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Abstract

We formalize and study the natural approach of designing convex surrogate loss
functions via embeddings for problems such as classification or ranking. In this
approach, one embeds each of the finitely many predictions (e.g. classes) as a point
in R?, assigns the original loss values to these points, and convexifies the loss in
some way to obtain a surrogate. We prove that this approach is equivalent, in a
strong sense, to working with polyhedral (piecewise linear convex) losses. More-
over, given any polyhedral loss L, we give a construction of a link function through
which L is a consistent surrogate for the loss it embeds. We go on to illustrate
the power of this embedding framework with succinct proofs of consistency or
inconsistency of various polyhedral surrogates in the literature.

1 Introduction

Convex surrogate losses are a central building block in machine learning for classification and
classification-like problems. A growing body of work seeks to design and analyze convex surrogates
for given loss functions, and more broadly, understand when such surrogates can and cannot be found.
For example, recent work has developed tools to bound the required number of dimensions of the
surrogate’s hypothesis space [13, 24]. Yet in some cases these bounds are far from tight, such as
for abstain loss (classification with an abstain option) [4, 24, 25, 33, 34]. Furthermore, the kinds of
strategies available for constructing surrogates, and their relative power, are not well-understood.

We augment this literature by studying a particularly natural approach for finding convex surrogates,
wherein one “embeds” a discrete loss. Specifically, we say a convex surrogate L embeds a discrete
loss ¢ if there is an injective embedding from the discrete reports (predictions) to a vector space
such that (i) the original loss values are recovered, and (ii) a report is ¢-optimal if and only if the
embedded report is L-optimal. If this embedding can be extended to a calibrated link function, which
maps approximately L-optimal reports to ¢-optimal reports, then consistency follows [2]. Common
examples of this general construction include hinge loss as a surrogate for 0-1 loss and the abstain
surrogate mentioned above.

Using tools from property elicitation, we show a tight relationship between such embeddings and
the class of polyhedral (piecewise-linear convex) loss functions. In particular, by focusing on Bayes
risks, we show that every discrete loss is embedded by some polyhedral loss, and every polyhedral
loss function embeds some discrete loss. Moreover, we show that any polyhedral loss gives rise to
a calibrated link function to the loss it embeds, thus giving a very general framework to construct
consistent convex surrogates for arbitrary losses.

Related works. The literature on convex surrogates focuses mainly on smooth surrogate losses [4,
5,7, 8, 26, 30]. Nevertheless, nonsmooth losses, such as the polyhedral losses we consider, have
been proposed and studied for a variety of classification-like problems [19, 31, 32]. A notable
addition to this literature is Ramaswamy et al. [25], who argue that nonsmooth losses may enable

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



dimension reduction of the prediction space (range of the surrogate hypothesis) relative to smooth
losses, illustrating this conjecture with a surrogate for abstain loss needing only log n dimensions for
n labels, whereas the best known smooth loss needs n — 1. Their surrogate is a natural example of an
embedding (cf. Section 5.1), and serves as inspiration for our work.

While property elicitation has by now an extensive literature [10, 12, 15, 17, 18, 22, 28, 29], these
works are mostly concerned with point estimation problems. Literature directly connecting property
elicitation to consistency is sparse, with the main reference being Agarwal and Agarwal [2]; note
however that they consider single-valued properties, whereas properties elicited by general convex
losses are necessarily set-valued.

2 Setting

For discrete prediction problems like classification, due to hardness of directly optimizing a given
discrete loss, many machine learning algorithms can be thought of as minimizing a surrogate loss
function with better optimization qualities, e.g., convexity. Of course, to show that this surrogate
loss successfully addresses the original problem, one needs to establish consistency, which depends
crucially on the choice of link function that maps surrogate reports (predictions) to original reports.
After introducing notation, and terminology from property elicitation, we thus give a sufficient
condition for consistency (Def. 4) which depends solely on the conditional distribution over ).

2.1 Notation and Losses

Let ) be a finite outcome (label) space, and throughout let n = |))|. The set of probability distributions
on ) is denoted Ay, C RY, represented as vectors of probabilities. We write py for the probability of
outcome y € Y drawn from p € Ay. We first discuss the conditional setting, with just labels ) and
no features X, and show in § 2.3 how these notions relate to the usual X' x ) setting.

