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Abstract

One way to define the randomness of a fixed individual sequence is to ask how hard it
is to predict relative to a given loss function. A sequence is memoryless if, with respect
to average loss, no continuous function can predict the next entry of the sequence from
a finite window of previous entries better than a constant prediction. For squared loss,
memoryless sequences are known to have stochastic attributes analogous to those of truly
random sequences. In this paper, we address the question of how changing the loss function
changes the set of memoryless sequences, and in particular, the stochastic attributes they
possess. For convex differentiable losses we establish that the statistic or property elicited by
the loss determines the identity and stochastic attributes of the corresponding memoryless
sequences. We generalize these results to convex non-differentiable losses, under additional
assumptions, and to non-convex Bregman divergences. In particular, our results show that
any Bregman divergence has the same set of memoryless sequences as squared loss. We
apply our results to price calibration in prediction markets.

Keywords: algorithmic randomness, property elicitation, prediction markets.

1. Introduction

Since the beginnings of probability theory there has been interest in understanding fixed,
complex objects through the lens of randomness. One manifestation of this interest is
the problem of assessing and defining the randomness of an individual numerical sequence,
a representative question being whether, and in what sense, the digits of 7 are random.
One influential approach to this problem is algorithmic randomness, introduced by Martin-
Lof (1966), under which a sequence is said to be random if it passes every statistical test
performed by some class of algorithms (typically Turing machines).

Perhaps the strongest mathematical model of randomness is that of an independent,
identically distributed (i.i.d.) sequence of random variables, a paradigmatic example being
independent tosses of a fair coin. Under appropriate moment conditions, i.i.d sequences obey
the basic limit laws of probability, including the strong law of large numbers, the central
limit theorem, and the law of the iterated logarithm. Sequences of i.i.d. random variables
also have the property of being unpredictable: beyond any information they provide about
their marginal distribution, the first n elements in the sequence do not convey information
about the exact values of the elements that follow.

The unpredictability of an i.i.d. sequence follows from its randomness. In this paper we
study the randomness of an individual sequence by inverting this relationship. Following
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earlier work of Nobel (2004), we regard an individual sequence as being random if, in the
limit, the average loss of the best constant predictor is no greater than the average loss of
any rule that predicts the next entry from a continuous function of a fixed, finite number of
previous entries, and call such sequences memoryless. (A precise definition of memoryless
sequences in the general setting of this paper is given in Section 2.2.) Consideration of finite-
memory predictors is a natural desideratum, for example, in pseudorandomness, where one
may only be concerned about the ability of a bystander with limited computational resources
to guess the next bit in sequence, and not concerned with whether an algorithm having access
to the entire sequence could distinguish it from a random one. We note that the definition of
memoryless sequences naturally applies to sequences of real numbers, in contrast to Turing
machines which require a careful theory of computation over the reals.

Nobel (2004) studied real-valued memoryless sequences under the squared loss. He es-
tablished that memoryless sequences exhibit a number of stochastic properties, including a
law of large numbers and a version of the central limit theorem. These and other results
follow from the fact that the weak limits of the empirical distributions of a memoryless
sequence are stationary martingale difference sequences. The central role of the squared loss
in this previous work leads to a number of interesting questions. How do the properties of
memoryless sequences depend on the loss? For which other loss functions are memoryless
sequences related to martingale difference sequences? Does some analog of the martingale
difference property hold for memoryless sequences under general losses?

This paper provides answers to these questions for convex loss functions, and establishes
close connections between property elicitation and memoryless sequences for general losses.
We show that, in a manner reminiscent of Blackwell approachability, the one-shot statistical
attributes of the loss function alone determine which sequences are memoryless with respect
to that loss. We establish that the property elicited by the loss function uniquely determines
which sequences are memoryless, and under mild assumptions, the weak limits of these
sequences are such that the conditional value of the property is constant. When the loss is a
Bregman divergence, it elicits the mean, and the weak limits of memoryless sequences reduce
to martingale differences. In particular, we establish that the family of memoryless sequences
investigated by Nobel (2004) remains unchanged when the squared loss is replaced by any
Bregman divergence. Our results rely on a key lemma concerning the relationship between
the optimal sequential prediction and an asymptotic form of orthogonality. We establish the
orthogonality lemma for convex differentiable losses and, with further assumptions, extend
it to nondifferentiable losses, allowing us to cover many loss functions used in practice, such
as those eliciting the median (absolute loss) and quantiles (pinball loss). We conclude the
paper with applications to prediction markets, concerning the calibration of forecasts, and
future work.

1.1 Related Work

The literature on the randomness of individual sequences began with Von Mises (1919),
Kolmogorov (1965), and Martin-Lof (1966). The survey of Uspenskii et al. (1990) gives
an account of this early work. V’yugin (1998) established an ergodic theorem for Martin-
Lof random (typical) individual sequences under certain computability conditions. A good
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overview of algorithmic randomness, including recent advances, can be found in the book
of Downey and Hirschfeldt (2010).

Our work is related to the literature on no-regret online learning algorithms (Foster and
Vohra, 1999; Cesa-Bianchi et al., 1999; Cesa-Bianchi and Lugosi, 2006) and game-theoretic
probability (Shafer and Vovk, 2005), in that the definition of memorylessness employs a
infinite-horizon regret quantity. For example, Haussler, Kivinen, and Warmuth (1998) study
binary individual sequence prediction under potentially nonconvex loss functions, showing
that losses exhibit one of two possible finite-time regret bounds. An important distinction
is that our “learning algorithm” will be restricted to employ a fixed map from the last k
elements of the sequence to predict the next element.

Dawid and Vovk (1999; 2001) studied a game-theoretic setting in which a learner at-
tempts to predict a sequence of outcomes that may adapt to her predictions. The conclusion
is that the learner can achieve low loss (squared or logarithmic), or the outcome sequence
is random in the sense that the martingale law of large numbers and the law of the iterated
logarithm hold. A important feature of this work is that the outcome sequence in online
learning and game-theoretic probability is allowed to adapt to the choices of the learner.
As a consequence, the resulting notion of unpredictability is much stronger than the notion
of memorylessness considered here, and does not apply to fixed individual sequences. See
Section 7 for further discussion.

In other work, Vovk (1988) established a law of the iterated logarithm for Kolmogorov
random binary sequences, namely binary sequences xi,xo,... such that the Kolmogorov
complexity of the prefix z1,...,x, is of order n. In general, memoryless sequences need
not be Kolmogorov random; many have constant Kolmogorov complexity. For details, and
additional references, we refer the reader to Nobel (2004).

Finally, the literature on property elicitation extends that of proper scoring rules (Brier,
1950; Good, 1952; McCarthy, 1956; Savage, 1971; Gneiting and Raftery, 2007) and proper
losses (Reid and Williamson, 2010; Vernet et al., 2016), which concerns the design of loss
functions L(p,y) such that when the outcome y is drawn from some distribution ¢, the
optimal prediction is p = g. Property elicitation is the partial-information analog, where
one only wishes to score predictions about some property or statistic of the distribution.
The modern literature begins with Osband (1985) and Lambert et al. (2008) and continues
in computer science, economics, and statistics (Lambert and Shoham, 2009; Lambert, 2018;
Gneiting, 2011; Abernethy and Frongillo, 2012; Steinwart et al., 2014; Agarwal and Agarwal,
2015; Frongillo and Kash, 2015).

2. Memoryless Sequences and Elicitation

This section is devoted to the definition and discussion of memoryless sequences and an
overview of elicitation. We begin with the basic components and assumptions of the pre-
dictive setting, and then turn our attention to memoryless sequences. We establish close
connections between memoryless sequences and elicitation in Section 4.2

2.1 Basic Assumptions for Predictions, Outcomes, and Loss

The predictive setting of this paper has three primary components: a fixed prediction space
X C R% a fixed outcome space ) € R?, and a loss function ¢ : X x Y — R. In particular,
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{(x,y) is the loss incurred when the element z € X is predicted and the outcome y € Y
occurs. The following assumptions will be made throughout the paper:

Al. the prediction space X C R? is open and convex;

A2. the outcome space Y C R? is closed;

A3. the loss ¢(-,y) is convex for each fixed y € Y;

A4. the loss function ¢(x,y) is jointly continuous in (x,y);

Ab5. the derivative V £(x,y) of the loss ¢(x,y) with respect to its first argument exists for
all (z,y) € X x Y and is jointly continuous.

