile computing scenarios with moving agents, one might prefer using time-
varying mixing matrices in order to accommodate the topology changes over time. We omit
such extensions for brevity.

3.3. Assumptions and Key Parameters

Before stating theoretical convergence guarantees of Network-DANE, we formally introduce
a few assumptions, key parameters, and error metrics.

Assumption 1 (strongly convex loss) The loss function fj(x) at each agent is strongly
convex and smooth, namely, σI � ∇2fj(x) � LI (1 ≤ j ≤ n) for some quantities 0 < σ ≤ L,
where κ = L/σ is the condition number.

Assumption 2 (quadratic loss) The loss function fj(x) at each agent is quadratic w.r.t.
x, i.e. taking the form of (8).

In the strongly convex setting, let the unique global optimizer of f(x) be

yopt := argmin
x∈Rd

f(x). (14)

In the following definition, we further define the homogeneity parameter (Cen et al.,
2020; Fan et al., 2019).

Definition 2 (Homogeneity parameter) Let f(·) and fj(·) be as defined in (2). The
homogeneity parameter β is defined as

β := max
1≤j≤n

βj with βj := sup
x∈Rd

∥
∥∇2fj(x)−∇2f(x)

∥
∥. (15)

As it turns out, β is bounded by the smoothness parameter of f(x), i.e. β ≤ L.3 On
the other end, as the local loss functions fj ’s become similar with each other, β will become
smaller. Therefore, β is a key quantity measuring the similarity of data across agents.

3. To see this, we note from the minimax theorem of eigenvalues and the triangle inequality that

β ≤ max
j

{

sup
x∈Rd,‖v‖2=1

v
>
(

n−1
n

∇
2
fj(x)

)

v − inf
x∈Rd,‖v‖2=1

v
>
(

1
n

∑

i:i 6=j

∇
2
fi(x)

)

v

}

=
(

1− 1
n

)

(L− σ) ≤ L.

(16)

10

Communication-Efficient Distributed Optimization in Networks

Remark 3 If the local data follow certain statistical models, it is possible to show that β
decreases as the local data size m grows. For example, Shamir et al. (2014) shows that if the
data samples at all agents are i.i.d. (with `(x; z) defined in (2) satisfying 0 � ∇2`(x; z) � LI

for all z), then with probability at least 1− δ over the samples, we have β <
√

32L2

m log nd
δ –

implying β decreases at the rate of 1/
√
m.

Metrics and convergence. We define the following (nd)-dimensional vectors

x(t) :=
[
x
(t)>
1 , · · · ,x(t)>

n

]>
, y(t) :=

[
y
(t)>
1 , · · · ,y(t)>

n

]>
, s(t) :=

[
s
(t)>
1 , · · · , s(t)>n

]>
.
(17)

The average of each (nd)-dimensional vector is defined by x = 1
n

∑n
j=1 xj ∈ R

d. In addition,

we introduce the distributed gradient ∇F (x) ∈ R
nd and the global gradient ∇f(x) ∈ R

nd

of an (nd)-dimensional vector x as follows

∇F (x) := [∇f1(x1)
>, · · · ,∇fn(xn)

>]>, ∇f(x) := [∇f(x1)
>, · · · ,∇f(xn)

>]>. (18)

To characterize the convergence behavior of our algorithm, we need to simultaneously
track several interrelated error metrics as follows

(1) the convergence error:
∥
∥y(t) − yopt

∥
∥
2
;

(2) the parameter consensus error:
∥
∥y(t) − 1n ⊗ y(t)

∥
∥
2
;

(3) the gradient estimation error:
∥
∥s(t) − 1n ⊗∇f(y(t))

∥
∥
2
.

In this paper, an algorithm is said to converge linearly at a rate ρ ∈ (0, 1) if there exists
some constant C > 0 such that the following holds for all t ≥ 1:

max
{√

n
∥
∥y(t) − yopt

∥
∥
2
,
∥
∥y(t) − 1n ⊗ y(t)

∥
∥
2
, L−1

∥
∥s(t) −∇f(y(t))

∥
∥
2

}

≤ Cρt.

In addition, an algorithm is said to reach ε-accuracy if the left-hand side of the above
expression is bounded by ε.

3.4. Theoretical Guarantees of Network-DANE for Quadratic Losses

This subsection establishes linear convergence of Network-DANE when the objective functions
are quadratic. The proofs are postponed to Appendix B.

Theorem 4 (Network-DANE under quadratic loss, arbitrary K) Suppose that Assump-

tions 1 and 2 hold. Set α = αK
0 , and take µ large enough so that σ + µ ≥ 140L

(1−α)2

(
β
σ + 1

)

.

Then Network-DANE converges linearly at a rate ρ1 obeying

ρ1 := max

{
1 + θ1

2
, α+

140κ

1− α

(
σ + β

σ + µ

)

,
1 + α

2
+

2β

σ + µ

}

, (19)

where θ1 is defined by

θ1 :=1− σ

σ + µ
+

L

L+ µ

β2

(σ + µ)(σ + µ− β)
. (20)

11

Li, Cen, Chen, Chi

Remark 5 It turns out that θ1 ∈ (0, 1) is the convergence rate of DANE in the master/slave
setting under quadratic losses (Shamir et al., 2014, Theorem 1).

It is worth noting that we have spent no effort in optimizing the pre-constants in the
above theorem. If the regularization parameter µ is sufficiently large, one can guarantee
that θ1 < 1 and hence DANE converges at a linear rate when optimizing quadratic losses
(Shamir et al., 2014). We can clearly see that (19) is always greater than θ1, which is the
price we pay for consensus under the network setting. Fortunately, by properly setting µ, we
can still guarantee that ρ1 < 1, which in turn enables linear convergence of Network-DANE.

In view of (19), if the network is sufficiently connected (i.e. α is small), or if the data are
sufficiently homogeneous (i.e. β is small), we can use a smaller parameter µ, which makes θ1
(defined in (20)) smaller and results in faster convergence. In summary, Network-DANE takes
fewer iterations to converge when α and β are both small. After some basic calculations,
the complexity of Network-DANE for quadratic losses is formalized in the following corollary.

Corollary 6 Set µ+ σ = 180L
(1−α)2

(βσ + 1). Under the assumptions of Theorem 4, one has

ρ1 ≤ 1−
(
1− α

20

)2 1

κ

1

(β/σ + 1)
. (21)

To reach ε-accuracy, Network-DANE takes at most O
(
κ(β/σ+1) log(1/ε)

(1−α)2

)

iterations,

and O
(

K · κ(β/σ+1) log(1/ε)
(1−α)2

)

communication rounds.

Recall that if we set the number of local averaging rounds to be K = 1, then one has
α = α0, and hence our iteration complexity can be readily compared with other existing
results. If the homogeneous parameter β obeys β = O(σ), then the convergence rate can
be improved to O

(
κ log(1/ε)/(1 − α0)

2
)
; this is much faster than the corrected DGD (Qu

and Li, 2018) with gradient tracking, which converges in O(κ2 log(1/ε)/(1−α0)
2) iterations.

The convergence rate of Network-DANE degenerates to that of DGD (Qu and Li, 2018) with
gradient tracking under the worst condition β = Θ(L). This observation highlights the
communication efficiency of Network-DANE by harnessing the homogeneity of data across
different agents. We emphasize that this is an important feature of our analysis, where the
convergence rate adapts with respect to the data homogeneity.

Benefits of extra local averaging (i.e. K > 1). The careful reader might have noticed
that the rate established above scales poorly with respect to the network parameter, namely,
1− α0, when K = 1. One remedy is to consider the case with K > 1, where Network-DANE

performs K rounds of communications per iteration. On the one hand, the effective net-
work parameter α = αK

0 can be made arbitrarily small by taking K sufficiently large, thus
leading to faster convergence; on the other hand, the total number of communications is K
times larger than the number of iterations, meaning that we might end up with a higher
communication complexity. As an example, invoking Corollary 6, we see that: the total
communication cost to reach ε-accuracy, in terms of the native network parameter α0, is
given by

O
(
K · κ(1 + β/σ) log(1/ε)/(1− αK

0)2
)
.

12

Communication-Efficient Distributed Optimization in Networks

Therefore, by judiciously choosing K, it is possible to significantly improve the overall
communication complexity, especially when α0 is close to 1. For example, by setting K �
1/ log(1/α0) = O(1/(1 − α0)), we can ensure αK

0 � 1/2 and reduce the communication
complexity to O

(
κ · (β/σ + 1) log(1/ε)/(1− α0)

)
, thus improving the dependence with the

graph topology.

The following theorem shows an improved result following a refined analysis, which
improves the dependence simultaneously with respect to both κ and 1− α0.

Theorem 7 (Network-DANE under quadratic loss, optimized K) Instate the assump-
tions of Theorem 4. Set K and µ large enough so that α = αK

0 ≤ 1/(2κ) and σ + µ ≥
360σ

(
β2

σ2 + 1
)

. To reach ε-accuracy, Network-DANE takes at most O
(
(β2/σ2 + 1) log(1/ε)

)

iterations, and O
(

log κ · (β2/σ2+1) log(1/ε)
1−α0

)

communications rounds.

When we set K as suggested in Theorem 7, the iteration complexity becomes independent
of the network topology. Moreover, it matches the rate of DANE in the master/slave setting
(Shamir et al., 2014) when β = O(σ), which is O(log(1/ε)) and further independent of the
condition number κ.

In terms of network dependence, the communication complexity improves from O
(
1/(1−

α0)
2
)

to O
(
1/(1 − α0)

)
. By implementing the extra averaging step in an efficient manner

via the well-known Chebyshev acceleration scheme (Arioli and Scott, 2014; Scaman et al.,
2017), the dependence of the communication complexity with respect to 1−α0 can be further
improved to O

(
(1− α0)

−1/2
)
. The final communication complexity of Network-DANE for

quadratic losses thus becomes

O

(

log κ · (β
2/σ2 + 1) log(1/ε)

(1− α0)1/2

)

.

Therefore, the total amount of communication is significantly reduced using extra averaging,
where it scales only logarithmically with respect to κ.

3.5. Theoretical Guarantees of Network-DANE for Strongly Convex Losses

This subsection establishes the linear convergence of Network-DANE for general smooth and
strongly convex loss functions, where the rate is worse than that for quadratic losses. The
proof can be found in Appendix C.

Theorem 8 Suppose that Assumption 1 holds. Set α = αK
0 , and take µ large enough so

that σ + µ ≥ 170κL
(1−α)2

. Then Network-DANE converges linearly at a rate ρ2 obeying

ρ2 := max

{
1 + θ2

2
, α+

170κ

1− α

(
L

σ + µ

)

,
1 + α

2
+

2β

σ + µ

}

, (22)

where θ2 is given by

θ2 :=1− σ

σ + µ
+

β

σ + µ

√

1−
(µ

σ + µ

)2
. (23)

13

Li, Cen, Chen, Chi

Remark 9 Note that θ2 ∈ (0, 1) is precisely the convergence rate of DANE in the mas-
ter/slave setting (see (Fan et al., 2019, Theorem 3.1)).

Similar to Theorem 4, one can guarantee θ2 < 1 and ρ2 < 1 by setting the regular-
ization parameter µ sufficiently large. Therefore, Network-DANE can converge at a linear
rate for a general class of smooth and strongly convex problems. Comparing the conver-
gence rates of Network-DANE derived for the above two different losses (i.e. comparing (20)
with (23)), we see that: when the loss functions are non-quadratic, θ2 is generally greater
than θ1

4. This happens since the Hessian matrices associated with the non-quadratic loss
functions may vary across different points, which is also the reason why the convergence
rate of Network-DANE derived for the general case degenerates to the worst-case rate. After
some basic calculations, the complexity of Network-DANE under strongly convex losses is
formalized by the following corollary.

Corollary 10 Set σ + µ = 180κL
(1−α)2

. Under the assumptions of Theorem 8, one has

ρ2 ≤ 1−
(
1− α

20

)2 1

κ2
. (24)

To reach ε-accuracy, Network-DANE takes at most O
(
κ2 log(1/ε)
(1−α)2

)

iterations and O
(

K · κ2 log(1/ε)
(1−α)2

)

communication rounds.

When K = 1, the communication complexity of Network-DANE is O
(
κ2 log(1/ε)
(1−α)2

)

, which

is rather pessimistic and does not improve with data homogeneity. Similar to Theorem 7,
we can improve this by optimizing K properly. We have the following theorem, which is
parallel to Theorem 7.

Theorem 11 (Network-DANE under strongly convex loss, optimized K) Instate the as-
sumptions of Theorem 8. Set K and µ large enough so that α = αK

0 ≤ 1/(2κ) and σ + µ ≥
360L

(
β
σ + 1

)

. To reach ε-accuracy, Network-DANE takes at most O (κ(β/σ + 1) log(1/ε))

iterations and O
(

log κ · κ(β/σ+1) log(1/ε)
1−α0

)

communication rounds.

The improved rate in Theorem 11 improves as the local data become more homogeneous,
recovering a feature that has been highlighted previously. Similar to earlier discussions, by
using the Chebyshev acceleration scheme (Arioli and Scott, 2014; Scaman et al., 2017), the
final communication complexity of Network-DANE for strongly convex losses becomes

O

(

log κ · κ(β/σ + 1) log(1/ε)

(1− α0)1/2

)

.

Remark 12 The homogeneity parameter β defined in Definition 2 measures the largest
deviation of local Hessians from the global Hessian. A refined analysis using local deviation
βj is possible by permitting different regularization parameters µj in (12) for different agents.

4. This is because
√

σ2+2σµ
(σ+µ)2

≥ σ
σ+µ

.

14

Communication-Efficient Distributed Optimization in Networks

3.6. Extension to Nonsmooth Composite Optimization

The proposed algorithms can be extended for nonsmooth composite optimization, by prop-
erly adjusting the local optimization step, leveraging proximal variants of DANE (Fan et al.,
2019) and SVRG (Xiao and Zhang, 2014). For simplicity, we present the proximal variant
of Network-DANE and leave its theoretical analysis to future work.

Consider the following regularized empirical risk minimization problem:

minimize
x∈Rd

f(x) + g(x) ,
1

N

N∑

i=1

`(x; zi) + g(x), (25)

where f(·) and fj(·) are defined as in (2), and g(·) is a deterministic convex regularizer that
can be nonsmooth. This type of problem has wide applications, where it is desirable to
promote additional structures or incorporate prior knowledge about the solution through
adding a deterministic regularization term g(x). We can extend Network-DANE to solve (25)
by adding the proximal term into the local optimization step, as detailed in Algorithm 2,
which is a direct extension of Algorithm 1. Section 5 numerically verifies the effectiveness
of Algorithm 2.

