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Abstract

A common technique in supervised learning with discrete losses, such as 0-1 loss, is to
optimize a convex surrogate loss over R

d, calibrated with respect to the original loss. In
particular, recent work has investigated embedding the original predictions (e.g. labels)
as points in R

d, showing an equivalence to using polyhedral surrogates. In this work,
we study the notion of the embedding dimension of a given discrete loss: the minimum
dimension d such that an embedding exists. We characterize d-embeddability for all d, with
a particularly tight characterization for d = 1 (embedding into the real line), and useful
necessary conditions for d > 1 in the form of a quadratic feasibility program. We illustrate
our results with novel lower bounds for abstain loss.

Keywords: Calibrated surrogates, convex surrogates, proper scoring rules

1. Introduction

In supervised machine learning, one typically measures performance of a model using some
loss function ℓ(prediction, observation) assigning a punishment for error comparing one’s
prediction to the outcome observed in nature. In particular, we study discrete losses, in
which the predictions lie in a finite set. These are popular for many categorical tasks such
as classification, ranking, top-k, set inclusion, and other structured prediction tasks.

Optimizing such discrete losses over a dataset (i.e. empirical risk minimization), however,
is typically computationally hard. One therefore generally resorts to optimizing a computa-
tionally nice surrogate loss L. The key requirement is calibration, namely that optimizing
surrogate loss allows one to recover the discrete prediction that optimizes the original ℓ-loss.
Calibrated surrogate losses yields desirable statistical guarantees such as consistency and
excess risk bounds (Tewari and Bartlett, 2007).

The question therefore becomes: Given a discrete loss ℓ, how do we design calibrated
surrogates L? In this paper we study polyhedral surrogates, meaning piecewise-linear convex
functions over prediction space R

d. Finocchiaro et al. (2019) show that polyhedral surrogates
are in a strong sense equivalent to an embedding: a mapping of each discrete prediction r to
some point ϕ(r) ∈ R

d, which optimizes L-loss if and only if r optimizes ℓ-loss. While the
authors show that every discrete loss ℓ can be so embedded, in the worst case the dimension
required is d = n−1 where n is the number of possible observations. A surrogate dimension d
significantly below n, such as O(logn) for classification with an abstain option (Ramaswamy
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et al., 2018), can lead to faster downstream optimization and computation, an effect that
grows with n; this motivates us to understand when this dimension can be low.

In this work, we define and investigate the embedding dimension of discrete losses, and
characterize the d-embeddable losses for each d. Beginning with d = 1, i.e. embedding
into the real line, we offer a complete characterization via a variety of conceptual and
testable/constructive conditions (§ 3). We also show that, perhaps surprisingly, for d = 1, if
any convex calibrated surrogate exists, then in particular a polyhedral one does. In higher
dimensions, we observe a general characterization for d-embeddability in terms of certain
optimality and monotonicity conditions (§ 4). A particular contribution is to isolate and
investigate the optimality condition, which we significantly reduce from a search over sets of
polytopes to a quadratic feasibility program (Definition 17), yielding a new technique to prove
lower bounds on the embedding dimension. Finally, we apply our characterizations to show
new lower bounds on the embedding dimension for abstain loss, whose convex calibration
dimension has been well-studied (Ramaswamy and Agarwal, 2016; Ramaswamy et al., 2018)
(§ 5). In particular we apply both our 1-dimension characterization and higher-dimensional
quadratic program to obtain previously unknown lower bounds. We conclude with discussion
and open questions (§ 6).

1.1. Related work

Zhang (2004); Bartlett et al. (2006) study when a convex, calibrated surrogate exists for a
given discrete loss, and in a finite-outcome setting, Tewari and Bartlett (2007) show that
calibration (Definition 4) is necessary and sufficient for consistency.

Several works have investigated the problem of reducing the dimensionality of a surrogate
loss. Frongillo and Kash (2015) propose elicitation complexity, which roughly captures the
minimum dimension d of a surrogate loss L in a particular class (not necessarily convex
or calibrated) for a given loss ℓ (not necessarily discrete). In the case of convex calibrated
surrogates for discrete losses, Ramaswamy and Agarwal (2016) propose the notion of convex
calibration dimension, which is the minimum dimension of a convex surrogate loss (not
necessarily polyhedral) that is calibrated with respect to a given discrete loss. While
Ramaswamy and Agarwal (2016) present a condition for obtaining lower bounds on convex
calibration dimension for any discrete loss, called feasible subspace dimension, it yields
vacuous bounds for important examples such as the abstain loss ℓα loss (eq. (1)), where we
only know the convex calibration to be in the range 1 ≤ d ≤ ⌈log2(n)⌉ (Ramaswamy et al.,
2018). One contribution of this work is to provide the first nontrivial lower bounds for this
loss (see § 6).

In order to concisely discuss embedding dimension, we appeal to notation and terminology
from the field of property elicitation (Savage, 1971; Osband and Reichelstein, 1985; Gneiting
and Raftery, 2007; Lambert and Shoham, 2009; Lambert, 2018), relating it to the language
of calibrated surrogates as needed.

2. Setting

The base object of study is a discrete loss function ℓ : R → R
Y
≥0 where R and Y are finite

sets. Here ℓ(r)y is the loss of prediction r ∈ R (the report space) on y ∈ Y (the observation
or label space). For simplicity we let Y = [n] throughout (where [n] = {1, . . . , n}). The set of
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probability distributions on Y is denoted ∆Y ⊆ R
Y
≥0, represented as vectors of probabilities.

We write py for the probability of outcome y ∈ Y drawn from p ∈ ∆Y . As is assumed
by Finocchiaro et al. (2019), we assume the given discrete loss is non-redundant, meaning
every report r uniquely minimizes expected loss for some distribution p ∈ ∆Y .

We similarly denote surrogate losses in dimension d by L : Rd → R
Y
≥0, with predictions

typically written u ∈ R
d. The expected losses when Y ∼ p can be written 〈p, ℓ(r)〉 and

〈p, L(u)〉. For example, 0-1 loss on two labels is a discrete loss with R = Y = {−1, 1}
given by ℓ0-1(r)y = 1{r 6= y}. Two important surrogates for ℓ0-1 are hinge loss Lhinge(u)y =
max{0 , 1 − yu} and logistic loss L(u)y = log(1 + exp(−yu)) for u ∈ R.

Most of the surrogates L we consider will be polyhedral, meaning piecewise linear and
convex. In R

d, a polyhedral set or polyhedron is the intersection of a finite number of closed
halfspaces. A polytope is a bounded polyhedral set. A convex function f : R

d → R is
polyhedral if its epigraph is polyhedral, or equivalently, if it can be written as a pointwise
maximum of a finite set of affine functions (Rockafellar, 1997).