The continuity assumption A4 can be expressed equivalently as follows: If (z1,41), (2,¥2),

.. € X x Y converge to (z,y) € X x Y then ¢(x,,yy,) converges to ¢(x,y). Our assumption
that X is open and ) is closed ensures that these sets, and their cartesian product X’ x ) are
Borel-measurable. Measurability of the loss ¢ then follows by standard arguments from the
fact that it is continuous. Similar remarks apply to condition (A5) concerning the gradient
of the loss.

In what follows we will consider infinite sequences of predictions x = (x1,x2,...) and
outcomes y = (y1,%s,...) taking values, respectively, in the sequence spaces XN and YV,
To reduce notation, we will usually omit the parentheses when specifying infinite or finite
sequences.

2.2 Memoryless Sequences

Let X, CR? and £ : X x Y — R satisfy Al, A2, and A4 above, and let y = y1,92,... € Y
be a fixed individual sequence. Consider the problem of sequentially predicting the entries
y; of y by elements x; € X: each x; is obtained by applying a prediction rule to the previous
entries y1,...,y;—1 of y, and the performance of these predictions at time n is measured by
the average loss n= 23" £(z;,9;). A set of prediction rules, one for each time index i > 1,
is called a prediction scheme. Let us say that the sequence y is unpredictable with respect to
a family of prediction schemes if no scheme in the family can outperform a simple reference
scheme that always predicts the same (constant) value. Then, informally, a sequence y is
memoryless if it is unpredictable with respect to the family of finite order continuous Markov
prediction schemes.

In more detail, for each k > 1 let C, = Cy(V* : X) be the family of bounded continuous
functions g : Y¥ — X, and for 1 < i < j let v = Yi,Yi+1,---,Y;. Each function g € Cy,
represents a continuous kth order Markov prediction scheme for y that predicts the outcome
y; by x; = g(yf:,i), which is the value of g applied to the k previous values in the sequence.
The family of continuous finite order Markov prediction schemes corresponds to the union
Uk>1Cy, of the families Cy.

Definition 1 A sequence y € YN is f-memoryless if there exists a predictor ¢ € X such
that for every k > 1 and every function g € Cy,

lim inf Zﬁ 9(y3) —%Zﬁ(c,yi) > 0. (1)

n—oo
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Here we adopt the convention that g(yf:i) s equal to a fized predictor xg € X for i < k.
When (1) holds we will say that'y is ¢-memoryless for c. Note that neither average in (1)
is assumed to converge.

Thus a sequence is memoryless if no bounded continuous function of finitely many argu-
ments outperforms the “lazy” prediction scheme that ignores the past and always predicts
the next value of the sequence by ¢. We note that the finite sample performance of a predic-
tion scheme is measured by its average loss, and that schemes are compared via the limiting
difference of their finite sample performances. Markov prediction schemes have been widely
studied in information theory, see for example the survey of Merhav and Feder (1998). In
terms of standard “no-regret” online learning guarantees, equation (1) says that all Markov
predictors have nonnegative regret with respect to the best constant predictor in hindsight.

Memoryless real-valued sequences under the squared loss £(z,y) = (x — y)? were previ-
ously defined and studied by Nobel (2004). The main focus of that work was establishing
that memoryless sequences exhibit asymptotic behavior analogous to that of i.i.d. sequences,
including versions of the law of large numbers, the central limit theorem, and Hoeffding’s
inequality. Our primary focus here is on general convex loss functions ¢, and the close con-
nection between memoryless sequences and properties elicited by ¢ (elicitation is defined
and discussed in the next section). It follows from the results here that if ¢ is a Bregman
divergence, then f-memoryless sequences have a stochastic nature analogous to that under
the squared loss. Details and discussion can be found in Section 4.3.

We note that the memoryless property is defined asymptoticly. A finite order prediction
scheme g may perfectly predict the initial elements of a sequence y, and yet the sequence
could still be memoryless. In particular, a memoryless sequence y that is padded with a
large but finite number of initial Os (or some fixed element of ))) is still memoryless. In this
sense, memorylessness is a somewhat weak notion of randomness, in a manner analogous
to online learning: just as online learning algorithms can produce arbitrary outputs for an
initial block of time and still achieve no regret, here a learner can perform well for a finite
amount of time and still fail to predict the sequence y in an asymptotic sense.

2.3 Property Elicitation

One of the key conclusions of this work is Theorem 9, which establishes a close connec-
tion between /-memoryless sequences and properties elicited by the loss function ¢. This
terminology is defined below.

Definition 2 Let spaces X and Y satisfy A1-A2, let loss function ((z,y) satisfy A4, and
let Q be the set of all compactly supported probability measures on Y.

o A property is a set-valued functionT' : Q — 2% that associates each probability measure
Q € Q with a subset T'(Q) of the prediction space X.

o The loss function £ elicits property I' if

I'(Q) = argmin Egl(z,Y)
reX

for all Q € Q, where Egl(z,Y) = fy (x,y)dQ(y). A property is elicitable if it is
elicited by some loss.
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It is well known, and easy to check, that the squared loss £(x,y) = (z — y)? elicits the
mean, and that the absolute loss ¢(z,y) = |z — y| elicits the median. While the squared
loss is differentiable, the absolute loss is not, nor is any loss function that elicits the me-
dian (Gneiting, 2011). This fact will play a role in our results (see § 3).

Squared loss is a special case of a broader family of loss functions, called Bregman
divergences, that measure the error of a linear approximation to a convex function.

Definition 3 Let D C R? be conver, X C D be conver and open, and Y C D be closed.
Given a strictly convezr function G : D — R which is differentiable on X, its associated
Bregman divergence is the loss function £ : X x Y — R given by

l(z,y) = Gy) - G(z) = (VG(2),y —2) . (2)

While much more general than squared loss, it is easy to see that Bregman divergences
also elicit the mean. In fact, they are the only such losses, even when removing the differ-
entiability assumption (Frongillo and Kash, 2015).

Theorem 4 (Savage (1971)) If{ is the Bregman divergence associated with G and Eq|f(z,Y )]
is finite for each x € X and Q € Q, then { elicits the mean I': Q — {Eq Y'}.

Proof Letting 2* = EqY, note that Eg{(z*,Y) = EqQ G(Y) — G(2*). Expanding and
simplifying, we find that Eg ¢(z*,Y) —Eq {(z,Y) = G(z*) — G(z) — (VG(z),z* — x), which
is nonnegative by the subgradient inequality. Uniqueness of the argmin follows from strict
convexity of G. [ |

We briefly mention two other examples of properties elicited by convex losses: quantiles,
ratios of expectations, and expectiles.

Quantiles. The classic loss function eliciting the a-quantile is the so-called “pinball loss”
given by ¢(z,y) = (1{z > y} — a)(x —y), for which absolute loss is the special case o = 1/2.
Here ¢ is convex, but not differentiable in x when x = y.

Ratios of expectations. Consider a measurable function b : J) — [0,00) such that
Egb(Y) > 0 for all @ € Q. If G is as in Definition 3, then the transformed Bregman
divergence ¢(z,y) = b(y) G(y) — b(y) G(x) — (VG(z),y — b(y)x) elicits the ratio of expecta-
tions I' : @ — {EqY/Egb(Y)} (Gneiting, 2011; Frongillo and Kash, 2015). (To see this,
consider the ratio Eg ¢(x,Y)/Eqg b(Y'), ignore terms depending on Y but not z, and appeal
to Theorem 4.)

Expectiles. The 7-expectile, introduced by Newey and Powell, is a type of generalized
quantile defined as the unique solution = = - to the equation Eq [|1,>y — 7|(z —Y)] =0,
where ) = R and 7 € (0,1). The expectile p, is elicited by asymmetric squared loss
U(x,y) = |1y>y — 7|(z — y)?, which is strictly convex and differentiable (Newey and Powell,
1987; Gneiting, 2011).

As we show in §4.2, our main results can be cast in terms of elicitation. In particular we
find that individual sequences that are “hard to predict” under a loss £ are determined only
by the property the loss elicits.
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3. An Orthogonality Condition

To make headway in characterizing memoryless sequences and understanding their stochastic
behavior, our first step will be to reduce the “no-regret” definition of memorylessness to a
statement of orthogonality, as captured in this section. Given an outcome sequence y €
YN and a family X of bounded prediction sequences, the results of this section show that
a sequence x* € X is optimal for predicting y under the average loss if and only if for
every x € X the difference sequence x — x* is orthogonal, in an appropriate sense, to the
gradients sequence (V{(x},y;))i>1. We first show this result for the case of differentiable
losses, then demonstrate why it does not extend to the nondifferentiable case without further
assumptions, and finally make such an extension under mild assumptions on the weak limits
of y. We begin with a short review of weak convergence, which plays an important role in
our principal results and proofs.