We assume that a given discrete prediction problem, such as classification, is given in the form of
adiscrete loss { : R — R{, which maps a report (prediction) r from a finite set R to the vector of
loss values ¢(r) = (£(r),)yey for each possible outcome y € Y. We will assume throughout that the
given discrete loss is non-redundant, meaning every report is uniquely optimal (minimizes expected
loss) for some distribution p € Ay. Similarly, surrogate losses will be written L : RY — Rﬁ,
typically with reports written v € R?. We write the corresponding expected loss when Y ~ p as
(p,£(r)) and (p, L(w)). The Bayes risk of aloss L : RY — RY is the function L : Ay, — R, given
by L(p) := inf,,cgae (p, L(u)); naturally for discrete losses we write £ (and the infimum is over R).

For example, 0-1 loss is a discrete loss with R = ) = {—1, 1} given by 4.;(r), = 1{r # y}, with
Bayes risk {1 (p) = 1 — max,cy p,. Two important surrogates for £o_; are hinge 10ss Lyinge (1), =
(1 — yu)4, where (x)4 = max(z,0), and logistic loss L(u), = log(1 + exp(—yu)) for u € R.

Most of the surrogates L we consider will be polyhedral, meaning piecewise linear and convex;
we therefore briefly recall the relevant definitions. In R%, a polyhedral set or polyhedron is the
intersection of a finite number of closed halfspaces. A polytope is a bounded polyhedral set. A convex
function f : R — R is polyhedral if its epigraph is polyhedral, or equivalently, if it can be written as
a pointwise maximum of a finite set of affine functions [27].

Definition 1 (Polyhedral loss). A loss L : R? — Rz is polyhedral if L(w), is a polyhedral (convex)
Sfunction of u for eachy € Y.

For example, hinge loss is polyhedral, whereas logistic loss is not. To motivate our focus on
polyhedral losses, we echo Ramaswamy et al. [25, Section 1.2], who note that smooth surrogates
often encode much more information than necessary, and in these cases non-smooth surrogates are
the only candidates to achieve a low dimension d above.

2.2 Property Elicitation

To make headway, we will appeal to concepts and results from the property elicitation literature,
which elevates the property, or map from distributions to optimal reports, as a central object to study
in its own right. In our case, this map will often be multivalued, meaning a single distribution could



yield multiple optimal reports. (For example, when p = (1/2,1/2), both » = 1 and » = —1 optimize
0-1 loss.) To this end, we will use double arrow notation to mean a mapping to all nonempty subsets,
so that v : Ay = R is shorthand for ' : Ay — 2%\ (). See the discussion following Definition 3
for conventions regarding R, I, vy, L, ¢, etc.

Definition 2 (Property, level set). A property is a function I' : Ay = R. The level set of I for report
risthesetl',. :={p:r eT(p)}

Intuitively, T'(p) is the set of reports which should be optimal for a given distribution p, and T, is the
set of distributions for which the report r should be optimal. For example, the mode is the property
mode(p) = arg max, ¢y Py, and captures the set of optimal reports for 0-1 loss: for each distribution
over the labels, one should report the most likely label. In this case we say 0-1 loss elicits the mode,
as we formalize below.

Definition 3 (Elicits). A loss L : R — RY, elicits a property I : Ay 3 RIf

Vpe Ay, I'(p)= arg%in(p, L(r)) . (D
re

As T is uniquely defined by L, we write prop|L] to refer to the property elicited by a loss L.

For finite properties (those with |R| < oo) and discrete losses, we will use lowercase notation v and
¢, respectively, with reports € R; for surrogate properties and losses we use I" and L, with reports
u € R?. For general properties and losses, we will also use I" and L, as above.

2.3 Links and Embeddings

To assess whether a surrogate and link function align with the original loss, we turn to the common
condition of calibration. Roughly, a surrogate and link are calibrated if the best possible expected
loss achieved by linking to an incorrect report is strictly suboptimal.