Definition 1 (Polyhedral loss) A loss L : Rd → R
Y
≥0 is polyhedral if L(u)y is a polyhe-

dral (piecewise linear convex) function of u for each y ∈ Y.

For example, hinge loss is polyhedral, whereas logistic loss is not. In order to study
calibration of surrogates (Definition 4 below), it is useful to formalize the following functions
that describe the reports that minimize expected ℓ-loss and L-loss under p.

Definition 2 ((Finite) property, level set, elicited) A property is a function Γ : ∆Y →
2R′

for some set R′ where Γ(p) 6= ∅ for all p. It is finite if |R′| < ∞. The level set of
r ∈ R′ is the set Γr = {p ∈ ∆Y : r ∈ Γ(p)}. A loss function L : R′ → R

Y
≥0 elicits Γ if

Γ(p) = arg minr∈R′〈p, L(r)〉.

In this paper we write ℓ for discrete losses (i.e., when |R| is finite), and γ instead of Γ for the
property elicited by ℓ, reserving Γ and L for properties and losses on report space R = R

d.
For example, 0-1 loss elicits the mode, which is formalized as a property on report space
R = Y via γ(p) = arg maxy∈Y py. Notice in this example γ(p) is a singleton set when the
mode of p is unique and e.g. is Y when p is uniform.

Polyhedral losses are motivated partly because they correspond to a natural surrogate
construction technique: embedding the discrete predictions R as points in R

d and linearly
interpolating between embedded reports. The key condition required on the embedding and
surrogate loss L is that a discrete prediction r ∈ R should minimize expected ℓ-loss if and
only if its embedding point minimizes expected L-loss.

Definition 3 (Embedding of a loss) A loss L : Rd → R
Y
≥0 embeds a loss ℓ : R → R

Y
≥0

in dimension d with embedding function ϕ : R → R
d if: (i) ϕ is injective; (ii) for all r ∈ R,

ℓ(r) = L(ϕ(r)); and (iii) for all r ∈ R, γr = Γϕ(r). We simply say L embeds ℓ if some such
ϕ exists.

Note that embedding does not immediately imply a key desirable property, consistency,
which is equivalent to calibration in finite-outcome settings. Informally, calibration means
that if one minimizes the expected surrogate loss arbitrarily well over R

d, then applies the
link function to obtain a discrete prediction r, then r exactly minimizes ℓ-loss.
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Definition 4 (Calibrated surrogate) A surrogate loss L : Rd → R
Y
≥0 and link function

ψ : Rd → R are calibrated for a loss ℓ : R → R
Y
≥0 if for all p ∈ ∆Y ,

inf
u∈Rd : ψ(u) 6∈γ(p)

〈p, L(u)〉 > inf
u∈Rd

〈p, L(u)〉.

We simply say L can be calibrated to ℓ if such a link function exists.

As we alluded to above, calibration is not actually the trait we desire of a surrogate; rather,
we seek consistency. Bartlett et al. (2006); Tewari and Bartlett (2007) show that, in a
finite-outcome setting, the presence of calibration and consistency are equivalent conditions.
By consistency, we mean the standard notion where the expected loss over X × Y for a
sequence of hypotheses hm converging to the optimal expected surrogate loss implies the
expected discrete loss over the linked hypotheses ψ ◦ hm converges to the optimal discrete
loss. The equivalence of these conditions allows us to focus on calibration, so we can abstract
away the input space X and simply focus on probability distributions over the outcomes Y.

Theorem 5 (Finocchiaro et al. (2019)) Given a discrete loss ℓ, (1) there exists a poly-
hedral loss L embedding ℓ; and (2) there exists a link function calibrating L to ℓ.

In other words, polyhedral surrogates are equivalent to embeddings of discrete losses ℓ in
R
d, and they come with a guarantee of calibration. This raises the question studied in this

paper: for a given discrete loss, in what dimension d does such a surrogate exist? This
question is captured by the following quantity.

Definition 6 (Embedding dimension) We say a discrete loss ℓ : R → R
Y
≥0 is d-embeddable

if there exists a polyhedral surrogate L : Rd → R
Y
≥0 that embeds it. The embedding dimension

of ℓ is the smallest d such that ℓ is d-embeddable.

A number of things are already known about embedding dimension. Many surrogates in
the literature provide upper bounds; we highlight in particular the abstain loss (Ramaswamy
et al., 2018) and seen in eq. (1), in which one wants to predict the most likely outcome only
if confident in the outcome, and otherwise abstain.

ℓα(r)y =















0 r = y

α r = ⊥

1 r 6∈ {y,⊥}

(1)

Here R = Y ∪ {⊥}. For α ≤ 1/2, Ramaswamy et al. (2018) give an elegant embedding of
this loss on n outcomes into d = ⌈log2(n)⌉ dimensions, where each y ∈ Y is embedded at a
corner of the Boolean hypercube {−1, 1}d while ⊥ is embedded at the origin.

In general (e.g. Ramaswamy and Agarwal (2016, Corollary 13)), a known convex-
conjugate construction generically embeds any discrete loss on Y = [n] into d = n − 1
dimensions, giving a flat upper bound of n− 1 on embedding dimension. Lower bounds exist
but are rare. A lower bound on the dimensionality of any calibrated convex surrogate L
implies in particular a lower bound on polyhedral surrogates. Ramaswamy and Agarwal
(2016) give such a lower bound via the technique of feasible subspace dimension, which is able
to e.g. prove that embedding 0-1 loss on n labels requires dimension n− 1. However, this
technique gives only the trivial d ≥ 1 for the abstain family of losses above when α ≤ 1/2
because of their geometric structure. We discuss further in § 6.
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3. One-dimensional embeddings

In this section, we completely characterize when a discrete loss ℓ can be embedded into the
real line, i.e., when ℓ is 1-embeddable. Our first characterization is expressed in terms of
the property γ that ℓ elicits, stating that ℓ is 1-embeddable if and only if γ is orderable,
meaning the adjacency graph of its level sets is a path. For example, this characterization
will immediately imply that embedding the abstain losses on n ≥ 3 outcomes requires d ≥ 2
dimensions (§ 5). While determining these adjacencies can be straightforward when ℓ has
known symmetries, we also give a more constructive algorithm for testing 1-embeddability
and constructing a 1-dimensional polyhedral surrogate. Finally, we show that the existence
of any 1-dimensional convex calibrated implies 1-embeddability, showing that embeddings
are without loss of generality in dimension 1. After presenting and discussing this sequence
of results, we observe that they can be collected as a set of six conditions on ℓ (Theorem 12)
that are all pairwise equivalent, and in particular, are equivalent to 1-embeddability.