3.1 Weak Convergence

Several of the key results and proofs in this paper rely on the notion of weak convergence
of probability measures, which we briefly review here. A succinct treatment of weak con-
vergence can be found in Chapter 2 of van der Vaart (2000). A sequence {v, : n > 1} of
probability measures on RP? is said to converge weakly to a limiting probability measure v,
written v, = v, if [ fdv, — [ fdv for every bounded continuous function f : R — R. A
sequence {v, : n > 1} of probability measures on RP? is tight if for every e > 0 there exists a
compact set K C RP such that v,(K¢) < € for each n > 1. Thus any sequence of measures
supported on a common compact set is tight. Prokhorov’s theorem states that if {1} is
tight then any subsequence {v,, } has a further subsequence {v,, } that converges weakly
to a limiting measure.

Of particular interest in this paper are the empirical measures of vector sequences. Let
u = u1,ug,... a sequence of vectors RP. For each n > 1 define a probability measure v,, on
RP by assigning mass 1/n to each of the vectors uy, ..., u,. More formally,

vn(A) = %Z[{ui € A) (3)
=1

for all Borel sets A C RP. If the sequence u is bounded, then it is easy to see that the
empirical measures {v,} are tight and, as a consequence of Prohorov’s theorem, any sub-
sequence of {v,} has a further subsequence that converges weakly to a limiting measure
on RP. Although the empirical measures v, are discrete, their weak limits may be abso-
lutely continuous with respect to Lebesgue measure. Finally, we note that any measure v

on Y™ C R%" corresponds to a sequence of random vectors Yi,...,Y,, € ), defined on
a common probability space and having v as their joint distribution. Thus we may write
v, = v equivalently as v, = (Y1,...,Y,,) where (Y1,...,Y,) ~v.

3.2 Differentiable Losses

We begin our study of orthogonality in the case where assumption (A5) holds, namely the
loss ¢(x,y) is differentiable with respect to x for each y € ). The following definitions will
be used in Lemma 7 below.
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Definition 5 A sequence u = uq,us, ... with values u; € R? is bounded if there exists a
constant L < oo such that ||u;|| < L for all i > 1. The closure cl(u) of u is the (ordinary)
closure in R% of the countable set {u1,ug, ...} containing its elements. We will say that u
is interior to an open set U C R? if cl(u) is contained in U.

Definition 6 Let U be a subset of a vector space. The star interior of U is given by
starint(U) = {u € U : Vv € U Jap > 0 Va € [—ap, ap], u + a(v —u) € U}.
Note that the star interior of U is a subset of the relative interior of U.

Lemma 7 (Orthogonality, differentiable case) Let X', ) be subsets of R? satisfying as-
sumptions Al and A2, and let {(x,y) be a loss function satisfying assumptions A3-Ab. Let
y € YN be a bounded sequence, and let X C XN be a family of bounded sequences x that are
interior to X. Then for all x* € starint(X), the following two statements are equivalent:

hnrgggf E Uz, yi) — g Uz, yi)| > 0 forall xeX (4)
and
1 n
lim — L i) = I X.
nggon;1< — i, VU(z7,y:)) = 0 forall x € (5)

Proof Let x* € starint(X) be fixed. To show that (5) implies (4), we use convexity of £ in
its first coordinate. By the subgradient inequality

Uxi,ys) — xf,yi) > (@i —x;, VE(z7,y:)) -

Summing over 1 < i < n, dividing by n, and taking the limit inferior, inequality (4) follows
from (5).

To establish the converse, suppose that (5) fails to hold. Then there exists a sequence
x € X and § > 0 such that the average in (5) has limit inferior less than —¢ or limit superior
greater than §. We consider the former case; the argument for the latter is similar. For each
a € R define x* by 2§ = 27 + o(z; — x}) = ax; + (1 — a)z]. As x* is in the star interior of
X by assumption, there exists 0 < oy < 1 such that x* € X for all a € [0, ap]. Note that for
each such « and each i > 1,

Oz yi) — Uxi,yi) = Galyi mi,27) + oz — i, VT, i) (6)
where G, : Y x X x X — R is defined by
Ga(u,v,w) = l(w+ a(v—w),u) — l(w,u) — a(v—w, Vl(w,u)) (7)

and is equal to the Bregman divergence of ¢(-,u) evaluated at w + a(v — w) and w. In
particular, G, is non-negative.

Define the set K = cl(y) x cl(x) x cl(x*). As Y is closed and x,x* are interior to X by
assumption, K is a subset of J x X x X'. Moreover, the boundedness of y, x, x* implies that
K is a compact subset of (R%)3. Our assumptions on () ensure that G,, is continuous and
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bounded on K. For n > 1 let v,(-) = n > I((y;, i, xf) € -) be the empirical measure
on K of the finite sequence of triples (y1,x1,27), ..., (Yn, Tn, ). By assumption, there is a
subsequence {n;} of the positive integers such that

lim 3 (s — 2, Vet y) < 0. (8)

As K is compact the sequence {v,} is tight, there is a subsequence {ny} of {n;} such that
Up, converges weakly to some probability measure v on K. Using equation (6), we find that
for each 0 < a < ag,

1T 1L~ .
hnrr_1>10réf - Zﬁ(x?ayz‘) 0 Zg(xivyi)]
=1 =1
< lim inf nkae ¢, y;) Zé y]

ng
= lim inf nkaG Vi, Ti, T} +nk;< — a7, Vi(x z,yz)>]

= lim inf /G dunk+—z< ix;*,W(x?,yi»]

k—o00
i=1

ng

1
GadV—i—aliminf—Z( — i, Vl(x],y))

k—oco Mg
=1

S/Gadu — ad.

The last equality above follows from the weak convergence of v, to v, and the final inequality
follows from (8).

It suffices to show that the final term of the previous display is negative for some a > 0,
and for this it is enough to show that [ G4 dv = o(a). Note that for each triple (u,v,w) in
K the existence of the gradient V/(w,u) implies that a 'Gg(u,v,w) — 0 as o — 0. We
show that the functions G, for 0 < a < g are dominated by a constant function, and the
result then follows from the dominated convergence theorem. To this end, let M be the
maximum of the continuous function ||V4(w,u)|| over w in cl(y) and w in the convex hull
W of cl(x) Ucl(x*), which is a compact subset of X'. By standard results (Shalev-Shwartz,
2012, Lem 2.6), |[f(w1,u) —l(wa,u)| < M ||wy — we|| for all u € cl(y) and wy, ws € W. From
this bound and the Cauchy-Schwarz inequality, we find that for all (u,v,w) € K

‘GQ(U,U,U})’ < M(w—i—a(v—w),u) — g(w7u)’
o - |lev(v — w)|
2M ||v —w|| < 2MD

v = wl] + [{v = w, Vl{w, u))|

IN



FRONGILLO AND NOBEL

where D is the diameter of the set cl(x) —cl(x*). As x and x* are bounded, D is finite, and
the proof is complete. |

3.3 A Counterexample

While Lemma 7 applies to differentiable loss functions such as squared loss, it does not ad-
dress continuous, but non-differentiable, loss functions. Perhaps the simplest non-differentiable
loss function is absolute loss ¢1(x,y) = |z — y|. Given the prominence of absolute loss in
statistics and machine learning, it is natural to ask whether the conclusion of Lemma 7
continues to hold for ¢; with V/;(x,y) replaced by a subgradient of ¢;(z,y) with respect
to = at a fixed value of y. As the following example shows, the answer is no in general,
essentially because the weak limits of a sequence y may concentrate on “kinks” of the loss.
We will then show in §3.4 that if the weak limits do not concentrate on kinks, the result
does go through.