Algorithm 2 Network-DANE for nonsmooth composite optimization

1: Replace the local optimization sub-problem (12) of Network-DANE by the following:

2: Input: y
(t)
j , s

(t)
j , regularization parameter µ.

3: Update the parameter estimate by solving:

x
(t)
j = argmin

z∈Rd

{

fj(z) + g(z)−
〈
∇fj(y

(t)
j)− s

(t)
j , z

〉
+

µ

2

∥
∥z − y

(t)
j

∥
∥2

2

}

. (26)

4. Generalizing the Algorithm Design with Variance Reduction

The design of Network-DANE suggests a systematic approach to obtain decentralized versions
of other algorithms. We illustrate this by reducing local computation of Network-DANE using
variance reduction. Stochastic variance reduction methods are a popular class of stochastic
optimization algorithms, developed to allow for constant step sizes and faster convergence
in finite-sum optimization (Johnson and Zhang, 2013; Xiao and Zhang, 2014; Nguyen et al.,
2017). It is therefore natural to ask whether such variance reduction techniques can be
leveraged in a network setting to further save local computation without compromising
communication.

Inspired by the connection between DANE and SVRG (Konečnỳ et al., 2015), we intro-
duce Network-SVRG/SARAH in Alg. 3, a decentralized version of SVRG (Johnson and Zhang,
2013) and SARAH (Nguyen et al., 2017) tailored to the network setting, with the assistance
of gradient tracking. In particular, the inner loops of SVRG (Johnson and Zhang, 2013) or
SARAH (Nguyen et al., 2017) are adopted to replace the local computation subproblem (12)

of Network-DANE, where the reference to the global gradient is replaced by s
(t)
j to calculate

the variance-reduced stochastic gradient.

15

Li, Cen, Chen, Chi

Algorithm 3 Network-SVRG/SARAH

1: Replace the local optimization subproblem (12) of Network-DANE by the following:

2: Input: y
(t)
j , s

(t)
j , step size δ, number of local iterations S.

3: Initialization: set u
(t),0
j = y

(t)
j , v

(t),0
j = s

(t)
j .

4: for s = 1, ..., S do

5: u
(t),s
j = u

(t),s−1
j − δv

(t),s−1
j .

6: Sample z from Mj uniformly at random, then,

v
(t),s
j =







∇`(u
(t),s
j ; z)−∇`(u

(t),0
j ; z) + v

(t),0
j ; (SVRG) (27a)

∇`(u
(t),s
j ; z)−∇`(u

(t),s−1
j ; z) + v

(t),s−1
j . (SARAH) (27b)

7: end for
8: Choose the new parameter estimate x

(t)
j from {u(t),1

j , · · · ,u(t),S
j } uniformly at random.

The convergence analysis of Alg. 3 is more challenging due to the biased stochastic
gradient involved in each local iteration. Encouragingly, the theorem below establishes the
linear convergence of Network-SVRG for strongly convex losses, and of Network-SARAH for
quadratic losses, as long as β is sufficiently small and the number of mixing rounds K is
sufficiently large. Again, we have not strived to improve the pre-constants specified in the
theorem.

Theorem 13 Assume that the sample loss `(x; z) is convex and L-smooth w.r.t. x for all
z. If β/σ ≤ 1/200, set K large enough such that α = αK

0 � 1/κ and S large enough,
Network-SVRG converges linearly under Assumption 1; and Network-SARAH converges lin-
early under Assumptions 1 and 2. In particular, to reach ε-accuracy, Network-SVRG and

Network-SARAH take at most O (log(1/ε)) iterations and O
(

log κ · log(1/ε)
1−α0

)

communication

rounds under the aforementioned assumptions.

The proof of Theorem 13 can be found in Appendix D. Theorem 13 implies that: as long
as the local data are sufficiently similar (so that β does not exceed the order of σ), by
performing O (log κ/(1− α0)) rounds of local communication per iteration, Network-SVRG
and Network-SARAH converge in O (log(1/ε)) iterations independent of κ. This performance
guarantee matches its counterpart in the master/slave setting (Cen et al., 2020). Altogether,
Network-SVRG/SARAH achieves appealing computation and communication complexities si-
multaneously. By further adopting the Chebyshev acceleration scheme (Arioli and Scott,
2014; Scaman et al., 2017), the final communication complexity of Network-SVRG/SARAH is
at most

O

(

log κ · log(1/ε)

(1− α0)1/2

)

.

It is straightforward to extend this idea to obtain decentralized variants of other stochas-
tic variance reduced algorithms such as Katyusha (Allen-Zhu, 2017), basically by replacing
the local computation step (12) by the inner loop update rules of the stochastic methods of
interest. For the sake of brevity, this paper does not pursue such “plug-and-play” extensions.

16

Communication-Efficient Distributed Optimization in Networks

Remark 14 Our convergence theory of Network-SVRG requires β . σ, which is consistent
with its counterpart in the master/slave setting (Cen et al., 2020). In contrast, Network-DANE
is guaranteed to converge linearly in the entire range of β by setting µ sufficiently large. One
scheme to relax this requirement, as analyzed in Cen et al. (2020), is to add a regularization
term, similar to the last term in (12), that penalizes the distance to the previous estimate.
However, this might come at a price of slower convergence. We leave this to future investi-
gation.

5. Numerical Experiments

We evaluate the performance of the proposed algorithms5 for solving both strongly convex
and nonconvex problems, in order to demonstrate the appealing performance in terms of
communication-computation trade-offs. Code for our experiments can be found at

https://github.com/liboyue/Network-Distributed-Algorithm/tree/JMLR.

Throughout this section, we set the number of agents n = 20. We use symmetric fastest
distributed linear averaging (FDLA) matrices (Xiao and Boyd, 2004) generated according

to the communication graph as the mixing matrix W for aggregating x
(t)
j in (10). For

aggregating s
(t)
j in (10), we use a convex combination of I and W such that its diagonal

elements are greater than 0.1, which makes the algorithm more stable in practice. The same
regularization parameter µ is used for DANE and Network-DANE. We generate connected
random communication graphs using an Erdös-Rènyi graph with the probability of connec-
tivity p = 0.3 (if not specified). For each experiment, we use the same random starting point
x(0) and mixing matrix W for all algorithms. To solve the local optimization subproblems,
we use Nesterov’s accelerated gradient descent for at most 100 iterations for DANE and
Network-DANE.

5.1. Experiments On Synthetic Data

We conduct five synthetic numerical experiments based on linear regression to investigate the
performance of our algorithms. The same data generation method is used for all synthetic
experiments. We generate m = 1000 samples of dimension d = 40, denoted by Ai, randomly
from N (0,Σ) i.i.d. for each agent, where Σ is a diagonal matrix with Σii = i−%. By changing
%, we can change the condition number κ. Data samples are generated according the linear
model bi = Aix0 + ξi, with a random signal x0 and i.i.d. noise ξi ∼ N (0, I). For DANE
and Network-DANE, we set µ = 5 × 10−10 when κ = 10 and µ = 5 × 10−4 when κ = 104.
For Network-SVRG/SARAH, we set the step size δ = 0.1/(L + σ + 2µ), the number of local
iterations S = 0.05m.

Comparison with existing algorithms. To make a fair comparison with other algo-
rithms, no extra local averaging is adopted in this experiment, i.e. the number of mixing
rounds is set to K = 1. The loss function at each agent is given as fi(x) =

1
2m‖Aix− bi‖22.

5. In our experiments of Network-SVRG/SARAH, we use the last iterate u
(t),S
j as the new parameter estimate

locally, which is more practical; our analysis only handles the case where the new parameter estimate is
selected uniformly at random from previous iterates, though.

17

Li, Cen, Chen, Chi

0 20 40 60 80 10010−14

10−11

10−8

10−5

10−2

#iters

(f
(x̄

(t
))
−

f
?
)/
f
?

κ = 10

100 101 102 103 104

#grads/#samples

κ = 10

0 20 40 60 80 100
#iters

κ = 104

100 101 102 103 104

#grads/#samples

κ = 104

DANE ADMM EXTRA DGD Network-DANE Network-SVRG Network-SARAH

Figure 1: The relative optimality gap with respect to the number of iterations and gradient
evaluations under different conditioning κ = 10 (left two panels) and κ = 104

(right two panels) for linear regression.

We plot the relative optimality gap, given as (f(x(t)) − f?)/f?, where x(t) is the average
parameter of all agents at the tth iteration, and f? is the optimal value. We compare the
proposed Network-DANE (Alg. 1) and Network-SVRG/SARAH (Alg. 3) with the master/slave
algorithm DANE (Shamir et al., 2014) and ADMM (Boyd et al., 2011),6 and two popular
network-distributed gradient descent algorithms, referred to as DGD (Qu and Li, 2018) and
EXTRA (Shi et al., 2015a).

Fig. 1 shows the relative optimality gap with respect to the number of iterations as well
as the number of gradient evaluations under different condition numbers κ = 10 and κ = 104

for linear regression. In both experiments, Network-DANE and Network-SVRG/SARAH signif-
icantly outperform DGD and EXTRA in terms of the numbers of communication rounds.
Network-SVRG/SARAH has similar communication rounds with ADMM but only communi-
cates locally. Network-DANE is quite insensitive to the condition number, performing almost
as well as the DANE algorithm in the ill-conditioned case, but operates in a fully decen-
tralized setting. Network-SVRG/SARAH further outperforms other algorithms in terms of
gradient evaluations in most settings, especially for well-conditioned cases. Network-SVRG

and Network-SARAH are almost indistinguishable.

Benefits of extra local mixing (communication) per iteration. We conduct syn-
thetic experiments to investigate the communication-computation trade-off observed in Corol-
lary 11 when employing multiple rounds of mixing within every iteration. Following the
suggestion of the theory, we use a poorly-connected network with mixing rate α0 = 0.944
for communication, which is generated by an Erdös-Rènyi graph with p = 0.2. For illustra-
tion, we consider the relative optimality gap for a linear regression problem with κ = 10,
with respect to the number of iterations and communication rounds for Network-DANE and
Network-SVRG, under different values of K (no Chebyshev acceleration is employed), shown

6. We apply ADMM to the constrained optimization problem, which amounts to the centrally-distributed
setting, minxi

1
n

∑

fi(xi) s.t. xi = x. Note that ADMM can also be applied to the network-distributed
setting, which is not shown here since our network algorithms already outperform ADMM in the centrally-
distributed setting.

18

Communication-Efficient Distributed Optimization in Networks

0 20 40 60 80 10010−12

10−9

10−6

10−3

100

#iters

(f
(x̄

(t
))
−

f
?
)/
f
?

Network-DANE

0 100 200 300 400 500
#communication rounds

Network-DANE

0 20 40 60 80 100
#iters

Network-SVRG

0 100 200 300 400 500
#communication rounds

Network-SVRG

K = 1 K = 2 K = 5 K = 20 K = 50

Figure 2: The relative optimality gap with respect to the number of iterations and communi-
cation rounds under different rounds of mixing K for Network-DANE (left two
panels) and Network-SVRG (right two panels) over a poorly-connected graph.

in Fig. 2. Due to poor connectivity, Network-DANE and Network-SVRG fail to converge when
using moderate parameters. However, by using a larger K, due to improvement in consen-
sus, both algorithms converge faster in terms of the number of iterations. Notice that after
certain threshold, further increasing K will not improve the convergence rate in terms of
communication rounds.

Effects of local computation for Network-SVRG. We conduct an experiment to analyze
the effect of different numbers of local stochastic iterations for Network-SVRG. Throughout
this experiment, we run our algorithms on a linear regression problem with κ = 10 and
Erdös-Rènyi graph (p = 0.2) as the communication graph. Fig. 3 shows the number of
communication rounds and the number of gradient evaluations till converge for different
numbers of local iterations. It is clear that with too few local iterations, Network-SVRG

converges very slow and requires more communication. As soon as S is above a threshold,
i.e. around 0.05m local iterations, the communication rounds no longer decreases. Therefore,
in our experiments, we set the number of local iterations as S = 0.05m to ensure satisfactory
convergence rate while using an economical amount of local computation.

Effects of network topology. We conduct another experiment to compare the effect
of network topology on linear regression problem with κ = 10. We generate communi-
cation graphs with different topology settings. Fig. 4 shows the relative optimality gap
with respect to the number of iterations and gradient evaluations for Network-DANE and
Network-SVRG/SARAH for Erdös-Rènyi graph (p = 0.3), a 4 × 5 grid graph, a star graph,
and a ring graph. The performance degrades as the network becomes less connected (where
1− α0 becomes small) (Nedić et al., 2018).

Experiments for nonsmooth composite optimization We consider the `1-norm reg-
ularized linear regression, where the loss function of each agent is given as f̃i(x) = fi(x) +
g(x) = 1

2m‖Aix−bi‖22+0.01‖x‖1, and the communication graph are generated in the same
way as Fig. 1. The condition number κ is also defined in the same way as earlier. We
compare the performance of Network-DANE with CEASE (Fan et al., 2019), which is the

19

Li, Cen, Chen, Chi

0 0.2 0.4 0.6 0.8

102

103

0.1

#local iters/#local samples

#
it
er
s
ti
ll
co
n
ve
rg
e

Figure 3: Number of communication rounds and number of gradient evaluations till converge
with respect to different numbers of local iterations.

0 50 100 150 200

10−12

10−9

10−6

10−3

100

#iters

(f
(x̄

(t
)
)
−

f
?
)/
f
?

100 101 102 103 104

#grads/#samples

Network-DANE Network-SVRG Erdős–Rényi Grid Star Ring

Figure 4: Performance of the proposed algorithms under different network topologies.

proximal version of DANE in the master/slave setting, ADMM, and PG-EXTRA, which is
the proximal version of EXTRA (Shi et al., 2015b). For CEASE and Network-DANE, we set
µ = 10−4 when κ = 10 and µ = 10−1 when κ = 104, and use FISTA (Beck and Teboulle,
2009) to solve the `1-norm regularized local problems for computation efficiency. Fig. 5 plots
the relative optimality gap ‖x(t) − xopt‖2/‖xopt‖2 with respect to the number of iterations
and the number of gradient evaluations for different algorithms under different condition
numbers. In both experiments, Network-DANE outperformed ADMM and PG-EXTRA in
both metrics, and achieves similar convergence behavior as CEASE, though at a slower rate
due to optimizing over a decentralized topology.