Definition 4. Let original loss ¢ : R — Rz, proposed surrogate L : R% — R{, and link function
:R? = R be given. We say (L, 1)) is calibrated with respect to £ if for all p € Ay,
y

inf ,L(u)) > inf (p, L(u)) . 2)
el (L) > inf (5. L)

It is well-known that calibration implies consistency, in the following sense (cf. [2]). Given feature
space X, fix a distribution D € A(X x }). Let L* be the best possible expected L-loss achieved
by any hypothesis H : X — R%, and ¢* the best expected /-loss for any hypothesis h : X — R,
respectively. Then (L, ) is consistent if a sequence of surrogate hypotheses Hi, Ho, ... whose
L-loss limits to L*, then the ¢-loss of ¢ o Hy,1) o Ho, ... limits to £*. As Definition 4 does not
involve the feature space X, we will drop it for the remainder of the paper.

Several consistent convex surrogates in the literature can be thought of as “embeddings”, wherein one
maps the discrete reports to a vector space, and finds a convex loss which agrees with the original
loss. A key condition is that the original reports should be optimal exactly when the corresponding
embedded points are optimal. We formalize this notion as follows.

Definition 5. A loss L : R? — RY embeds a loss { : R — RY if there exists some injective
embedding ¢ : R — RY such that (i) for all r € R we have L(¢(r)) = £(r), and (ii) for all
p € Ay, € R we have

r € prop[{](p) <= ¢(r) € prop[L](p) . 3)

Note that it is not clear if embeddings give rise to calibrated links; indeed, apart from mapping the
embedded points back to their original reports via )(¢(r)) = r, how to map the remaining values is
far from clear. We address the question of when embeddings lead to calibrated links in Section 4.

To illustrate the idea of embedding, let us examine hinge loss in detail as a surrogate for 0-1 loss
for binary classification. Recall that we have R = )Y = {—1,+1}, with Lyinge(u), = (1 — uy)+
and (. (r), = 1{r # y}, typically with link function ¢)(u) = sgn(u). We will see that hinge
loss embeds (2 times) 0-1 loss, via the embedding ¢(r) = r. For condition (i), it is straightforward



to check that Luinge(r)y = 26o.1(r), for all r,y € {—1, 1}. For condition (ii), let us compute the
property each loss elicits, i.e., the set of optimal reports for each p:

[1,00) pr=1
1 > 1/2 1 p € (1/2,1)
propllo1|(p) = ¢ {-1,1} p1=1/2 prop[Luinge)(p) = § [=1,1] p1=1/2
1 p<1/2 -1 p1 € (0,1/2)
(—00,~1] p1=0

In particular, we see that —1 € prop[lp.1](p) <= p1 € [0,1/2] <= —1 € prop[Luinge](p),
and 1 € prop[lp.1](p) <= p1 € [1/2,1] <= 1 € prop[Lninge](p). With both conditions of
Definition 5 satisfied, we conclude that Lying. embeds 2¢y.;. In this particular case, it is known
(Lninge; ¥) is calibrated for ¢(u) = sgn(u); in Section 4 we show that, perhaps surprisingly, all
embeddings lead to calibration with an appropriate link.

3 Embeddings and Polyhedral Losses

In this section, we establish a tight relationship between the technique of embedding and the use of
polyhedral (piecewise-linear convex) surrogate losses. We defer to the following section the question
of when such surrogates are consistent.

To begin, we observe that our embedding condition in Definition 5 is equivalent to merely matching
Bayes risks. This useful fact will drive many of our results.

Proposition 1. A loss L embeds discrete loss { if and only if L = ¢.

Proof. Throughout we have L : R — RY, ¢ : R — RY, and define I' = prop[L] and v = propl[].
Suppose L embeds ¢ via the embedding ¢. Letting U := ¢(R), definey' : Ay = U by : p—
T'(p) NU. To see that v'(p) # @ for all p € Ay, note that by the definition of + as the property
elicited by ¢ we have some r € «(p), and by the embedding condition (3), ¢(r) € I'(p). By [9,
Lemma 3], we see that L|;, (the loss L with reports restricted to Uf) elicits v/ and L = Liy. As

L(¢(+)) = £(-) by the embedding, we have

£(p) = min(p, {(r)) = minp, L(ep(r))) = min(p, L(u)) = Llu ,

for all p € Ay. Combining with the above, we now have L = /.