Example. Consider a setting with X = [~1,1] and J = (0,2), and let X = {c" : ¢ € &'}
be the set of constant predictors, with x; = ¢ for all i for some ¢ € X. Now let y = (1/4);>1
and x* = 0. Then for any x = (¢, ¢,c,...) € X,

linnr_l)gf Zﬁ Ti, Yi) ZE 1,y,] —hmlnf[ Z\c—l/z\——Z\l/l\

11 =1 =1

1
< jiming L . L
> lim inf > (1fil+ > (le —2/i)
i<|c|*1 i>|c| 1

> |e| — hmsup - [2logn] =|c| >0,

n—o0

where the first inequality follows from |¢—1/i| > “C| —1|1/1] |, and the second from properties
of the harmonic numbers. Thus y and x* satisfy the “no-regret” condition (4) of Lemma 7
with respect to absolute loss. They do not satisfy the orthogonality condition (5), however,
as we have

n n

nggoizl< — VA, ) anggoiz;(cx’{)-(l)ﬂcic:c,

i= =

which is non-zero when ¢ # 0. In fact, when ¢ > 0, it appears from this expression that
the loss would decrease by moving x] = 0 slightly toward ¢, as the derivative of the loss is
strictly negative, but as we know from the above, any movement away from 0 eventually will
be bounded away from y. This tells us that the “derivative” of the regret term in (4) does
not commute with the limit operator, even when all the derivatives V{(z},y;) exist in (5).

3.4 Non-differentiable Losses

As the counterexample above makes clear, in order to establish a version of Lemma 7 in the
non-differentiable setting, additional assumptions are required to compensate for “kinks”

10
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in the loss function, specifically (x,y) pairs where ¢(x,y) is not differentiable in its first
argument. We formulate one such assumption below, which ensures that the sequences of
interest avoid such pairs.

Assume that X and ) are subsets of R? satisfying assumptions Al and A2, respectively,
and that ¢(z,y) is a loss function satisfying assumptions A3 and A4. It follows from A3
that the function £(z,y) is subdifferentiable in x for each y € Y. Let V{(x,y) denote the
(non-empty) set of subgradients for ¢(z,y) at x € X. Furthermore, let S C X x Y be the
set of points (z,y) where the ordinary gradient V{(z,y) exists and is jointly continuous in
both arguments.

Lemma 8 (Orthogonality, non-differentiable case) Assume the subgradients @E(m, Y)
are bounded on bounded subsets of X x Y. Lety € YN be bounded, X C XN a family of
bounded sequences that are interior to X, and x* € starint(X). If every weak limit n of
the empirical measures of {(x},y;) : i > 1} is such that n(S) = 1 then the following two
statements are equivalent:

(i) For allx € X

n—oo

1o 1
1"f*55i,i—*gff,i > 0;
im in P (4, Y5) " (z7,yi) 0 9)

(ii) For all x € X and all sequences z1, za, ... with z; € @K(mf,yi)

n

o1 . B
nl;ngo - Z; (i —x,z) = 0. (10)

Proof The proof follows that for the differentiable case, with minor changes. We sketch
the argument below. The argument that (10) implies (9) is identical to the differentiable
case. To establish the converse, we may assume that for some x € X and some sequence
zi € VU(z},yi), there exists § > 0 such that the average in (10) has limit inferior less than
—0. Note that if (z},y;) € S then z; = V{(z},y;). Let x“ be defined as before. For
sufficiently small a > 0 and each ¢ > 1, we have

xf yi) — Uz, 9i) = Halyi, wisx,2i) + a(xi — 27, 2)
where Hy : Y x X% x R — R is defined by

Go(u,v,w) if (w,u) €8
Ha(”’ U’ w’ Z) =

lw+a(v—w),u) — lw,u) — alv—w,z) if (w,u) € S°,

and G, is defined as in (7). By assumption, the sequence (y;,z;,x},2;) takes values in
a compact set K C Y x X2 x R? Moreover, H, is continuous and bounded on the set
Ks = {(u,v,w,2) € K : (w,u) € S}. By arguments like those in the differentiable case,
there is a subsequence {ny} of the positive integers with the following properties: (i) the
limit of n;l Sk (yi — yF, gi) exists and is at most —d; (ii) the empirical measures v, of
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the sequence (y;, z;, x}, z;) converge weakly to a measure -y supported on K; and (iii) for all
sufficiently small o > 0,

n

NN B R 1 \ . a O \
lim inf [nl;ﬁ(wi i) — nzﬁ(azi,yi)] < liminf [/Ha Ay, + nszm —:L’i,zi>] :

i=1 i=1

Let 1 be the (w, z)-marginal of v on X x R%. It is easy to see that 7 is a weak limit of the
sequence (z7,y;), and therefore y(Kg) < n(S°) =1 —n(S) = 0 by assumption. It follows
from the Portmanteau Theorem that

lim /Hadvnk = /Hach = . H,dy = . Gq dy.
S S

k—o0

By arguments like those in the differentiable case, the final integral above is o(«), and the
result follows as before. |

4. Weak Limits of Memoryless Sequences

We now turn to our principal result, which establishes that memoryless sequences are char-
acterized by an optimality type property of their limiting empirical measures. We begin
by noting that any infinite sequence y = y1,92,... € YN gives rise, for each m > 1, to a
sequence of empirical measures on Y™ that are obtained by placing mass on overlapping
blocks of m successive terms in the sequence. Any weak limit of these measures can be rep-
resented as a sequence of random vectors Y7, ...,Y,, with ¥; € V. Using the orthogonality
lemma, we establish in Theorem 9 that y is f-memoryless for ¢ if and only if ¢ is the best
predictor of Y1 given Y7,..., Y, for Kk = 1,...,m — 1. In Section 4.2 we show that this
optimality can be expressed equivalently in terms of the property I' elicited by the loss /.
In particular, £-memoryless sequences are characterized and determined by the property I'
elicited by the loss £. For losses that elicit the mean, the limiting random vectors Y1, ..., Yy,
are closely related to martingale difference sequence, and this fact can be used to extend
results of Nobel (2004) on the stochastic behavior of memoryless sequences to these loss
functions (see Section 4.3).

4.1 Principal Result

We require several preliminaries concerning measures derived from an individual sequence
taking values in the outcome space V. Let y = y1,92,... € YN and let m > 1 be a block-
length. For each and n > 1 define the n-sample m-dimensional empirical measure of y by

1 n—1
pnm(A) = — > H{(yis1,- - yitm) € A} (11)

i=0
for all Borel sets A C Y™. The measure fi,, ,,(A) places mass 1/n at each of the n successive
m-tuples y7", yg”l, . nyl" in Y™ obtained by sliding a window of width m along the

sequence y one component at a time.

12



MEMORYLESS SEQUENCES FOR GENERAL LOSSES

If y is bounded then the empirical measures {fin, : n > 1} are tight, and thus every
subsequence has a further subsequence that converges weakly to a limiting measure p,,
on Y™. We will express the convergence i, m = fm in the equivalent form pip, m =
(Y1,...,Y), where Yi,...,Y,, € Y are random vectors with joint distribution p,,. Recall
that a sequence Yi,...,Y,, is stationary if for each s,7 > 1 with s + 57 < m the sequence
(Ys, ..., Y ) has the same joint distribution as (Y7,...,Yj41).

Theorem 9 Let X, be subsets of R? satisfying assumptions A1 and A2, and let ¢ be a
loss function satisfying assumptions A3-A5. Let ¢ € X and let y € YN be bounded. The
following are equivalent:

(i) The sequence'y is {-memoryless for c;

(i) For eachm > 1 every weak limit (Y1,...,Yy,) of the m-dimensional empirical measures
{ttnm : m > 1} of y is stationary, bounded, and satisfies

¢ € argmin E[£(z, Yiy1) | Y] wpt (12)
reX

for1 <k <n-—1.

Proof Let y be a bounded sequence with values in ). Suppose that for some m > 2 and
some subsequence {n;} of the positive integers pin, m = (Y1,...,Y) as | — oo, where fin, m
are defined as in (11). Then for each s,j > 1 with s+ j < m, and every bounded continuous
function f: Y9t - R,

n;—1
Eg(Ys, ..., Ysyj) = llirgznil Zg(yi+sa'-->yi+s+j)
i=0
n;—1
= lligloa ;g(yz‘+1,~--7yz‘+j+1) = Eg(Y1,..., Y1)

It follows that (Y, ..., Ys;;) has the same joint distribution as (Y1,...,Yj41), and as this is
true for each choice of s, 7 above, the sequence Y7, ...,Y,, is stationary. By the Portmanteau
theorem (see, for example, Lemma 2.2 of Vaart (2000))

7’Ll—1

P(Yy € c(y)) > limsup— > I(y; € c(y)) = 1,
=0

o0 Ty i

and since cl(y) is bounded by assumption, each random variable Y is bounded as well.