3.1. General characterization via property elicitation

We begin with conditions on the property elicited by a discrete loss. The following condition
of Lambert (2018, Theorem 3), that a finite property is orderable, states that any two level
sets intersect in a hyperplane, or not at all.

Definition 7 (Orderable) A finite property γ : ∆Y → 2R is orderable if there is an
enumeration of R = {r1, . . . , r|R|} such that for all i ≤ |R| − 1, we have γri

∩ γri+1
is a

hyperplane intersected with ∆Y .

In fact, we show that orderability characterizes 1-embeddability. The proof involves
several intermediate results which we state later in this section; see § 3.3 for more details.

Theorem 8 A discrete loss ℓ is 1-embeddable if and only if the property it elicits is
orderable.

We now give an equivalent condition to orderability which may be more intuitive: the
adjacency graph of the level sets of γ, formed by connecting reports if their level sets
intersect, must be a path. This graph can be easily established for discrete losses with known
symmetries or other facts, such as abstain, the mode, or ranking losses.

Definition 9 (Intersection graph) Given a discrete loss ℓ and associated finite property
γ : ∆Y → 2R elicited by ℓ, the intersection graph has vertices R with an edge (r, r′) if
γr ∩ γr′ ∩ relint(∆Y) 6= ∅, where relint(∆Y) is the relative interior of ∆Y .

If one can visualize level sets of a property, constructing the intersection graph yields an
intuitive way to conceptualize orderability by Proposition 10, proven in Appendix A.

Proposition 10 A finite property γ is orderable iff its intersection graph is a path, i.e. a
connected graph where two nodes have degree 1 and every other node has degree 2.

Combining Proposition 10 and Theorem 8, we see that in order for ℓ to be embedded
onto the real line, it is necessary and sufficient for the intersection graph of the property γ
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where λ(i) = min(λ+(i),max(λ−(i), 1)), Λi :=
∏i
j=2 λ(j), Λ1 = 1, and K = maxi∈{2,...,k},y∈Y |v(i)y|.

As intuition for the proof, note that the conditions of the theorem ensure the existence
of a positive multiplier λ(i) making v(i) ≤ λ(i)v(i + 1) hold coordinate-wise; our choice
of λ(i) is but one option. The construction of L sets the left and right derivatives at an
embedding point ϕ(ri) to be positive multiples of v(i) and v(i+ 1), respectively, using this
inequality to maintain monotonicity, and hence convexity of L. The vectors v(i), v(i+ 1) are
chosen precisely to give the correct optimality conditions, so that for a given distribution, ri
is optimal for ℓ if and only if ϕ(ri) is optimal for L. The reverse direction, showing that
these conditions are necessary for 1-embeddability, is much more involved (§ 3.3). We can
easily construct a link function in the case of d = 1, by taking the midpoints between the
embedding points as cutoffs: ψ(u) = arg minr∈R |u− ϕ(r)|, breaking ties arbitrarily.

3.3. Including general convex surrogates

We summarize the above results in the following theorem, together with one additional
result, whose proof is in Appendix A: if ℓ has any calibrated convex surrogate at all, it must
have a polyhedral one. (See Conjecture 23 regarding higher dimensional generalizations.)

Theorem 12 Let ℓ be a discrete loss eliciting a finite property γ. The following are
equivalent: (1) γ is orderable; (2) the intersection graph of γ is a path; (3) the two conditions
of Theorem 11 are satisfied; (4) ℓ is 1-embeddable; (5) ℓ has some polyhedral calibrated
surrogate loss L : R → R

Y
≥0; (6) ℓ has some convex calibrated surrogate loss L : R → R

Y
≥0.

For the proof, note that (1) ⇐⇒ (2) was shown in Proposition 10, while (4) ⇐⇒ (5)
follows from Theorem 5, and (5) =⇒ (6) is immediate from the definitions. We therefore
prove (1) =⇒ (3) =⇒ (5) and (6) =⇒ (1).

4. Higher dimensions

Our characterization of 1-embeddable losses reveals a large class of properties are not 1-
embeddable. In this section, we develop a characterization of d-embeddable discrete losses for
d ≥ 2. We begin with some basic facts and definitions about polytopes and their Minkowski
sums, which naturally arise when considering the subgradients of a polyhedral surrogate
loss (§ 4.1). From these definitions, we can state a somewhat immediate characterization of
d-embeddable losses in terms of polytopes that satisfy certain optimality and monotonicity
conditions (§ 4.2, Theorem 15). We then explore the optimality condition further, and
through facts about Minkowski sums, slowly remove mentions of polytopes from the condition
until we arrive at a quadratic feasibility program to test whether such polytopes exist (§ 4.3,
Theorem 18). From our main characterization, dropping the monotonicity condition, this
program gives a novel necessary condition for d-embeddability, yielding new lower bounds
for embedding dimension (Corollary 19).

4.1. Setup: subgradient sets at embedding points.

Recall that if ℓ : R → R
Y
≥0 is embedded by L : Rd → R

Y
≥0, then each r ∈ R is embedded

at some point ϕ(r) ∈ R
d. In particular, ϕ(r) must minimize 〈p, L(·)〉 if and only if r
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minimizes 〈p, ℓ(·)〉. The key to our approach is to study as first-class objects the sets of
all subgradients1 of L at these embedding points. The question of whether a calibrated
polyhedral surrogate exists in d dimensions essentially reduces to conditions on these sets
alone. In particular, we use the fact that a convex function is minimized at u if and
only if 0 is in its subgradient set at u. Therefore, we consider collections of sets T ry , which
intuitively aspire to be the subgradient sets of a calibrated polyhedral surrogate L(·)y at
ϕ(r), denoted ∂L(ϕ(r))y. Throughout, we often take r as implicit and suppress it from our
notation for ease of exposition. Note that if L(·)y is a polyhedral function on R

d, then all of
its subgradient sets are (bounded) closed polytopes (Rockafellar, 1997).

Definition 13 (T , D(T )) We write T = {Ty ⊆ R
d : y ∈ Y} to denote a collection of

closed polytopes, with implicit parameter d. Given a distribution p ∈ ∆Y , we write the
p-weighted Minkowski sum of T as

⊕pT :=
⊕

y∈Y

pyTy =







∑

y∈Y

pyxy
∣

∣

∣ xy ∈ Ty ∀y ∈ Y







,

or in other words, the Minkowski sum of the scaled sets {pyTy : y ∈ Y}. Finally, we associate
with T a set of distributions D(T ) = {p ∈ ∆Y : 0 ∈ ⊕pT }.