5.2. Experiments On Real Data

We perform two experiments on real data to further evaluate the performance of the proposed
algorithms for both convex and nonconvex problems.

Binary classification using logistic regression. We use regularized logistic regression
to solve a binary classification problem using the Gisette dataset.7 We split the Gisette

7. The dataset can be found at https://archive.ics.uci.edu/ml/datasets/Gisette.

20

Communication-Efficient Distributed Optimization in Networks

0 20 40 60 80 10010−14

10−11

10−8

10−5

10−2

101

#iters

‖x̄
(t
)
−
x
?
‖ 2
/‖
x
?
‖ 2

κ = 10

100 101 102 103

#grads/#samples

κ = 10

0 20 40 60 80 100
#iters

κ = 104

100 101 102 103 104

#grads/#samples

κ = 104

CEASE ADMM PG-EXTRA Network-DANE

Figure 5: The relative optimality gap with respect to the number of iterations and gradient
evaluations under different conditioning κ = 10 (left two panels) and κ = 104

(right two panels) for linear regression with `1-norm regularization.

dataset to n = 20 agents, where each agent receives m = 300 training samples of dimension
d = 5000. The loss function at each agent is given as

fi(x) = − 1

m

m∑

j=1

[

b
(j)
i log

(1

1 + exp(x>a(j)
i)

)

+ (1− b
(j)
i) log

(exp(x>a(j)
i)

1 + exp(x>a(j)
i)

)]

+
λ

2
‖x‖22,

where a
(j)
i ∈ R

d and b
(j)
i ∈ {0, 1} are samples stored at agent i. For DANE and Network-DANE,

we set µ = 5 × 10−9 when κ = 2 and µ = 5 × 10−1 when κ = 100. The condition number
is controlled by changing the regularization λ. In both cases, our algorithms exhibit com-
pelling performance over other decentralized optimization algorithms especially in terms of
communication efficiency.

0 50 100 150
10−16

10−11

10−6

10−1

104

#iters

(f
(x̄

(t
))
−

f
?
)/
f
?

κ = 2

100 101 102 103 104
10−16

10−11

10−6

10−1

104

#grads/#samples

κ = 2

0 100 200 300 400 500
10−11

10−8

10−5

10−2

101

#iters

κ = 100

100 101 102 103 104 105
10−11

10−8

10−5

10−2

101

#grads/#samples

κ = 100

DANE ADMM EXTRA DGD Network-DANE Network-SVRG Network-SARAH

Figure 6: The relative optimality gap with respect to the number of iterations and gradient
evaluations under different conditioning κ = 2 (left two panels) and κ = 100 (right
two panels) for logistic regression using the Gisette dataset.

Neural network training. Though our theory only applies to the strongly convex case,
we examine Network-SVRG/SARAH in the nonconvex case, by training a one-hidden-layer

21

Li, Cen, Chen, Chi

neural network with 64 hidden neurons and sigmoid activations for a classification task
using the MNIST dataset. We split 60, 000 training samples to 20 agents and use an Erdös-
Rènyi graph with p = 0.3 for communications. Fig. 7 plots the training loss and testing
accuracy against the number of iterations and gradient evaluations for different algorithms,
where centralized ADMM and decentralized stochastic algorithm (DSGD) are plotted as
baselines. Being more communication-efficient than DSGD, and more computation-efficient
than ADMM, Network-SVRG/SARAH reach a desirable balance between computation and
communication efficacies.

0 50 100 150 200

0.5

1

1.5

2

2.5

#iters

T
ra
in
in
g
lo
ss

0 50 100 150 200

0.2

0.4

0.6

0.8

1

#iters

T
es
ti
n
g
ac
cu
ra
cy

10−2 10−1 100 101 102 103

0.5

1

1.5

2

2.5

#grads/#samples

T
ra
in
in
g
lo
ss

10−2 10−1 100 101 102 103

0.2

0.4

0.6

0.8

1

#grads/#samples

T
es
ti
n
g
ac
cu
ra
cy

ADMM DSGD Network-SVRG Network-SARAH

Figure 7: The training loss and testing accuracy with respect to the number of iterations (left
two panels) and gradient evaluations (right two panels) for different algorithms
on the MNIST dataset.

6. Conclusions

This paper proposes decentralized (stochastic) optimization algorithms that are communication-
efficient over a network: (i) Network-DANE based on an approximate Newton-type local
update, and (ii) Network-SVRG/SARAH based on stochastic variance-reduced local gradient
updates. Theoretical convergence guarantees are developed for the proposed algorithms,
highlighting the impact of network topology, data homogeneity across agents, and refined
trade-offs between global communication and local computation. Moreover, extensive nu-
merical experiments are conducted to verify the superior performance of the proposed al-
gorithms. The idea can be easily extended to obtain decentralized versions of other mas-
ter/slave distributed algorithms in a systematic manner. This work opens up many exciting
directions for future investigation, including but not limited to establishing the convergence
of Network-DANE and Network-SVRG/SARAH under general loss functions for both convex
and nonconvex settings, with the possibility of asynchronous updates across agents.

Acknowledgments

The work of B. Li, S. Cen and Y. Chi is supported in part by ONR under the grants
N00014-18-1-2142 and N00014-19-1-2404, by ARO under the grant W911NF-18-1-0303, and
by NSF under the grants CAREER ECCS-1818571, CCF-1806154, CCF-1901199 and CCF-

22

Communication-Efficient Distributed Optimization in Networks

2007911. Y. Chen is supported in part by the grants AFOSR YIP award FA9550-19-1-0030,
ONR N00014-19-1-2120, ARO YIP award W911NF-20-1-0097, ARO W911NF-18-1-0303,
NSF CCF-1907661, DMS-2014279 and IIS-1900140, and the Princeton SEAS Innovation
Award.

Appendix A. Derivation of Equation (9)

We make the observation that

fj(x)−
〈
∇fj(x

(t)),x
〉
=1

2x
>Hjx− x>Hjx

(t) + constant

=1
2

(
x− x(t)

)>
Hj

(
x− x(t)

)
+ constant,

which allows us to derive a closed-form expression for x
(t)
j as follows

x
(t)
j = arg min

x∈Rd

{
1

2

(
x− x(t)

)>
Hj

(
x− x(t)

)
+
〈
∇f

(
x(t)

)
,x− x(t)

〉
+

µ

2

∥
∥x− x(t)

∥
∥2

2

}

= arg min
x∈Rd

{
1

2

(
x− x(t)

)>
(Hj + µI)

(
x− x(t)

)
+

〈
∇f

(
x(t)

)
,x− x(t)

〉
}

= x(t) − (Hj + µId)
−1∇f

(
x(t)

)
.

Appendix B. Proof of Theorem 4 and Theorem 7

This sections proves the convergence rate of Network-DANE for quadratic losses. When local
and global loss functions are quadratic, we can solve (12) explicitly. Specifically, Alg. 1 can
be alternatively written as Alg. 4 below.

Algorithm 4 Network-DANE for quadratic losses (8)

1: for t = 1, 2, · · · do
2:

y(t) = (WK ⊗ Id)x
(t−1), (28a)

s(t) = (WK ⊗ Id)s
(t−1) +H

(
y(t) − y(t−1)

)
, (28b)

x(t) = y(t−1) − (H + µInd)
−1s(t−1), (28c)

where y(t) and s(t) are defined in (17), H := diag(H1, · · · ,Hn) ∈ R
nd×nd, and Hi is

defined in (8).
3: end for

For notational convenience, we let H = ∇2f(x) = 1
n

∑n
j=1Hj be the Hessian of the

global loss function. From the definition of the homogeneity parameter β, we have ‖H −
Hj‖2 ≤ β for all j = 1, . . . , n. In addition, we recall the notations in (14), (17) and (18),
and define the error vector as follows

e(t) =





√
n‖y(t) − yopt‖2

‖y(t) − 1n ⊗ y(t)‖2
L−1‖s(t) −∇f(y(t))‖2



 . (29)

23

Li, Cen, Chen, Chi

Establishing the convergence of Network-DANE relies on characterization of the per-
iteration dynamics of e(t) for quadratic losses. Towards this end, we state the following
key lemma — which is established in Appendix E — that plays a crucial role in the analy-
sis.

Lemma 15 Let η = 1
σ+µ and γ = L

L+µ . Suppose that Assumptions 1 and 2 hold. Then one
has

e(t) ≤





θ1 γηβ + ηβ η2Lβ
αγηβ α+ αηL αηL

β
L + θ1

β
L + αγηβ β

L α β
L + α+ 1 + γηβ β

L + ηβ β
L + α β

L + αηβ α+ γηβ β
L + αηβ





︸ ︷︷ ︸

=:G

e(t−1).

(30)
Here, a ≤ b indicates that ai ≤ bi for all entries i.

In what follows, we invoke this result to establish Theorem 4 and Theorem 7 separately.

B.1. Proof of Theorem 4

By the choice of µ stated in Theorem 4, we can show that

γ < 1 and ηβ ≤ ηL < 1. (31)

In view of Lemma 15, we can obtain

e(t) ≤ G1e
(t−1)

with a simplified matrix

G1 :=





θ1 2ηβ η2Lβ
αγηβ α+ αηL αηL

3 β
L 7 α+ 2ηβ



 , (32)

where e(t) is defined in (29). We first invoke an argument from Wai et al. (2018) to show
that e(t) converges linearly at a rate not exceeding ρ(G1). Given that G1 is a positive matrix
(i.e. all of its entries are strictly greater than zero), one can invoke the Perron-Frobenius
Theorem to show that: there exists a real-valued positive number ρ(G1) ∈ R — the spectral
radius of G1 — such that (i) ρ(G1) is an algebraically simple eigenvalue of G1 associated
with a strictly positive eigenvector χ, (ii) all other eigenvalues of G1 are strictly smaller in
magnitude than ρ(G1). Therefore, there exists some constant C > 0 such that e0 ≤ Cχ,
and consequently,

e(1) ≤ G1e
(0) ≤ CG1χ = Cρ(G1)χ. (33)

Invoking this argument recursively for all t, we arrive at

e(t) ≤ C
(
ρ(G1)

)t
χ. (34)

24

Communication-Efficient Distributed Optimization in Networks

Therefore, the rest of this proof boils down to upper bounding ρ(G1). Rearrange the char-
acteristic polynomial of G1, given by

f1(λ) =det
(
λI −G1

)

=(λ− θ1)p1(λ) + αγη2β2(2α+ 4ηβ − 2θ1 − 7ηL)− 3η2β2(α− αηL+ θ1), (35)

where p1(λ) is the following function obtained by direct computation

p1(λ) = (λ− α− αηL)(λ− α− 2ηβ)− 7αηL− 2αγη2β2 − 3η2β2. (36)

From the Perron-Frobenius Theorem, we know that ρ(G1) is a simple positive root of f1(λ)
(so that f1(ρ(G1)) = 0). However, it is difficult to compute it directly. In what follows, we
seek to first upper bound ρ(G1) by

ρ1 := λ0 = max

{

1 + θ1
2

, α+
140ηL

1− α

(β

σ
+ 1

)

,
1 + α

2
+ 2ηβ

}

, (37)

and then demonstrate that λ0 < 1, which in turn ensures linear convergence.

Step 1: bounding ρ(G1) by λ0. The following calculation aims to verify the fact that:
for all λ ≥ λ0, one has f1(λ) > 0, and hence ρ(G1) ≤ λ0. Recall the definition of θ1 in (20).
When λ ≥ λ0 ≥ 1+θ1

2 , one has

λ− θ1 ≥
1− θ1

2

=
1

2

σ

σ + µ

(

1− L

L+ µ

β

σ + µ− β

β

σ

)

≥ 1

4

σ

σ + µ
. (38)

In order for the last inequality to hold, we must make sure that

{

σ + µ ≥ 3β2

σ , if β ≥ σ;

σ + µ ≥ 3σ, otherwise.
(39)

Note that the above relationship is guaranteed by the condition σ + µ ≥ 140L
(1−α)2

(
β
σ + 1

)

.

When λ ≥ λ0, using (31), we can lower bound the first term of p1(λ) by

(λ− α− αηL)(λ− α− 2ηβ) ≥1− α

2

(140ηL

1− α

(β

σ
+ 1

)

− αηL
)

>69ηL
(β

σ
+ 1

)

.

We can lower bound p1(λ) by incorporating (31) as

p1(λ) = (λ− α− αηL)(λ− α− 2ηβ)− 7αηL− 2αγη2β2 − 3η2β2

> 69ηL
(β

σ
+ 1

)

− 12ηL

25

Li, Cen, Chen, Chi

> 68κηβ. (40)

As a result of (38) and (40), when λ ≥ λ0, the characteristic polynomial (35) satisfies

f1(λ) ≥ (λ− θ1)p1(λ) + αγη2β2(2α+ 4ηβ − 2θ1 − 7ηL)− 3η2β2(α− αηL+ θ1)

>
1

4
ησ · 68κηβ − 9αγη2β2 − 3η2β2(α+ θ1)

> 17ηβηL− 9αγη2β2 − 6η2β2 > 0.

Therefore, any λ that exceeds λ0 cannot be a root of f1(·). This implies that the spectral
radius ρ(G1), of necessity, obeys ρ(G1) < λ0.

Step 2: bounding λ0. This step verifies that all three terms in (37) are smaller than 1,
thus leading to the conclusion λ0 < 1.

• First, observe that if (39) is satisfied, we have 1+θ1
2 ≤ 1− 1

4ησ < 1.

• When σ + µ ≥ 140L
(1−α)2

(
β
σ + 1

)

, the second term in (37) obeys α+ 140ηL
1−α

(
β
σ + 1

)

≤ 1.

• Finally, the third term in (37) is also less than 1, since

1 + α

2
+2ηβ ≤ 1 + α

2
+
(1− α)2

70

β
β
σ + 1

1

L
≤ 1 + α

2
+
(1− α)2

70
≤ 1− 1− α

2
+
1− α

70
< 1.