Suppose that y satisfies condition (i) of the theorem. As X is open, there exists § > 0
such that B(c,20) C X where B(c,v) = {z : ||c — z|| < 7} is the open ball of radius ~y
centered at c. Let X be the set of all infinite sequences x = x1,z3,... € X such that,
for some k£ > 0 and some continuous function g : Y* — B(c,d), 21 = --- = x3, = ¢ and
T = g(yZ:,i) for i > k+ 1. One may easily verify that the conditions of Lemma 7 are
satisfied with x* identically equal to ¢, and therefore

n

lim — Z (x;i — e, Vil(c,y;)) = 0 forall xeX. (13)
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Let 1 < k < m and let g : Y¥ — B(c,d) be any continuous function. Then the function
£ VR 5 R defined by f(uf ™) = (g(u}) — ¢, Vl(c,ug41)) is continuous and is bounded
on the compact set cl(y)¥*! supporting (Y1,...,Ys,1). By appropriate choice of x € X, the
relation (13) implies that

n;—1

. .1 ;
E<g<Y1’“> — ¢, VU(c, Yk+1)> = lim / f dpinym = Jim > futh =o.
=0

As the function g : Y* — B(c, §) was arbitrary, a routine argument shows that
E[V{(c,Yii1)| Y] = 0. Now fix € X. As £(u,v) is convex in its first argument, £(z,y) —
lc,y) > (y — ¢, VU(c,y)). Replacing y by Y41 and taking the conditional expectation with
respect to Y, we find that E[£(z, Yiy1) | YF] — E[4(c, Yiy1) | Y] > 0 with probability 1,
giving condition (ii).

Suppose now that y fails to satisfy (i). It follows from Lemma 7 (or the subgradient
inequality) that there exists k > 0, g € C, and a subsequence {n,} of the positive integers
such that

LN,
Tlggo - Z {g(yi=3) — ¢, Ve(c,y;)) < 0. (14)
"i=1

Let {n;} be a further subsequence of {n,} such that p,, 441 converges in law to a sequence
(Y1, ..., Yg41). It follows from (14) that E (g(Y{*) — ¢, V¥(c, Yi41)) is non-zero, and therefore
the conditional expectation E[V/(c, Y3, 1)|Y{] is non-zero with positive probability. Thus
there exists v € R? and § > 0 such that

E[ (v, Ve(c, Yis1)) | Y] = <7,]E[V€(c, Yk+1)\Y1’“]> = 6.

Our assumptions on £(-, ) ensure that for each compact set K C ) the supremum

sup [{(z,y) — £(c,y) — VL(c,y)(x — )| = o(|]z — ¢|])
yeK
as * — c¢. Replacing y by Yi41 and x by x4 = a7y + ¢, it follows from the previous two
displays that
E[{(za; Yi+1) |Y1k] = E[{(c, Yi+1) |Y1k] — ad + o(a).

Thus for a > 0 sufficiently small, we find that E[{(zq, Yii1)| Y] < E[l(e, Yii1) | Y]
Thus condition (ii) fails to hold, and the proof is complete. [ |

Theorem 9 can be extended to non-differentiable loss functions ¢ satisfying A3-A4 by
using Lemma 8 instead of Lemma 7 in equation 13 and the subsequent display. For ¢ € X
let S. be the (open) set of points y where the derivative V/(c,y) exists and is continuous in
a neighborhood of (¢, y). We state the following result without proof.

Theorem 10 Suppose that the subgradients @E(x, y) are bounded on bounded subsets of X x
Y, and let y € YN be a bounded sequence such that every weak limit of {ttn1} assigns proba-
bility one to Se. Then 'y is £-memoryless for c if and only if for each m > 1 every weak limait
(Y1,...,Ym) of {ttn.m} is stationary, bounded, and satisfies c € argmin, ¢y E[£(z, Yi11) | Y]
with probability one for 1 <k <m — 1.
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4.2 Memoryless Sequences and Property Elicitation

Theorem 9 establishes a close connection between memoryless sequences and the property
elicited by the loss function ¢. Recall that ¢ elicits the property I'y : @ — 2% defined by
I'y(Q) = argmin,cy [ 4(z,y) dQ(y). Condition (12) in Theorem 9 can be stated equivalently
as

¢ € Ty(Yip|[YF) wpl (15)

where Yk+1|Y1k denotes the conditional distribution of Y;y1 given Y7,..., Yy when k > 1,
and the distribution of Y7 when & = 0. Thus Theorem 9 implies that £-memoryless sequences
are characterized by the property Ty elicited by £. As an immediate consequence, two losses
eliciting the same property have the same family of memoryless sequences.

Corollary 11 Let X, be subsets of R? satisfying assumptions Al and A2, and let £ and
¢ be loss functions satisfying A3-A5. If € and €' elicit the same property I' : Q — 2%, then
a bounded sequence 'y € YN is (-memoryless for ¢ if and only if it is £'-memoryless for c.

Thus any convex loss eliciting the mean, which must be a Bregman divergence, will have
the same memoryless sequences as squared loss. As discussed in § 4.3 below, the weak limits
of such a sequence are martingale difference sequences, and this can be used to establish
stochastic properties of the sequence.

Another common loss function is the absolute loss ¢1(z,y) = |x —y|, which is convex and
elicits the median, rather than the mean. Theorem 10 implies that a real-valued individual
sequence whose weak limits assign no probability to the point 0 is £1-memoryless with ¢ =0
if and only if its weak limits have conditional medians equal to 0 with probability one. Linton
and Whang (2007) and Coudin and Dufour (2009) have studied such sequences, which they
term mediangale differences, as well as more general quantilegale difference sequences. !
Following this terminology, sequences Y7, ...,Y,, satisfying condition (15) might be termed
I-gale differences for an elicitable property I', or lossingale differences for condition (12).

Similar statements can be made for expectiles and ratios of expectations. For example,
as we saw in § 2.3, a ratio of expectations I'(Q) = EqY/Eq@b(Y) is elicited by the trans-
formed Bregman divergence ¢(z,y) = b(y)G(y) — b(y)G(x) — (VG(x),y — b(y)z), which is
convex whenever the original divergence is convex. For such losses, Theorem 9 together with
eq. (15) imply that a sequence is f-memoryless for ¢ if and only if its weak limits satisfy
c=T(Ye1|YF) = B[Yas1|YF)/EDB(Yiy1)|YE]. In particular, a sequence is -memoryless at
c if and only if {Y — c¢b(Yy)}}", is a martingale difference sequence.

4.3 Mean Elicitation, Martingale Differences, and Stochastic Properties

When the loss £ elicits the mean Theorem 9 establishes a connection between the weak limits
of memoryless sequences and multivariate martingale differences, generalizing earlier work
of Nobel (2004), who considered the case of squared loss with X', ) C R. As its proof of the
following result is routine, we omit the details.

1. Coudin and Dufour use the term “mediangale” to refer to the difference sequence. Medians in higher-
dimensional spaces are often defined in terms of minimizing ¢ (x,y) = ||z — y||1 (Fekete et al., 2005), in
which case the same result would apply: sequences whose weak limits avoid 0 € R* will be #/-memoryless
if and only if their weak limits are (generalized) mediangale differences.
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Proposition 12 Let ¢ be a loss function satisfying A3-A5 that elicits the mean in the sense
of Definition 2, and lety € YN be bounded and (-memoryless for ¢ € X. Then ¢ is unique,
and the centered sequence z = y—c with z; = y;—c is £-memoryless for 0. In particular, every
weak limit Z1, ..., Zy of the m-dimensional empirical measures of z satisfies B[ Zy,1 | Z¥] =
0for1<k<n-—1.

Nobel (2004) showed how the martingale difference property of Proposition 12 could
be leveraged to establish stochastic properties of f-memoryless sequences. These properties
include a Hoeffding-type inequality and a central limit type theorem. These arguments
extend without modification to any loss that elicits the mean and satisfies the conditions
of Theorem 9 or Theorem 10. We state the Hoeffding inequality and central limit theorem
without proof. In Section 5 we show how to relax convexity and differentiability of the loss,
thereby extending the results below to all Bregman divergences.