For the reverse implication, assume that . = £. In what follows, we implicitly work in the affine hull
of Ay, so that interiors are well-defined, and £ may be differentiable on the (relative) interior of Ay.
Since ¢ is discrete, —/ is polyhedral as the pointwise maximum of a finite set of linear functions. The
projection of its epigraph E, onto Ay, forms a power diagram by [3], whose cells are full-dimensional
and correspond to the level sets v, of v = prop[{].

For each € R, let p, be a distribution in the interior of 7, and let v, € T'(p). Observe that,
by definition of the Bayes risk and T, for all u € R the hyperplane v + (v, —L(u,)) supports
the epigraph E, of —L at the point (p, —(p, L(u))) if and only if u € I'(p). Thus, the hyperplane
v — (v, —L(u,)) supports E;, = Ejy at the point (p,, —(p,, L(u,))), and thus does so at the entire
facet {(p, —(p, L(u,))) : p € Y}; by the above, u, € I'(p) for all such distributions as well. We
conclude that u,, € I'(p) <= p € v <= r € v(p), satisfying condition (3) for ¢ : r — u,. To
see that the loss values match, we merely note that the supporting hyperplanes to the facets of Ey,
and E, are the same, and the loss values are uniquely determined by the supporting hyperplane. (In
particular, if i supports the facet corresponding to ~y,., we have ¢(r), = L(u,), = h(d,), where §, is
the point distribution on outcome y.)

From this more succinct embedding condition, we can in turn simplify the condition that a loss
embeds some discrete loss: it does if and only if its Bayes risk is polyhedral. (We say a concave
function is polyhedral if its negation is a polyhedral convex function.) Note that the Bayes risk, a
function from distributions over ) to the reals, may be polyhedral even if the loss itself is not.

Proposition 2. A loss L embeds a discrete loss if and only if L is polyhedral.



Proof. If L embeds ¢, Proposition 1 gives us L = £, and its proof already argued that £ is polyhedral.
For the converse, let L be polyhedral; we again examine the proof of Proposition 1. The projection of
L onto Ay forms a power diagram by [3] with finitely many cells C1, . . ., Cj, which we can index by
R :={1,...,k}. Defining the property v : Ay = R by 7, = C, for r € R, we see that the same
construction gives us points u, € R? such thatu,, € I'(p) <=> r € y(p). Defining £ : R — RY by
{(r) = L(u,), the same proof shows that L embeds . O

Combining Proposition 2 with the observation that polyhedral losses have polyhedral Bayes risks [9,
Lemma 5], we obtain the first direction of our equivalence between polyhedral losses and embedding.

Theorem 1. Every polyhedral loss L embeds a discrete loss.

We now turn to the reverse direction: which discrete losses are embedded by some polyhedral loss?
Perhaps surprisingly, we show that every discrete loss is embeddable, using a construction via convex
conjugate duality which has appeared several times in the literature (e.g. [1, 8, 11]). Note however
that the number of dimensions d required could be as large as |)|.

Theorem 2. Every discrete loss { is embedded by a polyhedral loss.

Proof. Letn = |Y|, and let C : R™ — R be given by (—£)*, the convex conjugate of —¢. From
standard results in convex analysis, C' is polyhedral as —£ is, and C is finite on all of RY as the
domain of —/ is bounded [27, Corollary 13.3.1]. Note that —/ is a closed convex function, as the
infimum of affine functions, and thus (—£)** = —¢. Define L : R® — RY by L(u) = C(u)1 — u,
where 1 € RY is the all-ones vector. We first show that I embeds ¢, and then establish that the range
of L is in fact Rz, as desired.

We compute Bayes risks and apply Proposition 1 to see that L embeds ¢. For any p € Ay, we have
L(p) = ian (p, C(u)l — u)
ueR™

= u1€n]§n C(u) — (p,u)

= — sup (p,u) — C(u)
ueR™

=—C"(p) = —(=Lp))™ = L) -
It remains to show L(u)y > 0forallu € R, y € ). Letting §,, € Ay be the point distribution on

outcome y € Y, we have for all u € R", L(u), > inf,ern L(u'), = L(d,) = £(6,) > 0, where
the final inequality follows from the nonnegativity of £.

4 Consistency via Calibrated Links

We have now seen the tight relationship between polyhedral losses and embeddings; in particular,
every polyhedral loss embeds some discrete loss. The embedding itself tells us how to link the
embedded points back to the discrete reports (map () to ), but it is not clear when this link can be
extended to the remaining reports, and whether such a link can lead to consistency. In this section,
we give a construction to generate calibrated links for any polyhedral loss.