Note that Ty = T ry for some r ∈ R; here, we are agnostic to the choice of r, so we omit
its notation for clarity. The importance of the p-weighted Minkowski sum and of D(T ) are
that they capture the distributions p for which a point u minimizes expected loss, whenever
T corresponds to the subgradient sets of some polyhedral L at u. In other words, under
these conditions, we have D(T ) = Γu, the level set for u of the property Γ elicited by L.

Lemma 14 Let L : Rd → R
Y
≥0 be a polyhedral loss eliciting a property Γ. If for all y ∈ Y

we have Ty = ∂L(u)y at some point u ∈ R
d, then D(T ) = Γu.

Proof Recall that a convex function f is minimized at u = ϕ(r) if and only if 0 ∈ ∂f(u). We
thus have p ∈ Γu ⇐⇒ u ∈ arg minu′〈p, L(u′)〉 ⇐⇒ 0 ∈ ∂〈p, L(u)〉 =

⊕

y∈Y py∂L(u)y =
⊕pT ⇐⇒ p ∈ D(T ). Here we used the basic fact that if f1, f2 are convex with subgradient
sets T1, T2 at u, then αf1 + βf2 has subgradient set αT1 ⊕ βT2, the Minkowski sum of the
scaled sets.

This fact will be vital for characterizing when ℓ is correctly embedded by some L whose
subgradient sets are T r for each r ∈ R.

4.2. General characterization

We now give a general characterization of when a discrete loss ℓ can be embedded into
d dimensions, i.e. when a consistent polyhedral surrogate L : R

d → R
Y
≥0 exists. Two

conditions are required: optimality and monotonicity. Optimality enforces that the surrogate
is minimized precisely when and where it should be. It says that for each discrete prediction

1. Recall that a subgradient of e.g. the convex function L(·)y : Rd → R at a point u is a vector v ∈ R
d such

that L(u′)y ≥ L(u)y + 〈v, u′ − u〉 for all u′.
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r and set of distributions γr for which it is ℓ-optimal, there exists a collection of polytopes
T r such that, were they the subgradients of some polyhedral surrogate L at some point ϕ(r),
then ϕ(r) would be L-optimal at the same set of distributions γr; more succinctly in light of
Lemma 14, we require D(T r) = γr. Monotonicity says that these individual polytopes can
indeed be glued together to form the subgradients of some convex loss function L.

Theorem 15 Let ℓ : R → R
Y
≥0 be a discrete loss with, for each r ∈ R, γr = {p : r ∈

arg minr′〈p, ℓ(r)〉}. Then ℓ is d-embeddable if and only if there exists a collection of polytopes
T r = {T ry : y ∈ Y} for each r ∈ R such that both of the following hold:

1. (Optimality) For each r, we have D(T r) = γr.

2. (Monotonicity) There exists an injective embedding function ϕ : R → R
d and loss

functions {Ly : Rd → R
Y
≥0}y∈Y such that for all r ∈ R and y ∈ Y, we have T ry =

∂L(ϕ(r))y and for all r ∈ R, we have L(ϕ(r))y = ℓ(r)y.

Proof ( =⇒ ) L embeds ℓ implies γr = Γϕ(r) = D(T r) by Lemma 14 for all r ∈ R, thus we
have optimality. Monotonicity follows directly from the embedding definition.

( ⇐= ) The first two embedding conditions hold by the assumption of ϕ in the mono-
tonicity condition. The third condition is γr = Γϕ(r) for all r. From optimality, we have
γr = D(T r). Taking T r = {T ry : y ∈ Y}, Lemma 14 implies that Γϕ(r) = D(T r) = γr.

4.3. Characterizing optimality

We now focus entirely on the optimality condition of Theorem 15, for two purposes. First,
we aim to greatly narrow the search space for constructing low-dimensional surrogate loss
functions for a given discrete loss. The tools we construct in this section aid in this task by
constraining or constructing feasible subgradient sets T given a level set γr. Second, we wish
to prove impossibilities, i.e., lower bounds on the embedding dimension of a given discrete
loss (an apparently hard problem). For such lower bounds, it suffices to drop monotonicity
from Theorem 15, leaving us with an independent optimality condition for each r ∈ R,
and show that for any one r ∈ R, we could not have d-dimensional polytopes T satisfying
D(T r) = γr.

At first glance, the optimality condition seems difficult to operationalize, as it involves
the existence of polytopes, and even if said polytopes are given, it is unclear how to test
whether D(T r) = γr. To begin, consider the latter problem, of understanding the set D(T )
in terms of descriptions of T , and in particular, of writing conditions on T such that D(T )
is equal to a given polytope C ⊆ ∆Y . We know that, by writing C in its halfspace and
vertex representations, respectively, we can give two such conditions.

Condition 1 (Halfspace condition) A collection of polytopes T and a polytope C ⊆ ∆Y

defined by C = {p ∈ ∆Y : Bp ≥ 0} satisfy the halfspace condition if there exist v1, . . . , vk ∈
R
d such that, for all i ∈ [k] and y ∈ Y, for all x ∈ Ty, we have 〈vi, x〉 ≤ Biy.

Condition 2 (Vertex condition) A collection of polytopes T and a polytope C ⊆ ∆Y

defined by C = conv({p1, . . . , pl}) satisfy the vertex condition if for all j ∈ [l], 0 ∈ ⊕pj T .

9



Embedding dimension

Theorem 16 Let the polytopes T = {Ty ⊆ R
d : y ∈ Y} and C be given, with C =

conv({p1, . . . , pl}) = {p : Bp ≥ 0} for B ∈ R
k×n. We have D(T ) = C if and only if both the

halfspace and vertex conditions hold.

The two conditions above give us a much better understanding of when a given set of
polytopes T satisfies the optimality condition, and the proof of Theorem 16 is shown in
Appendix C. We are still left with the problem, however, of understanding when such a
set T exists. Intuitively, the biggest hurdle that remains is the quantification over sets of
polytopes, a massive search space. Surprisingly, one can reduce this search to a quadratic
feasibility program, which we now give. The key insight involves the halfspace condition, and
observing that given a certain “complete” set of normal vectors, one can exactly describe
the support function of ⊕pT in terms of the support functions of each Ty and each normal
vector v. From here, we use the fact that this description is linear in p, and can therefore
relate it directly to the given matrix B.