Proposition 13 Let £ be a loss function satisfying A3-A5 that elicits the mean. If the
sequence'y = yi,Y2, ... € [a,b] is L-memoryless for 0, then for every m > 1 and every t > 0,

1 n—1 1 m
2 2
lim sup — E Iq|— E Yigj| > tp < e /2(b=a)"
m
=0 j=1

n—00 ni

Remark: As an easy corollary of Proposition 13 we obtain a law of large numbers for y,
namely n~! > yi — 0 as n tends to infinity.

Let the sequence y € YN be given. For each i,m > 1 define the root-normalized par-
tial sums s;,, = m=1/2 Z;n:l Yit+j. For each n > 1 let v,,, be the empirical measure of
S1,my - -3 Sn,m, that is,

1 n
Unm(A4) = - Zl{si,m € A} for each set A € B
i=1

where B denotes the Borel subsets of R. Note that v, ,,, depends only on 1, ..., %y qm. Let
p(+,-) be any metric for probability measures on R that is compatible with weak convergence,
in the sense that v, = v if and only if p(vy,;v) — 0. One example is the Prokhorov metric

p(v;n) = inf{e >0 s.t. v(A) < n(A°) for every A € B},

where A€ = {u : |u — v| < € for some v € A} is the e-blow-up of A. Let N'(0,02) denote the

normal distribution with mean 0 and variance o2.

Theorem 14 Lety = y1,y2,... € R be a bounded sequence, and let ¢ be a loss satisfying
AS3-A5 that elicits the mean. If'y is {-memoryless for 0 and y? := yi,y3, ... is {-memoryless
for 0® > 0 then

lim limsup p( vpm, N(0,02)) = 0.

m—00  n—o00
Equivalently, for every e > 0 there exists a block length mg (depending on €) and a sample
size ng (depending on € and mg) such that p(Vpme, N'(0,0%)) < € for each n > ny.
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Remark. Theorem 14 is expressed in terms of double limits: the first is taken as the
number n of sliding blocks increases, and the second is taken with increasing block size m.
The first limit accounts for the stochastic behavior of the sequence, essentially replacing the
m-~dimensional distribution of a random sequence with the limiting empirical distribution of
the m blocks of x. The second limit corresponds to increasing sample size.

When Y is finite and X is a subset of distributions on ), an important special case
of Bregman divergences is the class of proper losses, which elicit the full distribution on Y
when this distribution is in X'. Other than squared loss, the most common proper loss is log
loss oy : X X Y — R, given by loe(x,y) = —logx(y), where & is the relative interior of
the probability simplex A(Y), and z(y) denotes the probability x assigns to y. Up to terms
depending only on ¥, log loss can be written as the Kullback—Leibler divergence, which is the
Bregman divergence with respect to (negative) Shannon entropy. For proper losses, we can
interpret the stochastic results established below as giving certain calibration guarantees;
see § 6 for how to reformulate proper losses to satisfy assumptions A1-A5 in the context of
prediction markets, where proper losses correspond to the complete market case.

4.4 Memoryless Sequences from Random Processes

The characterization of memoryless sequences in Theorem 9 suggests that the sample paths
of appropriate sequences of random variables should be memoryless. This is the conclusion
of the following result, the proof of which can be found in Appendix A.

Proposition 15 Let X, YV, and £ satisfy assumptions A1-A5, and let Ty be the property

elicited by £. Let Y = Y1,Yo,... be a sequence of random wvectors defined on a common
probability space, and taking values in a fized compact subset of Y such that
c € () De(Yisr|YF) wpl (16)
E>1

for some predictor ¢ € X. Then with probability one the sequence Y is £-memoryless for c.

Proposition 15 relies on the following elementary characterization of conditional loss
optimality. Note that one could view this result, and equation (17) in particular, in terms
of identification functions from the property elicitation literature, see for example Steinwart
et al. (2014); Lambert (2018).

Lemma 16 Let Y be a random vector defined on a probability space (2,G,Q) and taking
values in a compact subset of Y, and let Gy be a sub-sigma field of G. For any fivred c € X
the following statements are equivalent:

E[Vl(c,Y)|Go] = 0 with probability 1 , (17)
E[l(c,Y)|Go] < E[l(z,Y)|Go]| with probability 1 for every x € X . (18)

5. Extensions to Non-Convex and Non-Differentiable Losses

We now show that, under appropriate conditions, one may extend Theorem 9 to certain loss
functions ¢ that do not satisfy condition A3 (convexity) or A5 (differentiability), including
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some non-differentiable losses that are not covered by Theorem 10. The key idea is to
express a non-convex or non-differentiable loss function in a composite form via a continuous
invertible link function v that effectively replaces the native space X by a surrogate space
X on which the loss is convex and differentiable. Suitable assumptions on the link function
ensure that the set of memoryless sequences is preserved by the link function, and that
Theorem 9 applies. In particular, we argue that essentially all Bregman divergences are
composite in the sense above, and we can thereby show that Theorem 9 and the results of
Nobel (2004) extend to the full class of losses eliciting the mean.

Let X and ) satisfy conditions A1l and A2, respectively, and let £ : X' x ) — R be a loss
function of interest that elicits a property I'. Suppose that ¢ fails to satisfy one or both of
conditions A3 (convexity) or A5 (differentiability), but that ¢ can be written in the form

Uz, y) = (), y) (19)

where £ : X x J — R satisfies conditions A3-A5, X C R? satisfies condition A1, and the
link function ¥ : X — X is a homeomorphism (a continuous bijection with a continuous
inverse) of X and X'. Then Theorem 9 applies to ¢ and the property I

Proposition 17 Under the conditions above, a bounded sequence y € YN is £-memoryless
for c € X if and only if the weak limits of y are stationary, bounded, and satisfy the optimality
relation (12).

Proof Let y € YN be bounded, and let I be the property elicited by l. As v X — Xisa
homeomorphism, it is easy to see that every bounded continuous function § : Y* — X can be
written in the form § = 1) o g for some bounded continuous function ¢ : Y* — X. Similarly,
every bounded continuous function g : Y¥ — X can be written in the form g = ¢! o § for
some bounded continuous function § : Y¥ — X. It follows from (19) that y is ~-memoryless
for ¢ € X if and only if y is f-memoryless for ¢)(¢) € X which, by Theorem 9, holds if
and only if the weak limits of y are stationary, bounded, and satisfy (12) with ¢ replaced by
¥(c). A straightforward argument using (19) shows that I' = ¢~ 1ol and the result follows. W

Note that Proposition 17 allows us to characterize memoryless sequences for certain
nondifferentiable losses without needing the assumptions of Theorem 10. In particular, if
¥ : X — X is a nondifferentiable homeomorphism, then in general £(z,y) = {(¢(x), y) will
be nondifferentiable, yet Proposition 17 will still apply.

Now let {g(x,y) = G(y) —G(z) — (VG(z),y — x) be the Bregman divergence of a convex
function G : D — R. The results of Section 4 imply that the weak limits of an £g-memoryless
sequences are shifted martingale difference sequences if conditions A3-A5 hold. However,
the convexity condition A3 is somewhat restrictive: while /g is always convex in y, it is
generally not convex in z. For example, when G(z) = e® the corresponding divergence
lg(x,y) = e¥ —e"(1+y —x) is nonconvex in x for all y (see Figure 1). However, for suitable
convex functions G the Bregman divergences {g can be written in the composite form (19)
using the mized Bregman divergence (Gordon, 1999). This leads to the following extension
of Theorem 9, which relies on Proposition 17. For more details, and the proof of the result,
see Appendix B.
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5 10 15 20

Figure 1: Three loss functions evaluated at y = 3. The first, given by (2, y) = e¥ +& log & —
T — y, satisfies the conditions A3-A5, and thus Theorem 9 applies. The second,
l(z,y) = €Y —e*(1+y—x), is a nonconvex Bregman divergence g for G(z) = €7,
but can be made convex via the invertible link ¢ (z) = e® as for all x,y we have
Uz, y) = é(w(x), y), so Proposition 17 applies. The third is both nonconvex and
nondifferentiable, but again we may apply Proposition 17 as ¢/(x,y) = f(iﬁ’(m), Y)
for ¢/(z) = e® for x > 2 and 1+ €*/2 for z < 2.

Proposition 18 Let D C R be convex, Y C D be closed, and X C D be open and convex.
If G : D — R is strictly convex, closed, and differentiable on X, then the characterization of
Theorem 9 applies to the Bregman divergence £q.