The full version [9, Appendix D] contains the full proof; this section provides a sketch along with the
main construction and result. The first step is to give a link v such that exactly minimizing expected
surrogate loss L, followed by applying v, always exactly minimizes expected original loss ¢. The
existence of such a link is somewhat subtle, because in general some point « that is far from any
embedding point can minimize expected loss for two very different distributions p, p’, making it
unclear whether there exists a choice ¢(u) € R that is (-optimal for both distributions. We show that
as we vary p over Ay, there are only finitely many sets of the form U = argmin,, g« (p, L(w)) [9,
Lemma 4]. Associating each U with Ry C R, the set of reports whose embedding points are in
U, we enforce that all points in U link to some report in Ry. (As a special case, embedding points
must link to their corresponding reports.) Proving that these choices are well-defined uses a chain
of arguments involving the Bayes risk, ultimately showing that if « lies in multiple such sets U, the
corresponding report sets Ry all intersect at some r =: ¥ (u).

Intuitively, to ensure calibration, we just need to “thicken” this construction, by mapping all
approximately-optimal points v to optimal reports r. Let I/ contain all optimal report sets U



of the form above. A key step in the following definition will be to narrow down a “link envelope” ¥
where U (u) denotes the legal or valid choices for ¢ (u).

Definition 6. Given a polyhedral L that embeds some ¢, an € > 0, and a norm || - ||, the e-thickened
link < is constructed as follows. First, initialize ¥ : R® = R by setting U(u) = R for all u. Then for
each U € U, for all points u such that inf ,«cy [|[u* — u|| < €, update ¥(u) = ¥(u) N Ry. Finally,
define ¢ (u) € U (u), breaking ties arbitrarily. If V(u) became empty, then leave 1)(u) undefined.

Theorem 3. Let L be polyhedral, and ¢ the discrete loss it embeds from Theorem 1. Then for small
enough € > 0, the e-thickened link 1) is well-defined and, furthermore, is a calibrated link from L to .

Sketch. Well-defined: For the initial construction above, we argued that if some collection such as
U,U’,U" overlap at a u, then their report sets Ry, Ry, Ry also overlap, so there is a valid choice
r = 1(u). Now, we thicken all sets U € U by a small enough ¢; it can be shown that if the thickened
sets overlap at u, then U, U’, U"” themselves overlap, so again Ry, Ry, Ry~ overlap and there is a
valid chioce 7 = 9 (u).

Calibrated: By construction of the thickened link, if « maps to an incorrect report, i.e. ¢ (u) & v(p),
then v must have at least distance e to the optimal set U. We then show that the minimal gradient
of the expected loss along any direction away from U is lower-bounded, giving a constant excess
expected loss at u. O

Note that the construction given above in Definition 6 is not necessarily computationally efficient as
the number of labels n grows. In practice this potential inefficiency is not typically a concern, as the
family of losses typically has some closed form expression in terms of 7, and thus the construction
can proceed at the symbolic level. We illustrate this formulaic approach in § 5.1.

S Application to Specific Surrogates

Our results give a framework to construct consistent surrogates and link functions for any discrete
loss, but they also provide a way to verify the consistency or inconsistency of given surrogates. Below,
we illustrate the power of this framework with specific examples from the literature, as well as new
examples. In some cases we simplify existing proofs, while in others we give new results, such as a
new calibrated link for abstain loss, and the inconsistency of the recently proposed Lovdsz hinge.

5.1 Consistency of abstain surrogate and link construction

In classification settings with a large number of labels, several authors consider a variant of classifica-
tion, with the addition of a “reject” or abstain option. For example, Ramaswamy et al. [25] study the
loss £q @ [n] U {L} — RY defined by £,(r), = 0if r =y, arif 7 = L, and 1 otherwise. Here, the
report L corresponds to “abstaining” if no label is sufficiently likely, specifically, if no y € ) has
Dy > 1 — . Ramaswamy et al. [25] provide a polyhedral surrogate for £,,, which we present here for

a = 1/2. Letting d = [log,(n)] their surrogate is L /> : R — RY given by
Lyja(u)y = (maxjerq B(y)ju; + 1), )

where B : [n] — {—1,1}? is a arbitrary injection; let us assume n = 2 so that we have a bijection.
Consistency is proven for the following link function,