B.2. Proof of Theorem 7

By the assumption σ + µ ≥ 360σ
(
β2

σ2 + 1
)

and α ≤ 1
2κ , we can prove that ηβ < 1 and

αηL ≤ 1
2 . The characteristic polynomial (35) in Appendix B.1 can then be lower bounded

by

f1(λ) = det (λI −G1)

=(λ− θ1)
(

(λ− α− αηL)(λ− α− 2ηβ)− 7αηL− 2αγη2β2 − 3η2β2
)

+ αγη2β2(2α+ 4ηβ − 2θ1 − 7ηL)− 3η2β2(α− αηL+ θ1)

≥ (λ− θ1)
(

(λ− α− 1

2
ησ)(λ− α− 2ηβ)− 7

2
ησ − ηση2β2 − 3η2β2

)

+ αγη2β2(2α+ 4ηβ − 2θ1 − 7ηL)− 3η2β2(α− αηL+ θ1), (41)

provided that λ obeys

λ ≥ max

{

1 + θ1
2

, α+ 180ησ
(β2

σ2
+ 1

)

,
1 + α

2
+ 2ηβ

}

.

Given that all conditions in (39) are satisfied, we can show η2β2 ≤ ησ · β2

360σ2(β2/σ2+1)
<

ησ < 1. One can thus continue to lower bound (41) by

f1(λ) > (λ− θ1)
(

(λ− α− 1

2
ησ)(λ− α− 2ηβ)− 8ησ

)

− 11η2β2

26

Communication-Efficient Distributed Optimization in Networks

>
1

4
ησ

{1

4

[

180ησ
(β2

σ2
+ 1

)

− 1

2
ησ

]

− 8ησ
}

− 11η2β2

>
1

4
ησ

{

45ηβ
β

σ
+ 44ησ − 8ησ

}

− 11η2β2

>
45

4
ηβ − 11η2σ2

> 0.

Consequently, following similar arguments as in Appendix B.1, we can show that: under
the conditions of Theorem 7, the spectral radius of G1 can be upper bounded by

ρ(G1) ≤ 1− C
β2

σ2 + 1
,

where C is some sufficiently small positive constant. This immediately tells us that: to

reach ε-accuracy, Network-DANE takes at most O
((β2

σ2 + 1
)
log(1/ε)

)

iterations. For each

iteration, Network-DANE needs

K � log(1/2κ)

logα0
.

log κ

1− α0

rounds of communication, where we have used the elementary inequality 1−α0 < log(1/α0).

Putting all this together leads to a communication complexity at most O
(

log κ · (β2/σ2+1) log(1/ε)
1−α0

)

.

Appendix C. Proofs of Theorem 8 and Theorem 11

This sections establishes the convergence rate of Network-DANE for smooth and strongly
convex loss functions, following the analysis approach adopted in the proof of Theorem 4.
In particular, the following key lemma plays a crucial role, which characterizes the per-
iteration dynamics of the proposed Network-DANE for general smooth strongly convex losses.
The proof of this lemma is deferred to Appendix F.

Lemma 16 Recall the notations in Lemma 15. Suppose that Assumption 1 holds, and
(β
σ+µ

)2 ≤ σ
σ+2µ . One has

e(t) ≤





θ2 ηL γηL
αγηL α+ αηL αηL

β
L + θ2

β
L + αγηβ α+ 1 + α β

L + ηβ + α β
L + αηβ α+ γηβ + αηβ





︸ ︷︷ ︸

=:G′

e(t−1). (42)

Here, e(t) is the error vector defined in (29), and the notation a ≤ b indicates that ai ≤ bi
for all entries i.

C.1. Proof of Theorem 8

Under the conditions of Theorem 8, the inequalities stated in (31) remain valid. In addition,
when σ + µ = 170κL

(1−α)2
, we can verify that

(β

σ + µ

)2
=

(1− α)4β2

1702κ2L2
≤ (1− α)2

1702κ2
<

1

2
· (1− α)2

170κ2
=

1

2
· σ

σ + µ
<

σ

σ + 2µ
.

27

Li, Cen, Chen, Chi

When σ + µ ≥ 170κL
(1−α)2

, the LHS decreases faster than the RHS, thus the requirement of

Lemma 16 is met. In view of Lemma 16 as well as the fact θ2 ≤ 1, we can replace G′ by a
simplified matrix that dominates G′:

G2 :=





θ2 2ηL γηL
αγηL α+ αηL αηL

3 β
L 7 α+ 2ηβ



 . (43)

The above matrix G2 is similar to G1 in (32) in the quadratic case, except that the quantity
β in the first two rows of G1 is replaced by L (thus leading to a worse convergence rate).

Similar to the proof of Theorem 4, we shall upper bound ρ(G2) — the spectral radius
of G2. To locate the eigenvalues of G2, we rearrange the characteristic polynomial of G2 as
follows

f2(λ) =det (λI −G2)

=(λ− θ2)p2(λ) + αγη2L2 (2α+ 4ηβ − 2θ2 − 7γ)− 3ηβ (2αηL− γ(α+ αηL− θ2)) ,
(44)

where p2(λ) is the following function obtained by direct computation

p2(λ) = (λ− α− αηL)(λ− α− 2ηβ)− 7αηL− 2αγη2L2 − 3γηβ.

From the Perron-Frobenius Theorem, ρ(G2) is a simple positive root of the equation f2(λ) =
0. However, it is hard to calculate it directly. In what follows, we seek to first upper bound
ρ(G2) by

ρ2 := λ0 = max

{
1 + θ2

2
, α+

170κηL

1− α
,
1 + α

2
+ 2ηβ

}

, (45)

and then demonstrate that λ0 < 1, which in turn ensures linear convergence.

Step 1: bounding ρ(G2) by λ0. The following calculation aims to verify the fact that
f2(λ) > 0 holds for all λ ≥ λ0 , so that ρ(G2) ≤ λ0. Recalling the definition of θ2 in Lemma
16, we see that when λ ≥ λ0 ≥ 1+θ2

2 ,

λ− θ2 ≥
1− θ2

2

=
1

2
η
(

σ − β
√

(1− ηµ)(1 + ηµ)
)

≥ 1

2
η
(

σ − β
√

2(1− ηµ)
)

>
1

4
ησ, (46)

where we have used the fact ηµ < 1 to reach the second inequality. For the last inequality
to hold, we need to make sure

{

σ + µ ≥ 10β2

σ , β ≥ σ

σ + µ ≥ 10σ, otherwise
(47)

which is guaranteed by the assumption σ + µ ≥ 170κL
(1−α)2

.

28

Communication-Efficient Distributed Optimization in Networks

Similarly, when λ ≥ λ0, the first term of p2(λ) can be lower bounded by

(λ− α− αηL)(λ− α− 2ηβ) ≥1− α

2

(170κηL

1− α
− αηL

)

> 80κηL.

Then, using (31) we can bound p2(λ) by

p2(λ) = (λ− α− αηL)(λ− α− 2ηβ)− 7αηL− 2αγη2L2 − 3γηβ

> 80κηL− 12ηL ≥ 68κηL. (48)

By virtue of (46) and (48), it is seen that when λ ≥ λ0, the characteristic polynomial f2(λ)
in (44) satisfies

f2(λ) >
1

4
ησ · 68κηL− 8αγη2L2 − 9ηβηL > 0.

Therefore, any λ that exceeds λ0 cannot possibly be a root of f2(·). This implies that the
spectral radius necessarily obeys ρ(G2) < λ0.

Step 2: bounding λ0. This step verifies that the three terms in the expression of λ0 in
(45) is smaller than 1, allowing us to conclude that λ0 < 1.

• First, observe that if (47) is satisfied, then we have 1+θ2
2 ≤ 1− 1

4ησ < 1.

• When σ + µ ≥ 170κL
(1−α)2

, the second term is α+ 170κηL
1−α ≤ 1.

• We conclude the proof by checking that the third term is also less than 1, namely,

1 + α

2
+ 2ηβ ≤ 1 + α

2
+

(1− α)2

85

1

κ

β

L
≤ 1 + α

2
+

(1− α)2

85
≤ 1− 1− α

2
+

1− α

85
.

C.2. Proof of Theorem 11

We first verify the assumption of Lemma 16. When σ + µ = 360L
(
β
σ + 1

)

,

(β

σ + µ

)2
=

β2

3602L2(βσ + 1)2
≤ β

3602κL(βσ + 1)
<

1

2
· 1

360κ(βσ + 1)
=

1

2
· σ

σ + µ
<

σ

σ + 2µ
.

Therefore, Lemma 16 still holds.
By the assumption α ≤ 1

2κ , we can further lower bound the characteristic polynomial
(44) in Appendix C.1 as follows:

f2(λ) = det
(
λI −G2

)

= (λ− θ2)
(
(λ− α− αηL)(λ− α− 2ηβ)− 7αηL− 2αγη2L2 − 3γηβ

)

+ αγη2L2 (2α+ 4ηβ − 2θ2 − 7γ)− 3ηβ (2αηL− γ(α+ αηL− θ2))

≥ (λ− θ2)
(

(λ− α− 1

2
ησ)(λ− α− 2ηβ)− 7

2
ησ − ηση2L2 − 3γηβ

)

− ηση2L2(θ2 +
7

2
γ)− 3ηβ

(

ησ + γθ2

)

29

Li, Cen, Chen, Chi

> (λ− θ2)
(

(λ− α− 1

2
ησ)(λ− α− 2ηβ)− 8ησ

)

− 5ηση2L2 − 6ηβηL, (49)

providing λ obeys

λ ≥ max

{

1 + θ2
2

, α+ 180ηL
(β

σ
+ 1

)

,
1 + α

2
+ 2ηβ

}

.

We can further lower bound (49) by

f2(λ) ≥
1

4
ησ

{
1

4

[

180ηL
(β

σ
+ 1

)

− 1

2
ησ

]

− 8ησ

}

− 5ηση2L2 − 6ηβηL > 0,

as long as µ satisfies σ+µ ≥ 360L
(β
σ+1

)
. Therefore, following similar arguments as adopted

in Appendix C.1, the spectral radius of G2 can be upper bounded by

ρ(G2) ≤ 1− C

κ(βσ + 1)
,

where C is a small positive constant. Consequently, to reach ε-accuracy, Network-DANE

takes at most O
(

κ
(β
σ + 1

)
log(1/ε)

)

iterations and O
(

log κ · κ(β/σ+1) log(1/ε)
1−α0

)

communi-

cation rounds.

Appendix D. Proof of Theorem 13

The proof strategy of Theorem 13 is similar in spirit to the convergence proof of Network-DANE,
where we will carefully build a linear system that tracks the coupling of the consensus error
and the optimization error. Under the assumptions in Theorem 13, we can assume that
1− 3ακ− 3β/σ > 0. Let

ζ = 1/(1− 3ακ− 3β/σ).

In what follows, we first introduce two key lemmas that connect the convergence be-
havior of Network-SVRG and Network-SARAH in the network setting to their master/slave
counterparts (namely, D-SVRG and D-SARAH) studied in Cen et al. (2020). Lemma 17,
proved in Appendix G, creates the linear system characterizing the iteration dynamics of
Network-SVRG. Similarly, Lemma 18 describes the dynamics of Network-SARAH, whose proof
can be found in Appendix H.

Lemma 17 Under the assumptions in Theorem 13, Network-SVRG satisfies

E[e(t)] ≤








(

ν(1 + 3ακ+ 4β
σ) +

β
σ

)

ζ 8β
σ ζ αζ/κ ζ/16

1/2 0 0 0

8
(β
σ

)2
64
(β
σ

)2
4α2 ακ/2

64ακ 0 0 0








︸ ︷︷ ︸

:=G3

E[e(t−1)], (50)

30

Communication-Efficient Distributed Optimization in Networks

where the error vector is defined as

e(t) =








∑n
j=1

(
f(x

(t)
j)− f(yopt)

)

∑n
j=1

(
f(y

(t)
j)− f(yopt)

)
/2

‖s(t) −∇f(y(t))‖22/σ
32L‖y(t) − 1n ⊗ y(t)‖22/α







.

Here, ν ≤ 1
2
σ−2β
σ−3β is the convergence rate of D-SVRG in the master/slave setting under the

same assumptions (Cen et al., 2020, Theorem 1).

Lemma 18 Under the assumptions of Theorem 13, and the loss functions are quadratic,
Network-SARAH satisfies

E[e(t)] ≤








(

ν(1 + 3ακ+ 4β
σ) +

β
σ

)

ζ 8β
σ ζ 2αζ/κ ζ/8

1/2 0 0 0

4
(β
σ

)2
32
(β
σ

)2
4α2 ακ/2

32ακ 0 0 0








︸ ︷︷ ︸

:=G4

E[e(t−1)], (51)

where the error vector is defined as

e(t) =







‖∇f(x(t))‖22
‖∇f(y(t))‖22/2

‖s(t) −∇f(y(t))‖22
32L2‖y(t) − 1n ⊗ y(t)‖22/(ακ)






.

Here, ν ≤ 1
2

1
1−4β2/σ2 is the convergence rate of D-SARAH in the master/slave setting under

the same assumptions (Cen et al., 2020, Theorem 2).

Since every term in the matrices of linear systems of Lemma 17 and Lemma 18 is non-
negative, all eigenvalues of G3 and G4 are bounded by the maximum of the sum of rows
according to the Gershgorin circle theorem. For Network-SVRG, by setting α = 1

70κ , which
needs K � O(logα0

1/κ) = O
(
log κ/(1 − α0)

)
, we can ensure that the sum of the first row

is bounded by 5/6, and the sums of other rows are also bounded by a constant smaller than
1, under the assumption β ≤ σ/200. Therefore, invoking the Gershgorin circle theorem,
the spectral radius is bounded by a constant smaller than 1. To achieve ε-accuracy, the
total number of iterations needed is O (log(1/ε)) and thus the communication complexity

is O
(

log κ · log(1/ε)
1−α0

)

. Similar arguments hold true for Network-SARAH, which we omit for

simplicity.

Appendix E. Proof of Lemma 15

The proof is divided into several steps. (i) In Appendix E.1, we bound the convergence error√
n‖x(t) − yopt‖2; (ii) in Appendix E.2, we bound the parameter consensus error ‖x(t) −

1n⊗x(t)‖2; (iii) in Appendix E.3, we bound the gradient estimation error ‖s(t)j −∇f(y(t))‖2;
(iv) finally, we create induction inequalities of ‖y(t) − 1n ⊗ y(t)‖2,

√
n‖y(t) − yopt‖2 and

‖s(t)j −∇f(y(t))‖2 in Appendix E.4 to conclude the proof.