Our program will consist of variables for the normal vectors {vi ∈ R
d : i ∈ [k]} for the

(relaxed) halfspace condition, as described above, and variables for vertices {xjy ∈ R
d : j ∈

[l], y ∈ Y} which witness 0 ∈ ⊕pj T for the vertex condition, where the vector xjy is the yth

column of Xj .

Definition 17 (Quadratic Feasibility Program)
Given: d ∈ N, a polytope C = {p ∈ ∆Y : Bp ≥ 0} = conv({p1, . . . , pl}) ⊆ ∆Y , where

B ∈ R
k×n has a minimum number of rows.

Variables: V ∈ R
k×d with rows {vi}; X1, . . . , X l ∈ R

d×n, where Xj has columns {xjy}.
Constraints: V Xj ≤ B (pointwise, ∀j ∈ [l]) (2)

n
∑

y=1

pjyx
j
y = 0 (∀j ∈ [l]) (3)

Our main result of this section is that our quadratic program is feasible if and only
if there exist some set of d-dimensional polytopes satisyfing the optimality condition in
Theorem 15. As an immediate corollary, if some input C = γr and d yields an infeasible
program, then the embedding dimension of the loss ℓ is at least d+ 1.

Theorem 18 Given a convex polytope C ⊆ ∆Y , there exist polytopes T in R
d such that

D(T ) = C if and only if the above quadratic program (Definition 17) is a feasible.

Proof By Theorem 16, it suffices to show that T satisfying the halfspace and vertex
conditions exist if and only if the program is feasible.

( =⇒ ) By the vertex condition, for each j ∈ [l], there exist witnesses {xjy ∈ Ty : y ∈ Y}
satisfying the second constraint of the quadratic program (Inequality 3). By the halfspace
condition, there exist normals v1, . . . , vk such that, for all i, for all x ∈ Ty, 〈vi, x〉 ≤ Biy; in
particular, this applies to the above witnesses xjy ∈ Ty. Collecting v1, . . . , vk as the columns
of V , this shows that the first constraint (Inequality 2) is satisfied.

( ⇐= ) We construct Ty = conv({x1
y, . . . , x

l
y}). The second constraint of the quadratic

program immediately implies the vertex condition. Taking v1, . . . , vk as the columns of V ,
the first constraint implies that for each xjy, we have 〈vi, x

j
y〉 ≤ Biy for all i, j, y. Any point

10
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x ∈ Ty is a convex combination of x1
y, . . . , x

l
y, so it satisfies 〈vi, x〉 ≤ Biy. This implies the

halfspace condition.

Corollary 19 Given a discrete loss ℓ eliciting γ, if there is a report r ∈ R such that the
quadratic program (Definition 17) is infeasible for input C = γr and d, then the embedding
dimension of ℓ is at least d+ 1.

The feasibility program can be viewed as a low-rank matrix problem, namely: do there
exist a set of rank-d matrices that are pointwise dominated by B, sharing the left factor V ,
whose right factors Xj respectively satisfy a subspace constraint? We will see in § 5 that for
the important example of abstain loss, the constraints simplify into a more pure low-rank
matrix problem. In particular, for d = n− 1, a solution always exists (Finocchiaro et al.,
2019, Theorem 2), found by taking the convex conjugate of the negative Bayes risk of ℓ
for each outcome and subtracting the report u, after which one can project down to n− 1
dimensions (because ∆Y is n− 1 dimensional to begin with).

5. Example: Abstain loss

5.1. Abstain, d = 1

One classification-like problem that is of particular interest is the abstain property, elicited
by the loss ℓα given in Equation (1). The property γ = abstainα for α ∈ (0, 1) can be
verified:

abstainα(p) =

{

arg maxy∈Y py maxy py ≥ 1 − α

⊥ otherwise
. (4)

Ramaswamy et al. (2018) study the abstain property in depth, presenting a ⌈log2(n)⌉
dimensional embedding of the abstain property. However, it is unclear if this bound is tight,
as the previously studied lower bounds of Ramaswamy and Agarwal (2016) do not work
well for this property, failing to give any lower bound tighter than the trivial dimension 1.

With our 1-dimensional characterization, we already observe a tighter lower bound.

Proposition 20 For n ≥ 3 and α < 1, the abstain loss ℓα is not 1-embeddable.

Proof Consider the intersection graph of γ := abstainα: the node associated with γ⊥ has n
edges, and since we assume n ≥ 3, it cannot be a path. In fact, the intersection graph for
this property is a star graph. For an example with n = 3 and α = 1/2, see Figure 2.

5.2. Abstain, α = 1/2, d = 2

We now use our d-dimensional characterization and some observations about the abstain1/2

property to improve lower bounds from those given by Ramaswamy and Agarwal (2016).

Proposition 21 The quadratic feasibility program (Definition 17) with input C = γ⊥ =
{p ∈ ∆Y : maxy py ≤ 1/2}, n = 5, and dimension parameter d = 2, is infeasible.

11
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Corollary 22 The abstain loss with α = 1/2 on n ≥ 5 outcomes has embedding dimension
at least 3.

We have two proofs, both delegated to the appendix. The first proof is a direct geometric
one utilizing the same observations. We show that packing too many normal vectors into a
half-circle yields contradictions, implying that a 5-outcome embedding into 2 dimensions
is impossible (and incidentally characterizing the structure of all possible 4-outcome em-
beddings). The second is to directly obtain from mathematical software that the program
is infeasible. We use observations about ℓ1/2 to make a number of simplifications to the
program first. This reduces the quadratic program to the problem: Given a real-valued
matrix M in which some entries are missing, but have bounds of the form [a, b], do there
exist legal values for these entries such that M is rank d?

6. Discussion

Essentially the only other known lower-bound technique for dimensionality of calibrated
surrogates is the feasible subspace dimension of Ramaswamy and Agarwal (2016). This crux
of this technique is also an optimality condition on a surrogate loss, showing that if 0 is in
the p-weighted Minkowski sum of the subgradient sets of L, then there is some local affine
set of dimension n− d− 1 such that 0 is also in the p′-weighted Minkowski sum for all p′ in
the set, and thus the set must be contained in γr. Therefore, for example, if the intersection
of several level sets is a single vertex v (as in e.g. 0-1 loss for the uniform distribution), then
the only such set can be of dimension 0, which gives a d ≥ n− 1 lower bound.