_JL min;eq) |us| < 1/2
Vlu) = {Bl(sgn(—u)) otherwise ' )

In light of our framework, we can see that L, is an excellent example of an embedding, where
¢(y) = B(y) and (L) = 0 € RZ. Moreover, the link function 1 can be recovered from Theorem 3
with norm || - || and € = 1/2; see Figure 1(L). Hence, our framework would have simplified the
process of finding such a link, and the corresponding proof of consistency. To illustrate this point
further, we give an alternate link ¢/, corresponding to || - ||; and e = 1, shown in Figure 1(R):

L lJully <1

Y1 (u) = {B—I(Sgn(_u)) otherwise ©
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Figure 1: Constructing links for the abstain surrogate L,/ with d = 2. The embedding is shown in bold labeled
by the corresponding reports. (L) The link envelope W resulting from Theorem 3 using || - || and € = 1/2, and
a possible link ¥ which matches eq. (5) from [25]. (M) An illustration of the thickened sets from Definition 6
for two sets U € U, using || - ||+ and € = 1. (R) The ¥ and 1) from Theorem 3 using || - ||1 and € = 1.

Theorem 3 immediately gives calibration of (L, /25 1) with respect to £ /2- Aside from its simplicity,
one possible advantage of ¢/; is that it appears to yield the same constant in generalization bounds as
1), yet assigns L to much less of the surrogate space R?. It would be interesting to compare the two
links in practice.

5.2 Inconsistency of Lovasz hinge

Many structured prediction settings can be thought of as making multiple predictions at once, with
a loss function that jointly measures error based on the relationship between these predictions [14,
16, 23]. In the case of k binary predictions, these settings are typically formalized by taking the
predictions and outcomes to be &1 vectors, so R = )Y = {—1, 1}’C . One then defines a joint loss
function, which is often merely a function of the set of mispredictions, meaning we may write
09(r), = g({i € [k] : r; # y;}) for some set function g : 2[¥] — R. For example, Hamming loss
is given by ¢(S) = |S]. In an effort to provide a general convex surrogate for these settings when
g is a submodular function, Yu and Blaschko [32] introduce the Lovdsz hinge, which leverages the
well-known convex Lovasz extension of submodular functions. While the authors provide theoretical
justification and experiments, consistency of the Lovasz hinge is left open, which we resolve.

Rather than formally define the Lovész hinge, we defer the complete analysis to the full version of the
paper [9], and focus here on the k = 2 case. For brevity, we write gy := g(0), 912 := g({1, 2}), etc.
Assuming ¢ is normalized and increasing (meaning g1.2 > {g1,92} > g¢y = 0), the Lovdsz hinge

L:R* — RY is given by

L (u), = max{(l —u1y1)+91 + (1 — ugy2)4 (91,2 — 91),
(1 —u2y2)+92 + (1 —ury1)4(g1,2 — gg)} , (D

where ()4 = max{x,0}. We will explore the range of values of g for which L9 is consistent, where
the link function ¢ : R — {—1,1}? is fixed as (u); = sgn(u;), with ties broken arbitrarily.

Let us consider the coefficients gy = 0, g1 = g2 = g1,2 = 1, for which ¢9 is merely 0-1 loss on ). For
consistency, for any distribution p € Ay, we must have that whenever v € arg min,, .2 (p, L9(u)),
the outcome 9(u) must be the most likely, i.e., in arg max, , p(y). Simplifying eq. (7), however,
we have

LI(u)y, = max{(l —u1y1) 4, (1 — qu2)+} = max{l —uiy1, 1 — ugys, 0} , )

which is exactly the abstain surrogate (4) for d = 2. We immediately conclude that L9 cannot be
consistent with 9, as the origin will be the unique optimal report for L9 under distributions with
py < 0.5 for all y, and one can simply take a distribution which disagrees with the way ties are broken
in ¢. For example, if we take sgn(0) = 1, then under p((1,1)) = p((1,-1)) = p((-1,1)) = 0.2
and p((—1,—1)) = 0.4, we have {0} = argmin,,cp2(p, L9(u)), yet we also have ¥(0) = (1,1) ¢
{(=1,~1)} = argmin, cr (p, &9(r)).
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Figure 2: Minimizers of (p, £°"2) and (p, £?), respectively, varying p over As.