6. Application to Prediction Markets

We now apply our results in the setting of prediction markets, which are markets designed
to elicit and aggregate predictions from traders about some future outcome Z in the arena of
athletics, finance, entertainment, or politics. Our conclusion will be that, under the efficient
market hypothesis, the outcomes of a sequence of markets are memoryless with respect to
the market prices. Prediction markets work by offering financial contracts whose payoffs
are contingent in some way on the eventually-observed value of Z; by revealed preference,
the choices of traders in such a market can be interpreted as predictions about Z, and the
final prices of the market can be viewed as an aggregate, or consensus belief of the traders
(Hanson, 2003; Wolfers and Zitzewitz, 2004).

Formally, our setting is as follows. The set Z will represent the possible outcomes, and
thus the possible values of Z. The market will support the buying and selling of d different
securities, whose payoff values are each contingent on which outcome z € Z materializes. In
particular, we define the payoffs of these securities by a vector-valued function ¢ : Z — R,
where the component ¢;(z) denotes the payoff of security ¢ upon outcome z. The prediction
space X = R will represent vectors of shares in these d securities, which traders can buy and
sell. Thus, if a trader holds a bundle of shares r € X and outcome z € Z materializes, then
the trader is owed (r, ¢(z)). Intuitively, a risk-neutral trader (i.e. one seeking to maximize
expected payoff) who buys a bundle r for a cost of ¢ reveals a belief (r,E,¢(Z)) > c; that
is, the trader must believe the expected value of (r,¢(Z)) to be greater than c¢. In this
way, the market prices are thought to reflect the consensus belief about the expected value
of the securities ¢. An important special case is when |Z| = d and ¢;(z) = 1{z = z;} is
the indicator of the element z; € Z, corresponding to a complete market. In this case the
expected value of ¢(Z) is simply the distribution p over Z.
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Market maker initializes state zg < 0 € R?
for all traderst=1,...,T do
Trader ¢ decides to purchase bundle r; € R¢
Market maker updates the state zy + xy_1 + ¢
Trader pays the market maker C'(x;) — C(x¢—1)
end
Outcome z € Z is revealed and market maker pays (ry, ¢(z)) to trader t =1,...,T

Algorithm 1: The cost-function-based market maker

Due to thin market problems, it is common to employ an automated market maker
framework, which is simply a central entity in the market through which all transactions
must be made. A popular mechanism to determine the cost of each purchase is the cost-
function-based market, introduced by Abernethy, Chen, and Wortman Vaughan (2013). Here
the market maker chooses a convex potential function C' : R — R, and maintains a vector
T = 2521 r; describing the total number of shares bought and sold of each security up to
time t. The cost of purchasing a bundle r; € X of shares at time ¢ € N is then given by the
difference in the potential, C(xy—1 + r¢) — C(x¢—1), at which point we set x; = x;—1 + 7.
This procedure is described more formally in Algorithm 1.

Typically one regards the gradient VC(z) of C at the current market state x as the mar-
ket “price”. The reason is that VC' corresponds to the instantaneous prices of the securities:
0C(z)/0x; is the price per unit of an infinitessimal quantity of security i¢. One can check
that if a trader believes the outcome to be drawn from some distribution p over Z, then
monotonicity of VC' implies that a risk-neutral trader would have an incentive to buy or sell
shares until the market state satisfied VC(z) = E,¢(Z), as discussed above. In this sense,
the market is giving traders incentives to predict the value of E,¢(Z). For the market to
satisfy standard axioms, C' must be strictly convex and differentiable, and the set of possible
gradients VC(R?) should be equal to D := relint(conv(¢(Z))), the relative interior of the
convex hull of the security payoffs (Abernethy et al., 2013). This is equivalent to being able
to write C(z) = sup,ep (4, z) — G(u) for some differentiable and strictly convex function
G : D — R with VG(D) = R? (Abernethy et al., 2013).

Now consider running this market, from initalization to the final outcome revelation,
many times for many events. One can ask, if the final market prices are “correct”, in
the sense that the “expected value” of the securities really matched the price vector, i.e.,
VC(z) = Ep¢(Z) where p is the true “distribution” over Z7 In attempting to answer this
question one quickly encounters issues concerning the nature of probability and whether or
not the market outcome is truly random. A convenient way around these issues is to appeal
to individual sequences, as we do in this paper, and simply ask whether a given (infinite)
series of market prices are memoryless with respect to the corresponding outcomes. To do
so, we will need to translate the cost-function-based market setting to our own.

To capture this prediction market setting, let X = R? as above and let Y = {#(2) : z €
Z} C R? be the possible security payoffs. Our loss function will take the form of the mixed
Bregman divergence {g(z,y) = C(z) + G(y) — (z,y), with C and G as above, which satisfies
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assumptions A3-A5 as C' and G are both convex and continuously differentiable (see the proof
in Appendix B). Note that if the current market state is z*, and a trader moves the state to
& = 2* 4+ r by purchasing bundle 7, then {g(z,y) — la(a*,y) = C(z* + 1) — C(z*) — (r,y);
this is precisely the net loss of the trader in Algorithm 1, namely the up-front cost of bundle
r, minus the eventual payoff of the securities y = ¢(z). Now translating Lemma 7, fixing an
outcome sequence z € ZY and set of sequences X C XN to which the initial market states
x* belong, we have,

n

1
lim inf = Cr) = Clad) — (ryd(20)) > 0 forall X +reX (2
i 3 (€ 7) = Claf) = {6l 20 foral x4 & (20)
im L3 (. VO ) =0 forall X" +r1€X 21

= nggonZ;m, (a}) = ¢(2)) =0 forall x" +reX, (21)

where now ¢ denotes the run of the market, so that =}, r;, and z; represent, respectively, the
initial market state, trader’s purchase, and outcome in the ith run of the market. Thus, one
can interpret the application of Lemma 7 to prediction markets as a version of the efficient
market hypothesis: either the market prices are “calibrated” with respect to the class of
trading algorithms whose outputs belong to X, in the sense of eq. (21), or some sequence of
trades in X can make an infinite profit over the course of these market runs. For example, if
X contains all constant sequences, and x* is constant, eq. (21) implies a version of the law
of large numbers in that the average security payoff must approach the initial market price.

Turning now to Theorem 9, we can say something stronger. Observe that the loss I
elicits the property I' such that I'(p) is the set of share vectors whose price matches the
expected security payoffs under p; that is, VC(I'(p)) = {Ep¢(Z)}. From the discussion in
§ 4, we find that for any sequence z € ZN, no continuous finite-memory trading strategy can
garner (linearly) infinite profits from a series of markets initialized at z* € X, if and only if
the weak limits of the security payoff sequence y = ¢(z) are “I'-centered” at the initial price
VC(x*), in the sense of eq. (15). In particular, subtracting off VC'(x*), the weak limits of
the security payoffs form a multidimensional martingale difference sequence.

Theorem 19 Let outcome space Z, securities ¢ : Z — RY, strictly convex and differentiable
cost function C' : R — R with VC(R?) = relint(conv(¢(Z))), and inital share vector x* € X
be given. Then for all z € ZN, we have the following for every k > 1 and g € Cy,

n

: : 1 * 1—1 * 1—1 )
Hnint -3 (O + 9(e1=1) = Cle) ~ (a(ei=D:61a0)) 2 0. (22)
if and only if every weak limit (Z1, ..., Zy), m > 1, of the empirical measures {finm : n > 1}

of z is stationary, bounded, and satisfies Bpld(Zys1)|ZF] = VO (x*) wpl for 1 <k <n — 1.

Proof As discussed above, we take y; = ¢(2;), y = ¢(z), and predictors ¢’ = g + x*;
note that ¢’ is a continuous Markov predictor if and only if g is. Memorylessness is equiv-
alent to eq. (22) as argued above. For the conditional expectation, from Theorem 9 we
have z* € argmingy E[{(z,Yiy1)| Y] wpl. As we assume C is strictly convex and
differentiable, from Lemma 16 we see that z* achieves the minimum loss if and only if
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0=E[V, (Cla* + 1) — C(a*) — (z,8(Zk+1))) | 21| = E[VC(z*) — ¢(Z41) | Z7 ] =

We conclude with some remarks. First, the class of finite-memory trading algorithms
is perhaps restrictive in this setting; ideally, we would allow our trading algorithms to use
the entire past history of prices and outcomes. This immediately becomes problematic,
however, as it is difficult to exclude algorithms that “know” the outcome sequence z. (The
restriction to finite-memory and continuity in the definition of memoryless accomplishes this,
for generic outcome sequences.) Intuitively, one should allow the outcome sequence to be
“independent” of the prediction sequence, but this would stray from our focus on individual
sequences. Nonetheless, it is possible that our techniques can be extended to such online
settings, which could allow for a formal link to similar statements made in game-theoretic
probability (Shafer and Vovk, 2005; Vovk, 2014). Finally, we note that the connection laid
out in this section also applies to the broader family of scoring rule markets, by replacing
the Bregman divergence with the corresponding score or loss (Lambert et al., 2008; Frongillo
and Waggoner, 2018).