31

Li, Cen, Chen, Chi

E.1. Convergence error

We begin by defining an auxiliary variable x+
j , which can be seen as the result of one local

iterate (12) of the original DANE algorithm initialized at y(t−1):

x+
j = argmin

x

{

fj(x)−
〈

∇fj(y
(t−1))−∇f(y(t−1)),x

〉

+
µ

2
‖x− y(t−1)‖22

}

. (52)

Following the same convention as in previous definitions, we also define

x+ =
1

n

∑

j

x+
j . (53)

Given that the function we optimize at each agent is strongly convex, the local optimality
conditions of (52) and (12) are as follows:

∇fj(x
+
j) + µ(x+

j − yopt) =∇(fj − f)(y(t−1)) + µ(y(t−1) − yopt), (54a)

∇fj(x
(t−1)
j) + µ(x

(t−1)
j − yopt) =∇fj(y

(t−1)
j)− s

(t−1)
j + µ(y

(t−1)
j − yopt). (54b)

Taking the average of (54) over j = 1, . . . , n, we obtain another set of optimality condi-
tions:

1

n

∑

j

∇fj(x
+
j) + µ(x+ − yopt) =µ(y(t−1) − yopt), (55a)

1

n

∑

j

∇fj(x
(t−1)
j) + µ(x(t−1) − yopt) =µ(y(t−1) − yopt), (55b)

where we use the fact
∑

j s
(t−1)
j =

∑

j ∇fj(y
(t−1)
j) due to the property of gradient tracking

(6).
In view of the triangle inequality, the convergence error can be decomposed as

‖x(t−1) − yopt‖2 ≤ ‖x(t−1) − x+‖2 + ‖x+ − yopt‖2, (56)

where the first term is the error caused by inaccurate gradient estimate, and the second
term is the progress of DANE initialized at y(t−1).

1. For the first term ‖x(t−1) − x+‖2, we first plug in the Hessian of the quadratic losses

to solve for x
(t−1)
j and x+

j explicitly as

x
(t−1)
j =y

(t−1)
j − (Hj + µId)

−1s
(t−1)
j , (57a)

x+
j =y(t−1) − (Hj + µId)

−1∇f(y(t−1)). (57b)

The first error term ‖x(t−1) − x+‖2 can be written as

‖x(t−1) − x+‖2
=
∥
∥
∥

(1

n
1
>
n ⊗ Id

)

(x(t−1) − x+)
∥
∥
∥
2

32

Communication-Efficient Distributed Optimization in Networks

=
∥
∥
∥

(1

n
1
>
n ⊗ Id

)(

y(t−1) − 1n ⊗ y(t−1) − (H + µInd)
−1∇f(1n ⊗ y(t−1)) + (H + µInd)

−1s(t−1)
)∥
∥
∥
2

=
∥
∥
∥

(1

n
1
>
n ⊗ Id

)

(H + µInd)
−1

(
s(t−1) −∇f(1n ⊗ y(t−1))

)
∥
∥
∥
2
,

where the last line follows from the definition of y(t−1). Then, we add and subtract
(In ⊗H + µInd)

−1 and rearrange terms, obtaining

‖x(t−1) − x+‖2
=
∥
∥
∥

(1

n
1
>
n ⊗ Id

)(

(H + µInd)
−1 − (In ⊗H + µInd)

−1
)(

s(t−1) −∇f(1n ⊗ y(t−1))
)

+
(1

n
1
>
n ⊗ Id

)

(In ⊗H + µInd)
−1

(
s(t−1) −∇f(1n ⊗ y(t−1))

)
∥
∥
∥
2

=
∥
∥
∥

(1

n
1
>
n ⊗ Id

)

(H + µInd)
−1(In ⊗H −H)(In ⊗H + µInd)

−1
(
s(t−1) −∇f(y(t−1))

)

+
(1

n
1
>
n ⊗ Id

)

(H + µInd)
−1(In ⊗H −H)(In ⊗H + µInd)

−1
(
∇f(y(t−1))−∇f(1n ⊗ y(t−1))

)

+
(1

n
1
>
n ⊗ Id

)

(In ⊗H + µInd)
−1(H − In ⊗H)(y(t−1) − 1n ⊗ y(t−1))

∥
∥
∥
2

(58)

≤
∥
∥
∥

(1

n
1
>
n ⊗ Id

)∥
∥
∥
2

∥
∥
∥(H + µInd)

−1(In ⊗H −H)(In ⊗H + µInd)
−1

∥
∥
∥
2
‖s(t−1) −∇f(y(t−1))‖2

+
∥
∥
∥

(1

n
1
>
n ⊗ Id

)∥
∥
∥
2

∥
∥
∥(H + µInd)

−1(In ⊗H −H)
(

Ind + µIn ⊗H
−1

)−1∥∥
∥
2
‖y(t−1) − 1n ⊗ y(t−1)‖2

+
∥
∥
∥

(1

n
1
>
n ⊗ Id

)∥
∥
∥
2

∥
∥
∥(In ⊗H + µInd)

−1(H − In ⊗H)
∥
∥
∥
2
‖y(t−1) − 1n ⊗ y(t−1)‖2.

The last term in (58) follows from the identity

(1

n
1
>
n ⊗ Id

)

(In ⊗H + µInd)
−1

(
s(t−1) −∇f(1n ⊗ y(t−1))

)

=(H + µId)
−1

(1

n
1
>
n ⊗ Id

)(
s(t−1) −∇f(1n ⊗ y(t−1))

)

=(H + µId)
−1

(1

n
1
>
n ⊗ Id

)(
Hy(t−1) − 1n ⊗Hy(t−1)

)

=(H + µId)
−1

(1

n
1
>
n ⊗ Id

)(
Hy(t−1) − 1n ⊗Hy(t−1)

)

=
(1

n
1
>
n ⊗ Id

)

(In ⊗H + µInd)
−1H(y(t−1) − 1n ⊗ y(t−1))

=
(1

n
1
>
n ⊗ Id

)

(In ⊗H + µInd)
−1(H − In ⊗H)(y(t−1) − 1n ⊗ y(t−1)).

Taken together with the identity ‖ 1
n1

>
n ⊗ Id‖2 = 1√

n
, the assumption ‖Hj −H‖2 ≤ β,

and the bound ‖(H + µInd)
−1‖2 ≤ 1

σ+µ and
∥
∥
∥

(
Ind + µIn ⊗H

−1)−1
∥
∥
∥
2
≤ L

L+µ , we can

further bound (58) by

√
n‖x(t−1) − x+‖2 ≤

1

σ + µ

β

σ + µ
‖s(t−1) −∇f(y(t−1))‖2

+
(L

L+ µ

β

σ + µ
+

β

σ + µ

)

‖y(t−1) − 1n ⊗ y(t−1)‖2. (59)

33

Li, Cen, Chen, Chi

2. Regarding the second term ‖x+ − yopt‖2, we provide a slightly improved bound com-
pared to Shamir et al. (2014). In view of (57b),

‖x+ − yopt‖2 =
∥
∥
∥y

(t−1) − yopt − 1

n

∑

j

(Hj + µId)
−1∇f(y(t−1))

∥
∥
∥
2

=
∥
∥
∥

(

I − 1

n

n∑

i=1

(Hi + µI)−1H
)

(y(t−1) − yopt)
∥
∥
∥
2

≤
∥
∥
∥I − 1

n

n∑

i=1

(Hi + µI)−1H

∥
∥
∥
2
‖y(t−1) − yopt‖2. (60)

Then, we use the triangle inequality to break the convergence rate in (60) into two
parts:

∥
∥
∥I − 1

n

n∑

i=1

(Hi + µI)−1H

∥
∥
∥
2

≤
∥
∥
∥I − (H + µI)−1H

∥
∥
∥
2
+
∥
∥
∥
1

n

n∑

i=1

(

(Hi + µI)−1 − (H + µI)−1
)

H

∥
∥
∥
2
. (61)

When H � σId, it is straightforward to check that the first term of (61) is upper
bounded by

∥
∥
∥I − (H + µI)−1H

∥
∥
∥
2
≤ 1− σ

σ + µ
.

Regarding the second term of (61), let ∆i := Hi −H and use the definition of β, one
derives

∥
∥(H + µI)−1

∆i

∥
∥
2
≤

∥
∥(H + µI)−1

∥
∥
2
·
∥
∥∆i

∥
∥
2
≤ β

σ + µ
< 1 (62)

under our hypothesis β < µ+ σ. In addition,

∥
∥
∥
1

n

n∑

i=1

(

(Hi + µI)−1 − (H + µI)−1
)

H

∥
∥
∥
2

=
∥
∥
∥
1

n

n∑

i=1

(∞∑

m=0

(−1)m[(H + µI)−1
∆i]

m(H + µI)−1 − (H + µI)−1
)

H

∥
∥
∥
2

(63)

=
∥
∥
∥
1

n

n∑

i=1

(∞∑

m=2

(−1)m[(H + µI)−1
∆i]

m(H + µI)−1
)

H

∥
∥
∥
2

(64)

≤ 1

n

n∑

i=1

∞∑

m=2

‖(H + µI)−1‖m2 · ‖∆i‖m2 ·
∥
∥(I + µH

−1
)−1

∥
∥
2

≤
∞∑

m=2

(σ + µ)−mβm L

L+ µ
=

L

L+ µ

β2

(σ + µ)(σ + µ− β)
.

34

Communication-Efficient Distributed Optimization in Networks

Here, the line (63) is an expansion based on the Neumann series (whose convergence
is guaranteed by (62))

(Hi + µI)−1 = (H + µI +∆i)
−1 =

(
I + (H + µI)−1

∆i

)−1
(H + µI)−1

=

{ ∞∑

m=0

(−1)m
[
(H + µI)−1

∆i

]m

}

(H + µI)−1.

The identity (64) holds since
∑n

i=1∆i = 0, and hence the summation in (64) effectively
starts at m = 2.

Putting the above two bounds together back in (61), we arrive at

∥
∥
∥I − 1

n

n∑

i=1

(Hi + µI)−1H

∥
∥
∥
2
≤θ1 = 1− σ

σ + µ
+

L

L+ µ

β2

(σ + µ)(σ + µ− β)
. (65)

Putting together (59) and (65), and plugging back into (56), we can bound the conver-
gence error by:

√
n
∥
∥y(t) − yopt

∥
∥
2
=
√
n
∥
∥x(t−1) − yopt

∥
∥
2

≤ θ1
√
n
∥
∥y(t−1) − yopt

∥
∥
2
+

1

σ + µ

β

σ + µ

∥
∥s(t−1) −∇f(y(t−1))

∥
∥
2

+
(L

L+ µ

β

σ + µ
+

β

σ + µ

)∥
∥y(t−1) − 1n ⊗ y(t−1)

∥
∥
2
. (66)

E.2. Consensus error

Using the identity y(t) =
(

1
n1

>
n ⊗ Id

)

y(t) and the update rule (28c), we can demonstrate

that
∥
∥
∥y

(t) − 1n ⊗ y(t)
∥
∥
∥
2

=

∥
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

y(t)

∥
∥
∥
∥
2

=

∥
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(WK ⊗ Id)
(

y(t−1) − (H + µInd)
−1s(t−1)

)
∥
∥
∥
∥
2

≤
∥
∥
∥
∥

(

WK − 1

n
1n1

>
n

)

⊗ Id

∥
∥
∥
∥
2

∥
∥
∥
∥
y(t−1) − 1n ⊗ y(t−1) −

(

Ind −
1

n
1n1

>
n ⊗ Id

)(

(H + µInd)
−1s(t−1)

)
∥
∥
∥
∥
2

(67)

≤α‖y(t−1) − 1n ⊗ y(t−1)‖2 + α

∥
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1s(t−1)

∥
∥
∥
∥
2

, (68)

where (67) is due to the following equality:

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(WK ⊗ Id) =

[(

WK − 1

n
1n1

>
n

)

⊗ Id

](

Ind −
1

n
1n1

>
n ⊗ Id

)

,

35

Li, Cen, Chen, Chi

which holds because the property of the averaging operator
(
1
n1n1

>
n ⊗ Id

)
,

(
1

n
1n1

>
n ⊗ Id

)(

Ind −
1

n
1n1

>
n ⊗ Id

)

=
[1

n
1n1

>
n

(

Id −
1

n
1n1

>
n ⊗ Id

)]

⊗ In = 0,

and the fact that (A⊗B)(C ⊗D) = (AC)⊗ (BD).

We rearrange the second term in (68) as

∥
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1s(t−1)

∥
∥
∥
∥
2

=
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1

(

s(t−1) −∇f(y(t−1))
)

+
(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1

(

∇f(y(t−1))−∇f(1n ⊗ y(t−1))
)

+
(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1

(

∇f(1n ⊗ y(t−1))−∇f(1n ⊗ yopt)
)∥
∥
∥
2

=
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1

(

s(t−1) −∇f(y(t−1))
)

+
(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1(In ⊗H)(y(t−1) − 1n ⊗ y(t−1))

+
(

Ind −
1

n
1n1

>
n ⊗ Id

)(

(H + µInd)
−1 − (In ⊗H + µInd)

−1
)

(In ⊗H)(1n ⊗ y(t−1) − 1n ⊗ yopt)
∥
∥
∥
2
.

Using similar trick as in (58), the above quantity can be further upper bounded as

∥
∥
∥
∥

(

Ind −
1

n
1n1

>
n ⊗ Id

)

(H + µInd)
−1s(t−1)

∥
∥
∥
∥
2

≤
∥
∥
∥Ind −

1

n
1n1

>
n ⊗ Id

∥
∥
∥
2

∥
∥(H + µInd)

−1
∥
∥
2

∥
∥s(t−1) −∇f(y(t−1))

∥
∥
2

+
∥
∥
∥Ind −

1

n
1n1

>
n ⊗ Id

∥
∥
∥
2

∥
∥
∥(H + µInd)

−1
∥
∥
∥
2

∥
∥In ⊗H

∥
∥
2
‖y(t−1) − 1n ⊗ y(t−1)‖2

+
√
n
∥
∥
∥Ind −

1

n
1n1

>
n ⊗ Id

∥
∥
∥
2

∥
∥
∥(H + µInd)

−1(In ⊗H −H)(Ind + µIn ⊗H
−1

)−1
∥
∥
∥
2
‖y(t−1) − yopt‖2.

(69)

Combine (68) and (69), we conclude that

∥
∥y(t) − 1n ⊗ y(t)

∥
∥
2
≤
(

α+
αL

σ + µ

)
∥
∥y(t−1) − 1n ⊗ y(t−1)

∥
∥
2
+

α

σ + µ

∥
∥s(t−1) −∇f(y(t−1))

∥
∥
2

+
αL

L+ µ

β

σ + µ

√
n
∥
∥y(t−1) − yopt

∥
∥
2
. (70)

E.3. Gradient estimation error

In view of the fundamental theorem of calculus and the definition of β, it holds that

‖∇(f − fj)(x)−∇(f − fj)(y)‖2 =
∥
∥
∥
∥

[∫ 1

0
∇2(f − fj)

(
cx+ (1− c)y

)
dc

]

(x− y)

∥
∥
∥
∥
2

≤ β‖x−y‖2.