Thus, although feasible subspace dimension applies to any convex surrogate, the relation
to our techniques is an interesting future direction. The advantage of our approach for
generic d is that our optimality conditions and quadratic feasibility program consider the
structure of the entire level set γr, rather than just a single witness point. This allows us
to prove lower bounds on the abstain loss for α ≤ 1/2, while feasible subspace dimension
cannot. Proving the following conjecture would even more closely relate the two techniques
(a disproof would also be extremely interesting):

Conjecture 23 If a discrete loss ℓ has a d-dimensional calibrated convex surrogate, then
it is d-embeddable (i.e. has a d-dimensional calibrated polyhedral surrogate). In other words,
embedding dimension always equals convex calibration dimension.

Our results show the conjecture is true when d = 1.

Future Work. There are a few threads of future work: the first is to utilize monotonicity
to see if we can construct even tighter lower bounds on embedding dimension. Second, we
hope to understand when, if ever, embedding dimension is not equal to convex calibration
dimension, as stated in Conjecture 23. Moreover, the restriction that we are calibrated over
the entire simplex may be tighter than necessary in some contexts, and would be useful
to understand the tradeoff between calibration and dimension of a surrogate loss. For one
example where we can reduce surrogate dimension with a low-entropy assumption on the
simplex, see Agarwal and Agarwal (2015, Example 6).

12
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Appendix A. 1-dimensional characterization omitted proofs

Proposition 24 A finite property γ is orderable iff its intersection graph is a path, i.e. a
connected graph where two nodes have degree 1 and every other node has degree 2.

Proof [Proof of Proposition 10] ( =⇒ ) The intersection graph is constructed by adding
an edge for each halfspace, which connects only two nodes. If three level sets intersected
on relint(∆Y), then the level boundary for any two would not be a halfspace (this follows
because the level sets form a power diagram, e.g. (Lambert and Shoham, 2009)). This yields
a path for the intersection graph.

( ⇐= ) If the intersection graph forms a path, then we can enumerate the vertices from
source to sink as r1, . . . , r|R|. The level sets are full-dimensional (in the simplex) convex
polytopes whose intersections only occur in the relative boundary, as they form cells of a
power diagram. Since γr1

intersects only with γr2
on the relative interior of the simplex,

and both sets are convex, this intersection must be a hyperplane intersecting the simplex.
(Otherwise, one of the sets would not be convex, or γr1

would intersect with some other level
set on the relative interior. We can now “delete” γr1

, more formally, consider the convex
polytope γr2

∪ . . . ∪ γr|R|
. The same argument now applies to γr2

, giving that it is intersects
with γr3

along a hyperplane intersected with the simplex; and so on.

We will make substantial use of the following general definition.

Definition 25 A property Γ : ∆Y → 2R is monotone if there are maps a : R → R
Y ,

b : R → R
Y and a total ordering < of R such that the following two conditions hold.

1. For all r ∈ R, we have Γr = {p ∈ ∆Y : 〈a(r), p〉 ≤ 0 ≤ 〈b(r), p〉}.

2. For all r < r′, we have a(r) ≤ b(r) ≤ a(r′) ≤ b(r′) (component-wise).

We have a property being orderable if and only if it is monotone since the maps a and b
must define hyperplanes in the simplex in order for the ordering to be complete.

As described below Theorem 12, the proof of that statement, as well as Theorem 11,
follow from the following two results.

Theorem 26 Let ℓ be a discrete loss eliciting a finite property γ. The following are
equivalent: (1) γ is orderable; (2) the two conditions of Theorem 11 are satisfied; (3) ℓ is
1-embeddable; (4) γ is monotone. Moreover, when the conditions of Theorem 11 are satisfied,
the loss L constructed does indeed embed ℓ.

Proof We will prove the chain of implications in order.
Orderable =⇒ Conditions:

Let γ : ∆Y → 2R \ {∅} be finite and orderable. From Lambert (2018, Theorem 4), we
have positively-oriented normals vi ∈ R

Y for all i ∈ {1, . . . , k−1} such that γri
∩γri+1

= {p ∈
∆Y : 〈vi, p〉 = 0}, and moreover, for all i ∈ {2, . . . , k−1}, we have γri

= {p ∈ ∆Y : 〈vi−1, p〉 ≤
0 ≤ 〈vi, p〉}, while γr1

= {p ∈ ∆Y : 〈v1, p〉 ≤ 0} and γrk
= {p ∈ ∆Y : 〈vk−1, p〉 ≤ 0}. From

the positive orientation of the vi, we have for all p ∈ ∆Y that sgn(〈vi, p〉) is monotone in i.
In particular, it must be that for all y, sgn((vi)y) is monotone in i, taking the distribution
with all weight on outcome y, thus establishing the first condition.
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For the second condition, suppose we had λ−(i) < λ+(i). Then we would have y, y′ ∈

Y such that v(i)y < 0, v(i+ 1)y < 0, v(i)y′ > 0, v(i+ 1)y′ > 0, and 0 <
v(i)y

v(i+1)y
<

v(i)y′

v(i+1)y′
, which would in turn imply |v(i)y|/v(i)y′ < |v(i + 1)y|/v(i + 1)y′ . Letting c =

1
2

(

|v(i+ 1)y|/v(i+ 1)y′ + |v(i)y|/v(i)y′

)

and taking p to be the distribution with weight
1/(1 + c) on y and c/(1 + c) on y′, we see that

〈v(i), p〉 =
1

1 + c

(

v(i)y + 1
2(|v(i+ 1)y|/v(i+ 1)y′ + |v(i)y|/v(i)y′)v(i)y′

)

>
1

1 + c

(

v(i)y + (|v(i)y|/v(i)y′)v(i)y′

)

= 0

〈v(i+ 1), p〉 =
1

1 + c

(

v(i+ 1)y + 1
2(|v(i+ 1)y|/v(i+ 1)y′ + |v(i)y|/v(i)y′)v(i)y′

)

<
1

1 + c

(

v(i+ 1)y + (|v(i+ 1)y|/v(i+ 1)y′)v(i+ 1)y′

)

= 0 ,

thus violating the observation that sgn(〈v(i), p〉) is monotone in i.
Conditions =⇒ 1-embeddable: (correctness of construction)

First, observe that that λ(i) satisfies λ+(i) ≤ λ(i) ≤ λ−(i), and by the second condition,
λ(i) > 0 even when either bound is infinite. Thus, Λi > 0 for all i, and so ϕ(r1) < . . . < ϕ(rk).
By definition of L, we have L(ϕ(r1)) = ℓ(r1), and L(ϕ(ri+1)) = ℓ(ri) + Λi · (ϕ(ri+1) −ϕ(ri)) ·
(ℓ(ri+1) − ℓ(ri)) for all i ≥ 2. Since ϕ(ri+1) − ϕ(ri) = 1/Λi by our construction, we have
L(ϕ(ri+1)) = ℓ(ri+1), so that ℓ(r) = L(ϕ(r)) for all r ∈ R. It remains therefore to show
convexity of L and the optimality conditions.