7. Discussion and Future Work

We have extended the notion of memoryless sequences, introduced in Nobel (2004), to higher
dimensions and general convex differentiable losses, as well as some nondifferentiable and
nonconvex cases that encompass Bregman divergences. Our results establish that memory-
less sequences are characterized by the stochastic behavior of their finite-dimensional weak
limits, and that the distribution of these limits is governed by the property elicited by the
loss function. In particular, the broad class of Bregman divergences have the same set of
memoryless sequences as squared loss, and hence their weak limits form martingale difference
sequences. Similarly, the memoryless sequences for absolute loss correspond to mediangales,
whose conditional medians are 0. Finally, we applied our results to the question of price
calibration in prediction markets, showing that if no trader can make an infinite profit, then
prices are calibrated.

It would be interesting to establish similar results in a more online setting, as discussed
in Section 6, where the outcome sequence can adapt to the predictions adversarially. Such
a setting would be closer to online learning and game-theoretic probability, allowing a more
direct comparison to that literature. Another interesting future direction would be to in-
corporate a dependent variable, and study the relationship between the complexity of the
prediction function class and the resulting set of memoryless sequences.
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Appendix A. Stochastic Sources of Memoryless Sequences

We assume below that the prediction space X and outcome space ) satisfy assumptions Al
and A2, respectively, and that the loss ¢(x,y) satisfies assumptions A3-A5.
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Proof [of Lemma 16]. Let ¢ € X' be fixed, and assume without loss of generality that } is
compact. The subgradient inequality ensures that

Uz, Y)—l(c,Y) > (x—c,VLc,Y)).

Taking conditional expectations of both sides and using linearity of the conditional expec-
tation, it is clear that (17) implies (18), and we turn our attention to the converse.

As X is open, there exists 6 > 0 such that the closed ball B(c,§) of radius § centered at
c is contained in X. For each = € B(c,§) and each y € Y define 7(z : y) by

Uz,y) = Llc,y) + (x — ¢, Vi(c,y)) +r(z 1 y).

By assumption (A5), for each y € Y the ratio r(z : y)/||x — || — 0 as x — ¢. By arguments
like those in the proof of Lemma 7 one may readily establish that r(z : y)/||z — ¢|| < aM
for all (z,y) € B(c,8) x Y, where M is the maximum of ||V/(x,y)|| over the compact set
B(e,8) x Y, and a is a constant. Note that M is finite as the gradient is assumed to be
continuous.

Now fix £ > 1 and let « € B(c,d). It follows from assumption (18) and the linearity of
the conditional expectation that

0<E[l(z,Y) —£(c,Y)|Go] = (x— ¢, E[VUc,Y)|Go]) +E[r(z: Y)|Go].

By the dominated convergence theorem the second expectation above is o(||x — ¢||), and we
conclude that for every & € B(0,0)

0 < (& E[VL(c,Y)|Go]) + o(l|Z|])-

Let v € R% be any unit vector, and let & = aw for some 0 < a < §. It follows from the
previous display that

0 < a(v, E[VIc,Y)|Go]) + oa).

Dividing both sides above by a and letting « tend to zero we find (v, E[V{(c,Y)|Go]) > 0;
replacing v by —wv it follows that the inner product is equal to zero. As the unit vector v
was a arbitrary, we conclude that E[V{(c,Y)|Go| =0, as desired. [ ]

We note that statement (18) of Lemma 16 can be written in the equivalent form

c € argminE[{(z,Y)|Gy] wpl
reX

Corollary 20 Let Y1,...,Y, be random vectors taking values in a compact subset of V. If
c € argming .y E[{(z, Yii1) | Y]] for 1 < k < n—1, then the gradients V{(c,Y1),...,V{(c,Yy,)
are a martingale difference sequence with respect to the filtration Fy = O'(Ylk).

Corollary 21 Let the random vector Y and sigma field Gy be as in Lemma 16. If the
random vector Xo € X is measurable Gy then E[V{(Xo,Y)|Go| = 0 with probability one if
and only if Xo € argmin,cy E[{(2,Y)| Gy ] with probability one.
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Proof [of Proposition 15| Let ¢ € X be as in the statement of the theorem, and assume
without loss of generality that ) is compact. Recall that Ci denotes the family of (bounded)
continuous functions from Y* to X. Using the orthogonality lemma it suffices to show that
with probability one, for each £ > 1 and each g € Cg,

1 1
Jim = (g(V5) — e Vi, X)) = 0. (23)
i=k+1
As ) is compact, the family of functions Cj contains a countable subset Cj, that is dense in
the supremum norm. Let g be any function in C; and for m > k + 1 define

Zpm = (g 1) — ¢, Vi(c,Yrn)).

Lemma 16 ensures that E[Z,), | Ylm_l] = 0, and therefore Zy11, Zp19,... is a bounded mar-
tingale difference sequence. It follows from the Azuma-Hoeffding inequality and the Borel-
Cantelli lemma, that n~! - +1 Zm — 0 with probability one as n tends to infinity, which
establishes (23) for the function g. As g was an arbitrary element of the countable dense
family Cj, one may extend (23) to all of Cy by a straightforward approximation argument.
Finally, excluding an exceptional set of probability zero for each family C, we find that,
with probability one, (23) holds for all £ > 1 and all g € Cx, as desired. [ ]

Appendix B. Proof of Proposition 18

Assume that D C R? is convex, )V C D is closed, and X C D is open and convex. Let
G : D — R be a closed, strictly convex function that is differentiable on X’. Recall that the
(usual) Bregman divergence {¢ is given by lg(z,y) = G(y) — G(z) — (VG(z),y — z). Let
F(z) := supsep (&, ) — G(&) be the convex conjugate of G and X C dom F. Define the
mixed Bregman divergence lg: X xY —Rby

la(z,y) = F(2) + G(y) — (2,y).

We claim that g(VG(c),y) = la(c,y). To see this, we use the fact that F(VG(c)) =
(VG(c),c) — G(c), which essentially follows from the first-order optimality condition in the
definition of F' (Urruty and Lemaréchal, 2001, Corollary E.1.4.4). Thus

lc(VG(c),y) = F(VG(c) + G(y) — (VG(e),y)
= (VG(c),c) — G(c) + G(y) — (VG(c),y)
=G(y) — G(c) = (VG(c),y — ¢
= Lla(c,y),

as claimed.

Proof [of Proposition 18] As G is convex and differentiable on X, it must be continuously
differentiable (Urruty and Lemaréchal, 2001, Remark D.6.2.6), and thus VG is continuous
on X. We conclude that ¢ satisfies A4 (continuity).
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As G is strictly convex and closed, F' is continuously differentiable on the interior of
its domain, denoted intdom F' (Urruty and Lemaréchal, 2001, Theorem E.4.1.1). Define
X := VG(X); we will now show X C intdom F. As G is closed, we have s € 0G(z) <~
x € 0F(s) (Rockafellar, 1997, Theorem 23.5). Now suppose s = VG(z) ¢ intdom F. By
the above, we have OF (s) # (), and therefore OF (s) must be an unbounded set (Rockafellar,
1997, Theorem 23.4). Taking any x’ € 0F(s), 2/ # x, we have again by the above that
VG(z) = s € G (z'), which contradicts the strict convexity of G.

Now as VF is continuous on X C int dom F, X must be an open set as the preimage of X
under VF'. Moreover, the gradient maps VG and VF (restricted to X and X , respectively)
are inverses of each other, and therefore homeomorphisms.

We have now established A1 (for X) and A2. Letting /g : X x Y — R be the mixed
Bregman divergence with first argument restricted to X', we have properties A3-A5 for
la. (Convexity is immediate, and continuity and differentiability follow from continuity of
G, VG, F,and VF.) Now Proposition 17 applies with £ = /¢, ¢ =1q,and Y(x) =VG(z). 1A
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