In fact, this example is typical: using our embedding framework, and characterizing when 0 € R?
is an embedded point, one can show that L9 is consistent if and only if g1 2 = g1 + g2. Moreover,
in this linear case, which corresponds to g being modular, the Lovédsz hinge reduces to weighted
Hamming loss, which is trivially consistent from the consistency of hinge loss for 0-1 loss. In the full
version of the paper [9], we generalize this observation for all k: L9 is consistent if and only if g is
modular. In other words, even for £ > 2, the only consistent Lovasz hinge is weighted Hamming
loss. These results cast doubt on the effectiveness of the Lovész hinge in practice.

5.3 Inconsistency of top-k losses

In certain classification problems when ground truth may be ambiguous, such as object identification,
it is common to predict a set of possible labels. As one instance, the top-£ classification problem
is to predict the set of k& most likely labels; formally, we have R := {r € {0,1}" : ||r|lo = k},
1 <k <n,Y = [n], and discrete loss £°P%(r), = 1 — r,. Surrogates for this problem commonly
take reports u € R™, with the link 1)(u) = {upy, ..., up }, where uy; is the ith largest entry of w.

Lapin et al. [19, 20, 21] provide the following convex surrogate loss for this problem, which Yang
and Koyejo [31] show to be inconsistent:'

L¥(u), = (1 T ey)m)+ , 9)

where e, is 1 in component y and 0 elsewhere. With our framework, we can say more. Specifically,
while (L¥, 1)) is not consistent for £ since L* is polyhedral, we know from Theorem 1 that it
embeds some discrete loss £*, and from Theorem 3 there is a link 7’ such that (Lk, ') is calibrated
(and consistent) for £¥. We therefore turn to deriving this discrete loss £

For concreteness, consider the case with k = 2 over n = 3 outcomes. We can re-write L?(u), =
(1 — Uy + %(um + ufg) — min(1, uy))) 4 By inspection, we can derive the properties elicited by
P2 and L2, respectively, which reveals that the set R’ consisting of all permutations of (1,0,0),
(1,1,0), and (2, 1, 0), are always represented among the minimizers of L. Thus, L2 embeds the loss
2(r), =0ifry =2or 3(r), = 1 —ry + 3(r, 1 — e,) otherwise. Observe that £? is just /P2 with
an extra term punishing weight on elements other than y, and a reward for a weight of 2 on y.

Moreover, we can visually inspect the corresponding properties (Fig. 2) to immediately see why L?
is inconsistent: for distributions where the two least likely labels are roughly equally (un)likely, the
minimizer will put all weight on the most likely label, and thus fail to distinguish the other two. More
generally, L2 cannot be consistent because the property it embeds does not “refine” (subdivide) the
top-k property, so not just ¢, but no link function, could make L? consistent.

"Yang and Koyejo also introduce a consistent surrogate, but it is non-convex.



6 Conclusion and Future Directions

This paper formalizes an intuitive way to design convex surrogate losses for classification-like
problems—by embedding the reports into R?. We establish a close relationship between embeddings
and polyhedral surrogates, showing both that every polyhedral loss embeds a discrete loss (Theorem 1)
and that every discrete loss is embedded by some polyhedral loss (Theorem 2). We then construct a
calibrated link function from any polyhedral loss to the discrete loss it embeds, giving consistency for
all such losses (Theorem 3). We conclude with examples of how the embedding framework presented
can be applied to understand existing surrogates in the literature, including those for the abstain loss,
top-k loss, and Lovasz hinge. In particular, our link construction recovers the link function proposed
by Ramaswamy et al. [25] for abstain loss, as well as another simpler link based on the L; norm.

One open question of particular interest involves the dimension of the surrogate prediction space;
given a discrete loss, can we construct a surrogate that embeds it of minimal dimension? If we naively
embed the reports into an n-dimensional space, the dimensionality of the problem scales linearly in
the number of possible labels n. As the dimension of the optimization problem is a function of this
embedding dimension d, a promising direction is to leverage tools from elicitation complexity [13, 18]
and convex calibration dimension [24] to understand when we can take d << n.
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