For convexity, note that L is piecewise linear with the only possible nondifferentiable
points being the embedding points ϕ(r1), . . . , ϕ(rk). Let us denote the left and right
derivative operators for real-valued functions by ∂− and ∂+, respectively, and write ∂−ℓ(u) =
(∂−ℓ(u)y)y∈Y ∈ R

Y , and similarly for ∂+ℓ(u). To show convexity, then, we need only show
∂−ℓ(ϕ(ri)) ≤ ∂+ℓ(ϕ(ri)) for all i ∈ {1, . . . , k}, where the inequality holds coordinate-
wise. By construction, we have ∂−ℓ(ϕ(r1)) = −K✶ and ∂+ℓ(ϕ(rk)) = Λk−1K✶, and for
i ∈ {1, . . . , k − 1} we have ∂+ℓ(ϕ(ri)) = ∂−ℓ(ϕ(ri+1)) = Λiv(i+ 1). By definition of K, we
have ∂−ℓ(ϕ(r1)) = −K✶ ≤ v(2) = ∂+ℓ(ϕ(r1)) and ∂−ℓ(ϕ(rk)) = Λk−1v(k) ≤ Λk−1K✶ =
∂+ℓ(ϕ(rk)).

It remains to show that for all i ∈ {2, . . . , k−1} and all y ∈ Y , we have Λi−1v(i)y ≤ Λiv(i+
1)y, which by definition of Λ is equivalent to v(i)y ≤ λ(i)v(i+ 1)y. By our first condition,
the possible pairs (sgn(v(i)y), sgn(v(i+ 1)y)) are (−,−), (−, 0), (−,+), (0, 0), (0,+), (+,+),
and given that λ(i) > 0, all are trivial except (−,−) and (+,+). In the (−,−) case, we
have by definition of λ−(i) that λ(i) ≤ λ−(i) ≤ v(i)y/v(i+ 1)y. Recalling that both v(i)y
and v(i+ 1)y are negative, we conclude v(i)y ≤ λ(i)v(i+ 1)y. In the (+,+) case, we have
λ(i) ≥ λ+(i) ≥ v(i)y/v(i+ 1)y, and again v(i)y ≤ λ(i)v(i+ 1)y.

For optimality, consider any r ∈ R and any p ∈ Γϕ(r). By the matching of loss values,
for every r′ ∈ R we have 〈p, ℓ(r)〉 = 〈p, L(ϕ(r))〉 ≤ 〈p, L(ϕ(r′))〉 = 〈p, ℓ(r′)〉, which implies
p ∈ γr. For the other direction, consider a distribution p ∈ ∆(Y), and the subgradient of
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〈p, L(ϕ(ri))〉 for some i ∈ {2, . . . , k − 1}. We have

0 ∈ ∂〈p, L(ϕ(ri))〉 ⇐⇒ ∂−〈p, ℓ(ϕ(ri))〉 ≤ 0 ≤ ∂+〈p, ℓ(ϕ(ri))〉

⇐⇒ 〈p, ∂−ℓ(ϕ(ri))〉 ≤ 0 ≤ 〈p, ∂+ℓ(ϕ(ri))〉

⇐⇒ 〈p,Λi−1v(i)〉 ≤ 0 ≤ 〈p,Λiv(i+ 1)〉

⇐⇒ 〈p, v(i)〉 ≤ 0 ≤ 〈p, v(i+ 1)〉

⇐⇒ 〈p, ℓ(ri) − ℓ(ri−1)〉 ≤ 0 ≤ 〈p, ℓ(ri+1) − ℓ(ri)〉

⇐⇒ 〈p, ℓ(ri)〉 ≤ 〈p, ℓ(ri−1)〉 and 〈p, ℓ(ri)〉 ≤ 〈p, ℓ(ri+1)〉 .

For i = 1, similar reasoning gives that optimality is equivalent to the condition 〈p, ℓ(r1)〉 ≤
〈p, ℓ(r2)〉, and for i = k, 〈p, ℓ(rk)〉 ≤ 〈p, ℓ(rk−1)〉. (Note that the other conditions, −K ≤ 0
or 0 ≤ Λk−1K, are true regardless of p.) In particular, if p ∈ γri

, then we have 〈p, ℓ(ri)〉 ≤
〈p, ℓ(ri−1)〉 for i ≥ 2, and 〈p, ℓ(ri)〉 ≤ 〈p, ℓ(ri+1)〉 for i ≤ k − 1, so for all i we have
0 ∈ ∂〈p, L(ϕ(ri))〉 and thus p ∈ Γϕ(ri).
Embedding =⇒ Monotone:

We trivially satsify the conditions of Definition 25 by taking a(ri) = ∂−L(ϕ(r)) and
b(ri) = ∂+L(ϕ(r)).
Monotone =⇒ Orderable:

Let γ : ∆Y → 2R \ {∅} be finite and monotone. Then we can use the total ordering of
R to write R = {r1, . . . , rk} such that ri < ri+1 for all i ∈ {1, . . . , k − 1}. We now have
γri

∩ γri+1
= {p ∈ ∆Y : 〈a(ri+1), p〉 ≤ 0 ≤ 〈b(ri), p〉}. If this intersection is empty, then

there must be some p with 〈b(ri), p〉 < 0 and 〈a(ri+1), p〉 > 0; by monotonicity, no earlier or
later reports can be in γ(p), so we see that γ(p) = ∅, a contradiction. Thus the intersection
is nonempty, and as we also know b(ri) ≤ a(ri+1) we conclude b(ri) = a(ri+1), and the
intersection is the hyperplane defined by b(ri) = a(ri+1).

Throughout the rest of this section, we let Γ[L] be the unique property elicited by the
loss L.

Proposition 27 If convex L : R → R
Y indirectly elicits a finite elicitable property γ, then

γ is orderable.

Proof Let γ : ∆Y → 2R \ {∅}. From Lemma 28 below, Γ := Γ[L] is monotone. Let
ψ : R → R be the calibrated link from Γ to γ. From Lemma 29, we have P r = γr for all
r ∈ R, where P r is the closure of the convex hull of

⋃

u∈ψ−1(r) Γu.