36

Communication-Efficient Distributed Optimization in Networks

To begin, the update formulas (10) and (11) are equivalent to

y(t) =(WK ⊗ Id)x
(t−1), (71)

s(t) =(WK ⊗ Id)s
(t−1) +∇F (y(t))−∇F (y(t−1)). (72)

Note that, since

(

W − 1
n1n1

>
n

)K
=

(

W − 1
n1n1

>
n

)(

W − 1
n1n1

>
n

)

· · ·
(

W − 1
n1n1

>
n

)

=
(

W 2 − 1
n1n1

>
n

)

· · ·
(

W − 1
n1n1

>
n

)

= WK − 1
n1n1

>
n ,

we have the mixing rate of WK is

α := ‖WK − 1
n1n1

>
n ‖ = ‖W − 1

n1n1
>
n ‖K = αK

0 .

In view of the equivalent update rule (72),

‖s(t) −∇f(y(t))‖2 =
∥
∥
∥(WK ⊗ Id)s

(t−1) +∇F (y(t))−∇F (y(t−1))−∇f(y(t))
∥
∥
∥
2

=
∥
∥
∥(WK ⊗ Id)

(

s(t−1) −∇f(y(t−1))
)

+ (WK ⊗ Id)∇f(y(t−1))

+∇F (y(t))−∇F (y(t−1))−∇f(y(t))
∥
∥
∥
2

=
∥
∥
∥(WK ⊗ Id)

(

s(t−1) −∇f(y(t−1))
)

+∇(F − f)(y(t))

+ (WK ⊗ Id)∇f(y(t−1))−∇F (y(t−1))
∥
∥
∥
2

Subtract and add
(

(1n1n1
>
n) ⊗ Id

)(

s(t−1) −∇f(y(t−1))
)

, ∇(f − F)(1n ⊗ y(t)) and ∇(f −
F)(1n ⊗ yopt) to the previous equation, and rearrange terms,

‖s(t) −∇f(y(t))‖2 =
∥
∥
∥

[

(WK ⊗ Id)− (
1

n
1n1

>
n)⊗ Id

](

s(t−1) −∇f(y(t−1))
)

+∇(F − f)(y(t))−∇(F − f)(1n ⊗ yopt)

+ (WK ⊗ Id)
(

∇f(y(t−1))−∇f(1n ⊗ yopt)
)

−
[

∇F (y(t−1))−∇F (1n ⊗ yopt)
]

+
[

(
1

n
1n1

>
n)⊗ Id

](

s(t−1) −∇f(y(t−1))
)∥
∥
∥
2

≤α
∥
∥s(t−1) −∇f(y(t−1))

∥
∥
2
+ β‖y(t) − 1n ⊗ yopt‖2

+
∥
∥
∥(WK ⊗ Id)

(

∇f(y(t−1))−∇f(1n ⊗ yopt)
)

−
[

∇F (y(t−1))−∇F (1n ⊗ yopt)
]

+

[

(
1

n
1n1

>
n)⊗ Id

](

s(t−1) −∇f(y(t−1))
)∥
∥
∥
2
. (73)

Using the facts
[

(1n1n1
>
n)⊗Id

]

s(t−1) =
[

(1n1n1
>
n)⊗Id

]

∇F (y(t−1)) and
[

(1n1n1
>
n)⊗Id

]

∇(F−
f)(1n ⊗ yopt) = 0, the last term of (73) becomes

∥
∥
∥

[

(WK ⊗ Id)− (
1

n
1n1

>
n)⊗ Id

](

∇(f − F)(y(t−1))−∇(f − F)(1n ⊗ y(t−1))
)

37

Li, Cen, Chen, Chi

+
(

∇(f − F)(1n ⊗ y(t−1))−∇(f − F)(1n ⊗ yopt)
)

+
[

(WK ⊗ Id)− Ind

](

∇F (y(t−1))−∇F (1n ⊗ y(t−1))
)∥
∥
∥
2

≤
∥
∥
∥(WK ⊗ Id)− (

1

n
1n1

>
n)⊗ Id

∥
∥
∥
2
‖∇(f − F)(y(t−1))−∇(f − F)(1n ⊗ y(t−1))‖2

+ ‖∇(f − F)(1n ⊗ y(t−1))−∇(f − F)(1n ⊗ yopt)‖2
+
∥
∥
∥(WK ⊗ Id)− Ind

∥
∥
∥
2
‖∇F (y(t−1))−∇F (1n ⊗ y(t−1))‖2

≤αβ‖y(t−1) − 1n ⊗ y(t−1)‖2 + β
√
n‖y(t−1) − yopt‖2 + (α+ 1)L‖y(t−1) − 1n ⊗ y(t−1)‖2.

(74)

We used
∥
∥
∥(WK ⊗ Id) − Ind

∥
∥
∥
2
=

∥
∥
∥(WK ⊗ Id) −

(
1
n1

>
n ⊗ Id

)

+
(

1
n1

>
n ⊗ Id

)

− Ind

∥
∥
∥
2
≤

∥
∥
∥(WK ⊗ Id)−

(
1
n1

>
n ⊗ Id

)∥
∥
∥
2
+
∥
∥
∥

(
1
n1

>
n ⊗ Id

)

− Ind

∥
∥
∥
2
≤ α+1 to obtain the last inequality.

Combining (73) and (74), we obtain the bound

‖s(t) −∇f(y(t))‖2 ≤α
∥
∥s(t−1) −∇f(y(t−1))

∥
∥
2
+ β‖y(t) − 1n ⊗ y(t)‖2 + β

√
n‖y(t) − yopt‖2

+
(
αβ + (α+ 1)L

)
‖y(t−1) − 1n ⊗ y(t−1)‖2 + β

√
n‖y(t−1) − yopt‖2.

(75)

E.4. Linear system

Recall the definitions η = 1
σ+µ , γ = L

L+σ and the error vector (20). Combining (66), (70)
and (75) leads to the matrix G defined in (30).

Appendix F. Proof of Lemma 16

The proof follows the same procedures as the proof of Lemma 15. (i) In Appendix F.1, we
bound the convergence error

√
n‖y(t)−yopt‖2; (ii) in Appendix F.2, we bound the parameter

consensus error ‖y(t)−1n⊗y(t)‖2; (iii) finally, using the bound we obtained in Appendix E.3
of the gradient estimation error, we create induction inequalities of ‖y(t) − 1n ⊗ y(t)‖2,√
n‖y(t) − yopt‖2 and L−1‖s(t)j − ∇f(y(t))‖2 in Appendix F.3 to conclude the proof. For

consistency and simplicity, we use the same definitions of x+ in (53), η = 1
σ+µ , and γ = L

L+σ
as in the proof of Lemma 15.

F.1. Convergence error

We continue to decompose the convergence error as (56), and bound the two terms respec-
tively.

1. For the term ‖x(t−1) − x+‖2, we first subtract (54a) from (54b), which gives

∇fj(x
(t−1)
j)−∇fj(x

+
j) + µ(x

(t−1)
j − x+

j) = ∇f(y
(t−1)
j)− s

(t−1)
j

+∇(f − fj)(y
(t−1))−∇(f − fj)(y

(t−1)
j) + µ(y

(t−1)
j − y(t−1)),

38

Communication-Efficient Distributed Optimization in Networks

then use the strong convexity of fj(·) and the definition of β to bound both sides,

‖∇fj(x
(t−1)
j)−∇fj(x

+
j) + µ(x

(t−1)
j − x+

j)‖2 ≥ (σ + µ)‖x(t−1)
j − x+

j ‖2,
∥
∥∇f(y

(t−1)
j)− s

(t−1)
j +∇(f − fj)(y

(t−1))−∇(f − fj)(y
(t−1)
j) + µ(y

(t−1)
j − y(t−1))

∥
∥
2

≤(β + µ)‖y(t−1)
j − y(t−1)‖2 + ‖∇f(y

(t−1)
j)− s

(t−1)
j ‖2.

Therefore, combining the above two inequalities, we have

‖x(t−1)
j − x+

j ‖2 ≤
1

σ + µ
‖∇f(y

(t−1)
j)− s

(t−1)
j ‖2 +

β + µ

σ + µ
‖y(t−1)

j − y(t−1)‖2. (76)

Subtracting the optimality conditions in (55),

0 ∈ 1

n

∑

j

∇fj(x
(t−1)
j)− 1

n

∑

j

∇fj(x
+
j) + µ(x(t−1) − x+)

=
1

n

∑

j

(
∇fj(x

(t−1)
j)− Lx

(t−1)
j

)
− 1

n

∑

j

(

∇fj(x
+
j)− Lx+

j

)

+ (L+ µ)(x(t−1) − x+).

Note the gradient of the function Lx−∇fj(x) is a (L−σ)-Lipschitz function. Taking
the `2 norm and plugging in (76), we have

‖x(t−1) − x+‖2 ≤
1

L+ µ

∥
∥
∥
1

n

∑

j

([
Lx

(t−1)
j −∇fj(x

(t−1)
j)

]
−
[
Lx+

j −∇fj(x
+
j)

])
∥
∥
∥
2

≤ 1

L+ µ

1

n

∑

j

∥
∥
∥

[
Lx

(t−1)
j −∇fj(x

(t−1)
j)

]
−
[
Lx+

j −∇fj(x
+
j)

]
∥
∥
∥
2

≤L− σ

L+ µ

1

n

∑

j

∥
∥x

(t−1)
j − x+

j

∥
∥
2

≤L− σ

L+ µ

1

σ + µ

1

n

∑

j

∥
∥∇f(y

(t−1)
j)− s

(t−1)
j

∥
∥
2
+

L− σ

L+ µ

β + µ

σ + µ

1

n

∑

j

∥
∥y

(t−1)
j − y(t−1)

∥
∥
2
,

(77)

where the last line follows (76).

2. For the second term ‖x+ − yopt‖2, because of the assumption
(β
σ+µ

)2 ≤ σ
σ+2µ , we

can invoke (Fan et al., 2019, Theorem 3.1), which is a careful analysis of the error of
DANE, and bound the error as

‖x+ − yopt‖2 ≤
β

σ+µ

√

σ2 + 2σµ+ µ

σ + µ
‖y − yopt‖2 := θ2‖y(t−1) − yopt‖2. (78)

Putting together (77) and (78), and plugging back into (56), we can bound the conver-
gence error by:

√
n‖y(t) − yopt‖2 =

√
n‖x(t−1) − yopt‖2

≤θ2
√
n‖y(t−1) − yopt‖2 +

1

L+ µ

L

σ + µ
‖∇f(y(t−1))− s(t−1)‖2

+
β + µ

L+ µ

L

σ + µ
‖y(t−1) − 1n ⊗ y(t−1)‖2. (79)

39

Li, Cen, Chen, Chi

F.2. Consensus error

Let H
(t)
j =

∫ 1
0 ∇2fj

(
cx

(t)
j + (1 − c)y

(t)
j

)
dc and H(t) = diag(H

(t)
1 ,H

(t)
2 , . . . ,H

(t)
n). Via the

fundamental theorem of calculus, we can solve for x
(t−1)
j from the optimality condition (54b)

as

x
(t−1)
j = y

(t−1)
j − (H

(t−1)
j + µId)

−1s
(t−1)
j . (80)

Similar to (68), we decompose the consensus error as

‖y(t) − 1n ⊗ y(t)‖2 ≤α‖y(t−1) − 1n ⊗ y(t−1)‖2 + α
∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1s(t−1)

∥
∥
∥
2

(81)

Then, we bound (81). Adding and subtracting terms and using the triangle inequality,

∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1s(t−1)

∥
∥
∥
2

≤
∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1

(

s(t−1) −∇f(y(t−1)) +∇f(y(t−1))−∇f(1n ⊗ y(t−1))
)∥
∥
∥
2

+
∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1∇f(1n ⊗ y(t−1))

∥
∥
∥
2

(82)

We can bound the first term in (82) as

∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1

(

s(t−1) −∇f(y(t−1)) +∇f(y(t−1))−∇f(1n ⊗ y(t−1))
)∥
∥
∥
2

≤
∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1

∥
∥
∥
2

∥
∥s(t−1) −∇f(y(t−1)) +∇f(y(t−1))−∇f(1n ⊗ y(t−1))

∥
∥
2

≤ 1

σ + µ

(

‖s(t−1) −∇f(y(t−1))‖2 + ‖∇f(y(t−1))−∇f(1n ⊗ y(t−1))‖2
)

≤ 1

σ + µ

(

‖s(t−1) −∇f(y(t−1))‖2 + L‖y(t−1) − 1n ⊗ y(t−1)‖2
)

(83)

Then, for the second term in (82),

∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)

(H(t−1) + µInd)
−1∇f(1n ⊗ y(t−1))

∥
∥
∥
2

=
∥
∥
∥

(

Ind − (
1

n
1n1

>
n)⊗ Id

)(

(H(t−1) + µInd)
−1 −

(
(L+ µ)Ind

)−1
)

∇f(1n ⊗ y(t−1))
∥
∥
∥
2

≤
∥
∥
∥(H(t−1) + µInd)

−1(LInd −H(t−1))
(
(L+ µ)Ind

)−1∇f(1n ⊗ y(t−1))
∥
∥
∥
2

≤L− σ

L+ µ

L

σ + µ

√
n‖y(t−1) − yopt‖2 (84)

Therefore, by combing (81), (82), (83) and (84), we can bound the consensus error by:

‖y(t) − 1n ⊗ y(t)‖2 ≤
(

α+
αL

σ + µ

)

‖y(t−1) − 1n ⊗ y(t−1)‖2

+
α

σ + µ
‖∇f(y(t−1))− s(t−1)‖2 +

αL

L+ µ

L

σ + µ

√
n‖y(t−1) − yopt‖2.

(85)

40

Communication-Efficient Distributed Optimization in Networks

F.3. Linear system

Combining (75), (85), (79), we reach the matrix claimed in (42).

Appendix G. Proof of Lemma 17

The proof follows similar procedures as the proof of Lemma 15. (i) In Appendix G.1, we

bound the expected function value convergence errors E
[∑n

j=1

(
f(x

(t)
j) − f(yopt)

)]
and

E
[∑n

j=1

(
f(y

(t)
j) − f(yopt)

)]
; (ii) in Appendix G.2, we bound the expected parameter

consensus error E‖y(t) − 1n ⊗ y(t)‖22; (iii) in Appendix G.3, we bound the expected pa-
rameter consensus error E‖y(t) − 1n ⊗ y(t)‖22; (iv) finally, we create induction inequalities

of E
[∑n

j=1

(
f(x

(t)
j) − f(yopt)

)]
, E

[∑n
j=1

(
f(y

(t)
j) − f(yopt)

)]
, E‖y(t) − 1n ⊗ y(t)‖22 and

E‖y(t) − 1n ⊗ y(t)‖22 to conclude the proof. Expectations in this section are conditioned on
x(t−1), y(t−1) and s(t−1), if not specified.

G.1. Function value convergence error

First, we bound the function value convergence error of y(t) using the previous estimate
x(t−1). By the strong convexity of f(·) and the assumption of α ≤ 1/κ,

n∑

j=1

f(y
(t)
j) ≤nf(y(t−1)) +

L

2
‖y(t) − 1n ⊗ y(t)‖22

≤nf(x(t−1)) +
α2L

2
‖x(t−1) − 1n ⊗ x(t)‖22

≤nf(x(t−1)) +
σ

2
‖x(t−1) − 1n ⊗ x(t)‖22

=

n∑

j=1

(

f(x(t−1)) +
〈

∇f(x(t−1)),x
(t−1)
j − x(t−1)

〉

+
σ

2
‖x(t−1)

j − x(t)‖22
)

≤
n∑

j=1

f(x
(t−1)
j). (86)

Next, we bound the function value convergence error after local update,
∑n

j=1

(
f(y

(t)
j)−

f(yopt)
)
. By constructing the following helper function, we can connect local updates of

Network-SVRG to that of D-SVRG Cen et al. (2020), which is the counterpart of SVRG in
the master/slave setting. For agent j at the tth time, we define the corrected sample loss
function as

˜̀(j)(x; z) = `(x; z) +
〈

s
(t)
j −∇f(y

(t)
j),x− y

(t)
j

〉

.

Then, define the corrected local and global loss functions as

h
(t,j)
i (x) =

1

m

∑

z∈Mi

˜̀(j)(x; z) = fi(x) +
〈

s
(t)
j −∇f(y

(t)
j),x− y

(t)
j

〉

,

h(t,j)(x) =
1

n

∑

i

h
(t,j)
i (x) = f(x) +

〈

s
(t)
j −∇f(y

(t)
j),x− y

(t)
j

〉

. (87)

41

Li, Cen, Chen, Chi

Here, h(t,j)(·) and h
(t,j)
i (·) are σ-strongly convex and L-smooth functions, and

∥
∥h

(t,j)
i (x) −

h(t,j)(x)
∥
∥
2
≤ β by the definition of β. Let h

(t,j)
∗ denote the optimum value of h(t,j)(·).

The key observation is that the local update (27a) at agent j is the same as the update at

agent j when applying D-SVRG to optimize h(t,j) initialized with y
(t)
j . This is true because

∀z ∈ Mj , the sample gradient and global gradient used in D-SVRG updates at y
(t)
j satisfy

∇˜̀(j)(u; z)−∇˜̀(j)(u′; z) = ∇`(u′; z)−∇`(u; z), and ∇h(t,j)(y
(t)
j) = s

(t)
j ,

which agree with (27a). Therefore, we can apply (Cen et al., 2020, Theorem 1) to bound
the optimization error of optimizing h(t,j)

E

[

h(t,j)(x
(t)
j)− h

(t,j)
∗

]

< ν
(

h(t,j)(y
(t)
j)− h

(t)
∗
)

, (88)

where x
(t)
j is the output at agent j produced by running one iteration of Alg. 3, which is also

the output of running one iteration of D-SVRG at the same agent, ν is the convergence rate
of D-SVRG, which can be bounded by ν ≤ 1− 1

2
σ−2β
σ−3β when choosing step size δ = 1

40L

(
1− 4β

σ

)

and the number of local updates S = 160L
σ

(
1− 4β

σ

)−2
.

Next, we relate function value descent of h(t,j) to the function value descent of f . Plug
in (87) and rearrange terms,

f(x
(t)
j)− f(yopt) =h(t,j)(x

(t)
j)− (1− ν)f(yopt)− νf(yopt)−

〈

s
(t)
j −∇f(y

(t)
j),x

(t)
j − y

(t)
j

〉

=h(t,j)(x
(t)
j)− (1− ν)h(t,j)(yopt)− νf(yopt)

−
〈

s
(t)
j −∇f(y

(t)
j),x

(t)
j − y

(t)
j − (1− ν)

(

yopt − y
(t)
j

)〉

≤h(t,j)(x
(t)
j)− (1− ν)h

(t,j)
∗ − νf(yopt)

−
〈

s
(t)
j −∇f(y

(t)
j),x

(t)
j − y

(t)
j − (1− ν)

(

yopt − y
(t)
j

)〉

=h(t,j)(x
(t)
j)− h

(t,j)
∗ + ν

(

h
(t,j)
∗ − f(yopt)

)

−
〈

s
(t)
j −∇f(y

(t)
j),x

(t)
j − y

(t)
j − (1− ν)

(

yopt − y
(t)
j

)〉

,

where we used h(t,j)(yopt) ≥ h
(t,j)
∗ and ν ≤ 1 to reach the last inequality.

Taking expectation on both sides and combining with (88), we reach the following func-
tion value descent of f(·):

E

[

f(x
(t)
j)− f(yopt)

]

≤ν
(

h(t,j)(y
(t)
j)− h

(t,j)
∗

)

+ ν
(

h
(t,j)
∗ − f(yopt)

)

− E

[〈

s
(t)
j −∇f(y

(t)
j),x

(t)
j − y

(t)
j − (1− ν)

(

yopt − y
(t)
j

)〉]

=ν
(

f(y
(t)
j)− f(yopt)

)

− E

[〈

s
(t)
j −∇f(y

(t)
j),x

(t)
j − yopt − ν(y

(t)
j − yopt)

〉]

,

where the last line follows from (87). Summing the previous inequality over all agents and
using matrix notations, we obtain the following inequality

E

[
n∑

j=1

f(x
(t)
j)− f(yopt)

]

≤ν

[
n∑

j=1

f(y
(t)
j)− f(yopt)

]

− E

[〈

s(t) −∇f(y(t)),x(t) − 1n ⊗ yopt
〉]

42

Communication-Efficient Distributed Optimization in Networks

+ νE
[〈

s(t) −∇f(y(t)),y(t) − 1n ⊗ yopt
〉]

. (89)

Our next step is to carefully bound the last two error terms in (89).

∣
∣
∣

〈

s(t) −∇f(y(t)),x(t) − 1n ⊗ yopt
〉 ∣
∣
∣

≤‖s(t) −∇f(y(t))‖2‖x(t) − 1n ⊗ yopt‖2
≤
(

α‖st−1 −∇f(y(t−1))‖2 + 2L‖y(t−1) − 1n ⊗ y(t−1)‖2

+ 2β‖y(t−1) − 1n ⊗ yopt‖2 + β‖y(t) − 1n ⊗ yopt‖2
)

‖x(t) − 1n ⊗ yopt‖2

≤1

2
αL−1‖st−1 −∇f(y(t−1))‖22 + α−1L‖y(t−1) − 1n ⊗ y(t−1)‖22 +

3

2
αL‖x(t) − 1n ⊗ yopt‖22

+ β‖y(t−1) − 1n ⊗ yopt‖22 +
β

2
‖y(t) − 1n ⊗ yopt‖22 +

3β

2
‖x(t) − 1n ⊗ yopt‖22, (90)

where the first inequality is due to (100), and the last inequality is obtained by Cauchy-
Schwarz inequality. Similar to (89), because of the strong convexity of loss functions, we
have

‖y(t) − 1n ⊗ yopt‖22 ≤
2

σ

∑

j

(

f(y
(t)
j)− f(yopt)

)

.

Then, we can further bound (90) as

∣
∣
∣

〈

s(t) −∇f(y(t)),x(t) − yopt
〉 ∣
∣
∣ ≤1

2
αL−1‖st−1 −∇f(y(t−1))‖22 + α−1L‖y(t−1) − y(t−1)‖22

+
2β

σ

n∑

j=1

(

f(y
(t−1)
j)− f(yopt)

)

+
β

σ

n∑

j=1

(

f(x
(t−1)
j)− f(yopt)

)

+
(3β

σ
+ 3κα

) n∑

j=1

(

f(x
(t)
j)− f(yopt)

)

. (91)

Similarly, we have the same bound applicable for the last term of (89):

∣
∣
∣

〈

s(t) −∇f(y(t)),y(t) − yopt
〉 ∣
∣
∣ ≤1

2
αL−1‖st−1 −∇f(y(t−1))‖22 + α−1L‖y(t−1) − y(t−1)‖22

+
2β

σ

n∑

j=1

(

f(y
(t−1)
j)− f(yopt)

)

+
β

σ

n∑

j=1

(

f(x
(t−1)
j)− f(yopt)

)

+

(
3β

σ
+ 3κα

) n∑

j=1

(

f(x
(t−1)
j)− f(yopt)

)

, (92)

where the last term is due to (86).
Put together (90), (91) and (92) and taking expectation, we reach the following bound

E





n∑

j=1

(

f(x
(t)
j)− f(yopt)

)



 ≤
(

ν
(
1 + 3ακ+

4β

σ

)
+

β

σ

) n∑

j=1

(

f(x
(t−1)
j)− f(yopt)

)

43

Li, Cen, Chen, Chi

+αL−1‖st−1 −∇f(y(t−1))‖22 + 2α−1L‖y(t−1) − y(t−1)‖22

+
4β

σ

n∑

j=1

(

f(y
(t−1)
j)− f(yopt)

)

+

(
3β

σ
+ 3κα

)

E





n∑

j=1

(

f(x
(t)
j)− f(yopt)

)



 .

(93)

Rearranging terms, we proved the advertised bound.

G.2. Consensus error

We first bound the consensus error ‖y(t) − 1n ⊗ y(t)‖22/(αL). Similar to (68),

‖y(t) − 1n ⊗ y(t)‖22 ≤α2‖x(t−1) − 1n ⊗ x(t−1)‖22
=α2‖x(t−1) − 1n ⊗ yopt‖22 − nα2‖yopt − x(t−1)‖2
≤α2‖x(t−1) − 1n ⊗ yopt‖22. (94)

Then, using the strong convexity of f(·),

‖y(t) − 1n ⊗ y(t)‖22 ≤α2
n∑

j=1

‖x(t−1)
j − yopt‖22

≤2α2

σ

n∑

j=1

(

f(x
(t−1)
j)− f(yopt)

)

. (95)

G.3. Gradient estimation error

To bound the gradient estimation error, we note that

‖s(t) −∇f(y(t))‖2 =‖(WK ⊗ Id)s
t−1 +∇F (y(t))−∇F (y(t−1))−∇f(y(t))‖2

=
∥
∥
∥(WK ⊗ Id)

(

st−1 −∇f(y(t−1))
)

+ (WK ⊗ Id)∇f(y(t−1))−∇f(y(t−1))

+∇F (y(t))−∇F (y(t−1)) +∇f(y(t−1))−∇f(y(t))
∥
∥
∥
2

≤
∥
∥
∥(WK ⊗ Id)

(

st−1 −∇f(y(t−1))
)∥
∥
∥
2
+
∥
∥
∥(WK ⊗ Id)∇f(y(t−1))−∇f(y(t−1))

∥
∥
∥
2

+ ‖∇(F − f)(y(t)) +∇(F − f)(y(t−1))‖2. (96)

We then bound the three terms in (96) respectively.

1. The first term can be bounded as

‖(WK ⊗ Id)(s
t−1 −∇f(y(t−1)))‖2

=
∥
∥
∥(WK ⊗ Id)

(
st−1 −∇f(y(t−1))

)
−
(

(
1

n
1n1

>
n)⊗ Id

)(
st−1 −∇f(y(t−1))

)
∥
∥
∥
2

+
∥
∥
∥

(

(
1

n
1n1

>
n)⊗ Id

)(

st−1 −∇f(y(t−1))
)∥
∥
∥
2

≤α‖st−1 −∇f(y(t−1))‖2 +
∥
∥
∥

(

(
1

n
1n1

>
n)⊗ Id

)(
st−1 −∇f(y(t−1))

)
∥
∥
∥
2

44

Communication-Efficient Distributed Optimization in Networks

=α‖st−1 −∇f(y(t−1))‖2 +
∥
∥
∥

(

(
1

n
1n1

>
n)⊗ Id

)(

∇(F − f)(yt−1)−∇(F − f)(yopt)
)∥
∥
∥
2

≤α‖st−1 −∇f(y(t−1))‖2 + β‖y(t−1) − yopt‖2, (97)

where we used the fact
∥
∥
∥

(

(1n1n1
>
n) ⊗ Id

)∥
∥
∥
2
= 1 and the definition of β to reach the

last inequality.

2. As for the second term in (96), we have

∥
∥
∥(WK ⊗ Id)∇f(y(t−1))−∇f(y(t−1))

∥
∥
∥
2

≤
∥
∥
∥(WK ⊗ Id)∇f(y(t−1))−

(

(
1

n
1n1

>
n)⊗ Id

)

∇f(y(t−1))
∥
∥
∥
2

+
∥
∥
∥

(

(
1

n
1n1

>
n)⊗ Id

)

∇f(y(t−1))−∇f(y(t−1))
∥
∥
∥
2

≤2
∥
∥
∥

(

(
1

n
1n1

>
n)⊗ Id

)

∇f(y(t−1))−∇f(y(t−1))
∥
∥
∥
2

≤2‖∇f(y(t−1))−∇f(y(t−1))‖2
≤2L‖y(t−1) − y(t−1)‖2, (98)

where the third inequality follows from the similar trick we used to obtain (94).

3. Using the triangle inequality and the definition of β, the last term in (96) can be
bounded by

‖∇(F − f)(y(t)) +∇(F − f)(y(t−1))‖2 ≤ β‖y(t) − yopt‖2 + β‖y(t−1) − yopt‖2. (99)

Combining (96), (97), (98) and (99), the gradient estimation error can be bounded by

‖s(t) −∇f(y(t))‖2 ≤α‖st−1 −∇f(y(t−1))‖2 + 2β‖y(t−1) − yopt‖2
+ β‖y(t) − yopt‖2 + 2L‖y(t−1) − y(t−1)‖2. (100)

Because of the strong convexity, ‖y − yopt‖22 ≤ 2
σ

∑n
j=1

(
f(yj) − f(yopt)

)
. Combining

with (86), we reached the following bound

‖s(t) −∇f(y(t))‖22 ≤4α2‖st−1 −∇f(y(t−1))‖22 +
32β2

σ

n∑

j=1

(

f(y
(t−1)
j)− f(yopt)

)

+
8β2

σ

n∑

j=1

(

f(x
(t−1)
j)− f(yopt)

)

+ 16L2‖y(t−1) − y(t−1)‖22. (101)

G.4. Linear System

Combining (86), (95), (93), and (101), we obtain the claimed linear system.

45

Li, Cen, Chen, Chi

Appendix H. Proof of Lemma 18

Similar to the proof of Lemma 17, we bound the following four terms: (i) Expected gra-
dient convergence errors E‖∇f(x(t))‖22 and E‖∇f(y(t))‖22 in Appendix H.1; (ii) Expected
consensus error: E‖y(t) − 1n ⊗ y(t)‖22 in Appendix H.2; (iii) Expected gradient estimation
error: E‖s(t) −∇f(y(t))‖22 in Appendix H.3. Then conclude the proof by creating induction
inequalities. Expectations in this section are also conditioned on x(t−1), y(t−1) and s(t−1),
if not specified.

H.1. Gradient convergence error

To bound the function gradient convergence error, we analyze the same helper function
defined in (87), where we can apply (Cen et al., 2020, Theorem 2) to bound the convergence
error of h(t,j)(·) as

E

[

‖∇h(t,j)(x
(t)
j)‖22

]

< ν‖∇h(t,j)(y
(t)
j)‖22,

where ν is the convergence rate of D-SARAH in (Cen et al., 2020, Theorem 2) following

similar reasonings as Section G.1. By setting δ = 2
L

1−8(β
σ
)2

9−8(β
σ
)2

and S = 2L
σ

9−8(β
σ
)2

(
1−8(β

σ
)2
)2 , ν can be

bounded by ν ≤ 1
2

1

1−4(β
σ
)2

.

Then, plugging in (87) and taking expectation, we have

E

[

‖∇f(x
(t)
j)‖22

]

= E

[

‖∇h(t,j)(x
(t)
j)− s

(t)
j +∇f(y

(t)
j)‖22

]

= E

[

‖∇h(t,j)(x
(t)
j)‖22

]

+ ‖s(t)j −∇f(y
(t)
j)‖22 − 2E

[〈

∇h(t,j)(x
(t)
j), s

(t)
j −∇f(y

(t)
j)

〉]

= E

[

‖∇h(t,j)(x
(t)
j)‖22

]

− ‖s(t)j −∇f(y
(t)
j)‖22 − 2E

[〈

∇f(x
(t)
j), s

(t)
j −∇f(y

(t)
j)

〉]

≤ ν‖∇f(y
(t)
j)−∇f(y

(t)
j) + s

(t)
j ‖22 − ‖s(t)j −∇f(y

(t)
j)‖22 − 2E

[〈

∇f(x
(t)
j), s

(t)
j −∇f(y

(t)
j)

〉]

= ν‖∇f(y
(t)
j)‖22 − 2ν

〈

∇f(y
(t)
j), s

(t)
j −∇f(y

(t)
j)

〉

− 2E
[〈

∇f(x
(t)
j), s

(t)
j −∇f(y

(t)
j)

〉]

,

where we apply D-SARAH’s convergence result in the fourth step. Summing the previous
inequality over all agents, we have

E

[

‖∇f(x(t))‖22
]

≤ ν‖∇f(y(t))‖22 − 2ν
〈

∇f(y(t)), s(t) −∇f(y(t))
〉

− 2E
[〈

∇f(x(t)), s(t) −∇f(y(t))
〉]

≤ ν‖∇f(y(t))‖22 + 2ν‖∇f(y(t))‖2‖s(t) −∇f(y(t))‖2 + 2E
[
‖∇f(x(t))‖2‖s(t) −∇f(y(t))‖2

]
.

Using the same method as bounding (90), (91) and (92), we can prove

2E
[
‖∇f(x(t))‖2‖s(t) −∇f(y(t))‖2

]
≤
(
3β

σ
+ 3ακ

)

E

[

‖∇f(x(t))‖22
]

+
2β

σ
‖∇f(y(t−1))‖22

+
β

σ
‖∇f(x(t−1))‖22 +

α

κ
‖st−1 −∇f(y(t−1))‖22

46

Communication-Efficient Distributed Optimization in Networks

+
2L2

ακ
‖y(t−1) − y(t−1)‖22,

2ν‖∇f(y(t))‖2‖s(t) −∇f(y(t))‖2 ≤ν

(
4β

σ
+ 3ακ

)

‖∇f(x(t−1))‖22 +
2β

σ
‖∇f(y(t−1))‖22

+
α

κ
‖st−1 −∇f(y(t−1))‖22 +

2L2

ακ
‖y(t−1) − y(t−1)‖22.

To sum up,

E

[

‖∇f(x(t))‖22
]

≤
(

ν

(

1 +
4β

σ
+ 3ακ

)

+
β

σ

)

‖∇f(x(t−1))‖22

+ 3

(
β

σ
+ ακ

)

E

[

‖∇f(x(t))‖22
]

+
4β

σ
E‖∇f(y(t−1))‖22

+
2α

κ
‖st−1 −∇f(y(t−1))‖22 +

4L2

ακ
‖y(t−1) − 1n ⊗ y(t−1)‖22. (102)

We then show the proof for the term ‖∇f(y(t))‖22, which claims that the averaging
process does not increase the sum of the squared norm of gradient when α ≤ 1/κ. We
denote the Hessian of the quadratic function f(·) by H = ∇2f(·), and have

‖∇f(y(t))‖22 =
n∑

j=1

∥
∥
∥∇f(y(t)) +H(y

(t)
j − y(t))

∥
∥
∥

2

2

≤n‖∇f(y(t))‖22 + L2
n∑

j=1

‖y(t)
j − y(t)‖22

=n‖∇f(x(t−1))‖22 + L2‖(WK ⊗ Id)x
(t−1) − 1n ⊗ x(t−1)‖22

≤n‖∇f(x(t−1))‖22 + α2L2‖x(t−1) − 1n ⊗ x(t−1)‖22

≤n‖∇f(x(t−1))‖22 + α2κ2
n∑

j=1

‖H(x
(t−1)
j − x(t−1))‖22

≤
n∑

j=1

∥
∥
∥∇f(x(t−1)) +H(x

(t−1)
j − x(t−1))

∥
∥
∥

2

2
= ‖∇f(x(t−1))‖22. (103)

H.2. Consensus error

By the property of WK and the strong convexity of f , we have

‖y(t) − 1n ⊗ y(t)‖22 ≤α2‖x(t−1) − 1n ⊗ x(t−1)‖22
≤α2‖x(t−1) − 1n ⊗ yopt‖22

≤α2

σ2
‖∇f(x(t−1))‖22. (104)

47

Li, Cen, Chen, Chi

H.3. Gradient estimation error

Note that the bound (100) derived for Network-SVRG still holds, combining it with (104)
and the strong convexity of f , we have

‖s(t) −∇f(y(t))‖22 ≤4α2‖st−1 −∇f(y(t−1))‖22 + 16
(β

σ

)2
‖∇f(y(t−1))‖22

+ 4
(β

σ

)2
‖∇f(x(t−1))‖22 + 16L2‖y(t−1) − y(t−1)‖22. (105)

H.4. Linear System

Combining (102), (103), (104), (105), we obtain the claimed linear system.

References

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1200–1205. ACM, 2017.

Mario Arioli and Jennifer Scott. Chebyshev acceleration of iterative refinement. Numerical
Algorithms, 66(3):591–608, 2014.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numerical
methods, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine learning, 3(1):1–122, 2011.

Shicong Cen, Huishuai Zhang, Yuejie Chi, Wei Chen, and Tie-Yan Liu. Convergence of
distributed stochastic variance reduced methods without sampling extra data. IEEE
Transactions on Signal Processing, 68:3976–3989, 2020.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

Jianqing Fan, Yongyi Guo, and Kaizheng Wang. Communication-efficient accurate statistical
estimation. arXiv preprint arXiv:1906.04870, 2019.

Robert Hannah, Yanli Liu, Daniel O’Connor, and Wotao Yin. Breaking the span assump-
tion yields fast finite-sum minimization. In Advances in Neural Information Processing
Systems, pages 2318–2327, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in neural information processing systems, pages 315–323,
2013.

48

Communication-Efficient Distributed Optimization in Networks

Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Dis-
tributed optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decen-
tralized and stochastic optimization. Mathematical Programming, pages 1–48, 2017.

Jason D Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic variance
reduced gradient methods by sampling extra data with replacement. The Journal of
Machine Learning Research, 18(1):4404–4446, 2017.

Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network
independent step-sizes and separated convergence rates. IEEE Transactions on Signal
Processing, 67(17):4494–4506, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentral-
ized algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Information Processing Systems, pages
5330–5340, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Arti-
ficial Intelligence and Statistics, pages 1273–1282, 2017.

Aryan Mokhtari and Alejandro Ribeiro. DSA: Decentralized double stochastic averaging
gradient algorithm. The Journal of Machine Learning Research, 17(1):2165–2199, 2016.

Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained consensus and op-
timization in multi-agent networks. IEEE Transactions on Automatic Control, 55(4):
922–938, 2010.

Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633,
2017.

Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and
communication-computation tradeoffs in decentralized optimization. Proceedings of the
IEEE, 106(5):953–976, 2018.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference
on Machine Learning, pages 2613–2621, 2017.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems, 5(3):1245–1260, 2018.

49

Li, Cen, Chen, Chi

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

Sashank J Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola.
Aide: fast and communication efficient distributed optimization. arXiv preprint
arXiv:1608.06879, 2016.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Op-
timal algorithms for smooth and strongly convex distributed optimization in networks. In
International Conference on Machine Learning, pages 3027–3036, 2017.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Massoulié, and Yin Tat Lee. Op-
timal algorithms for non-smooth distributed optimization in networks. In Advances in
Neural Information Processing Systems, pages 2740–2749, 2018.

Gesualdo Scutari and Ying Sun. Distributed nonconvex constrained optimization over time-
varying digraphs. Mathematical Programming, 176(1-2):497–544, 2019.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimiza-
tion using an approximate Newton-type method. In International conference on machine
learning, pages 1000–1008, 2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm
for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966,
2015a.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algorithm for decentral-
ized composite optimization. IEEE Transactions on Signal Processing, 63(22):6013–6023,
2015b.

Virginia Smith, Simone Forte, Chenxin Ma, Martin Takáč, Michael I Jordan, and Martin
Jaggi. Cocoa: A general framework for communication-efficient distributed optimization.
Journal of Machine Learning Research, 18:230, 2018.

Haoran Sun, Songtao Lu, and Mingyi Hong. Improving the sample and communication
complexity for decentralized non-convex optimization: A joint gradient estimation and
tracking approach. arXiv preprint arXiv:1910.05857, 2019a.

Ying Sun, Amir Daneshmand, and Gesualdo Scutari. Convergence rate of distributed opti-
mization algorithms based on gradient tracking. arXiv preprint arXiv:1905.02637, 2019b.

César A Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. Optimal algorithms
for distributed optimization. arXiv preprint arXiv:1712.00232, 2017.

Hoi-To Wai, Zhuoran Yang, Princeton Zhaoran Wang, and Mingyi Hong. Multi-agent rein-
forcement learning via double averaging primal-dual optimization. In Advances in Neural
Information Processing Systems, pages 9649–9660, 2018.

50

Communication-Efficient Distributed Optimization in Networks

Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and Michael W Mahoney. Giant: Glob-
ally improved approximate newton method for distributed optimization. In Advances in
Neural Information Processing Systems, pages 2338–2348, 2018.

Chenguang Xi, Ran Xin, and Usman A Khan. ADD-OPT: Accelerated distributed directed
optimization. IEEE Transactions on Automatic Control, 63(5):1329–1339, 2017.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems and
Control Letters, 53(1):65–78, 2004. ISSN 01676911. doi: 10.1016/j.sysconle.2004.02.022.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Ran Xin, Usman A Khan, and Soummya Kar. Variance-reduced decentralized stochastic
optimization with gradient tracking. arXiv preprint arXiv:1909.11774, 2019a.

Ran Xin, Anit Kumar Sahu, Usman A Khan, and Soummya Kar. Distributed stochastic
optimization with gradient tracking over strongly-connected networks. arXiv preprint
arXiv:1903.07266, 2019b.

Kun Yuan, Bicheng Ying, Jiageng Liu, and Ali H Sayed. Variance-reduced stochastic learn-
ing by networked agents under random reshuffling. IEEE Transactions on Signal Process-
ing, 67(2):351–366, 2018a.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H Sayed. Exact diffusion for distributed
optimization and learning – part I: Algorithm development. IEEE Transactions on Signal
Processing, 67(3):708–723, 2018b.

Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient algo-
rithms for statistical optimization. In Advances in Neural Information Processing Systems,
pages 1502–1510, 2012.

Minghui Zhu and Sonia Martínez. Discrete-time dynamic average consensus. Automatica,
46(2):322–329, 2010.

51

	Introduction
	Our Contributions
	Related Work

	Problem Formulation and Preliminaries
	Network-Distributed Optimization
	Preliminaries

	Network-DANE: Algorithm and Convergence
	The DANE Algorithm
	Algorithm Development
	Assumptions and Key Parameters
	Theoretical Guarantees of Network-DANE for Quadratic Losses
	Theoretical Guarantees of Network-DANE for Strongly Convex Losses
	Extension to Nonsmooth Composite Optimization

	Generalizing the Algorithm Design with Variance Reduction
	Numerical Experiments
	Experiments On Synthetic Data
	Experiments On Real Data

	Conclusions
	Derivation of Equation (9)
	Proof of Theorem 4 and Theorem 7
	Proof of Theorem 4
	Proof of Theorem 7

	Proofs of Theorem 8 and Theorem 11
	Proof of Theorem 8
	Proof of Theorem 11

	Proof of Theorem 13
	Proof of Lemma 15
	Convergence error
	Consensus error
	Gradient estimation error
	Linear system

	Proof of Lemma 16
	Convergence error
	Consensus error
	Linear system

	Proof of Lemma 17
	Function value convergence error
	Consensus error
	Gradient estimation error
	Linear System

	Proof of Lemma 18
	Gradient convergence error
	Consensus error
	Gradient estimation error
	Linear System