As Γ is monotone, we must have a, b : R → R
Y such that P r = {p ∈ ∆Y : 〈a(r), p〉 ≤

0 ≤ 〈b(r), p〉}. (Take a(r)y = infu∈ψ−1(r) a(u)y and b(r)y = supu∈ψ−1(r) b(u)y.) Now taking
pr ∈ int(γ)r and picking ur ∈ Γ(pr), we order R = {r1, . . . , rk} so that uri

< uri+1
for all

i ∈ {1, . . . , k − 1}. (The uri
must all be distinct, as we chose pr so that γ(pr) = {r}, so

ψ(uri
) = ri for all i.)

Let i ∈ {1, . . . , k − 1}. By monotonicity of Γ, we must have a(ri) ≤ b(ri) ≤ a(ri+1) ≤
b(ri+1). As

⋃

r∈R P r =
⋃

r∈R γr = ∆Y , we must therefore have b(ri) = a(ri+1). Finally,
we conclude γri

∩ γri+1
= {p ∈ ∆Y : 〈b(ri), p〉 = 0}. As these statements hold for all

i ∈ {1, . . . , k − 1}, γ is orderable.

The proof of Proposition 27 uses the following results.
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Lemma 28 For any convex L : R → R
Y
+, the property Γ[L] is monotone.

Proof If L is convex and elicits Γ, let a, b be defined by a(r)y = ∂−L(r)y and b(r) = ∂+L(r)y,
that is, the left and right derivatives of L(·)y at r, respectively. Then ∂L(r)y = [a(r)y, b(r)y].
We now have r ∈ Γ[L](p) ⇐⇒ 0 ∈ ∂〈p, L(r)〉 ⇐⇒ 〈a(r), p〉 ≤ 0 ≤ 〈b(r), p〉, showing
the first condition. The second condition follows as the subgradients of L are monotone
functions (see e.g. Rockafellar (1997, Theorem 24.1)).

Lemma 29 Let γ : ∆Y → 2R \ {∅} be a finite elicitable property, and suppose there is a
calibrated link ψ from an elicitable Γ to γ. For each r ∈ R, define Pr =

⋃

u∈ψ−1(r) Γu ⊆ ∆Y ,

and let P r denote the closure of the convex hull of Pr. Then γr = P r for all r ∈ R.

Proof As Pr ⊆ γr by the definition of calibration, and γr is closed and convex, we must have
P r ⊆ γr. Furthermore, again by calibration of ψ, we must have

⋃

r∈R Pr =
⋃

u∈R Γu = ∆Y ,
and thus

⋃

r∈R P r = ∆Y as well. Suppose for a contradiction that γr 6= P r for some r ∈ R.
From Lemma 33, γr has nonempty interior, so we must have some p ∈ int(γ)r \ P r. But as
⋃

r′∈R P r′ = ∆Y , we then have some r′ 6= r with p ∈ P r′ ⊆ γr′ . By Theorem 32, the level
sets of γ form a power diagram, and in particular a cell complex, so we have contradicted
point (ii) of Definition 30: the relative interiors of the faces must not be disjoint. Hence, for
all r ∈ R we have γr = P r.

Definition 30 A cell complex in R
d is a set C of faces (of dimension 0, . . . , d) which (i)

union to R
d, (ii) have pairwise disjoint relative interiors, and (iii) any nonempty intersection

of faces F, F ′ in C is a face of F and F ′ and an element of C.

Definition 31 Given sites s1, . . . , sk ∈ R
d and weights w1, . . . , wk ≥ 0, the corresponding

power diagram is the cell complex given by

cell(si) = {x ∈ R
d : ∀j ∈ {1, . . . , k} ‖x− si‖

2 − wi ≤ ‖x− sj‖ − wj} . (5)

Theorem 32 ((Aurenhammer, 1987)) A cell complex is affinely equivalent to a convex
polyhedron if and only if it is a power diagram.

Lemma 33 Let γ be a finite (non-redundant) property elicited by a loss L. Then the
negative Bayes risk G of L is polyhedral, and the level sets of γ are the projections of the
facets of the epigraph of G onto ∆Y , and thus form a power diagram. In particular, the level
sets γ are full-dimensional in ∆Y (i.e., of dimension n− 1).

A.1. Example construction of real-valued embedding

For concreteness, let us now construct an embedding via the loss given in Theorem 11. We
start with the ordered discrete loss given in Table A.1
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Definition 36 (Face) For any valid inequality of a polytope, the subset of the polytope of
vectors which are tight for the inequality is called a face of the polytope. That is, the set F
is a face of the polytope T if and only if

F = {x ∈ T : 〈a, x〉 = β}

for some valid inequality (a, β) of T .

Definition 37 (Supporting function) Let S be a nonempty bounded set in R
d. We call

the supporting function of S the function HS : Rd → R by

HS(a) := sup
x∈S

〈a, x〉 .

Definition 38 (Minkowski sum) Let S1, S2, . . . , Sn be sets of vectors. We can define
their Minkowski sum as the set of vectors which can be written as the sum of a vector in
each set. Namely,

S1 ⊕ . . .⊕ Sn = {x1 + . . .+ xn : xi ∈ Si ∀i}

Theorem 39 ((Weibel, 2007, Theorem 3.1.2)) Let T1, . . . , Tn be polytopes in R
d and

let F be a face of the Minkowski sum T := T1 ⊕ . . .⊕ Tn. Then there are faces F1, . . . , Fn of
T1, . . . , Tn respectively such that F = F1 ⊕ . . .⊕ Fn. Moreover, this decomposition is unique.

Theorem 40 ((Weibel, 2007, Theorem 3.1.6)) The supporting function of a Minkowski
sum is the sum of the supporting functions of its summands.

Weibel (2007) notes that:

It is easy to see that the normal fan (undefined here, but consequently normal
cones) of piTi does not change as long as pi is positive. Since the normal fan of a
Minkowski sum can be deduced from that of its summands, we can deduce from
this that the combinatorial properties of ⊕pTy stay the same as long as all pi are
positive.

Suppose we are given a polytope Ty ∈ R
d and set of vectors V ∈ R

k×d. Call ey ∈ R
k the

vector such that eyi = maxx∈Ty 〈vi, x〉. For a finite set T = {T1, , . . . , Tn}, let us denote the
support matrix E = (ey)ny=1.

Definition 41 We say a set of normals V is complete with respect to a polytope Ty if
Ty = {x ∈ R

d : V x ≤ ey}.

Moreover, we say V is complete with respect to the set of polytopes T if and only if V is
complete with respect to each Ty ∈ T .

We will suppose we start with a finite set of n polytopes T := {T1, . . . , Tn}, and we will
call T := T1 ⊕ . . .⊕ Tn ∈ R

d their Minkowski sum. We know that every polytope has both a
halfspace and vertex representation (H-representation and V-representation, respectively.)
By existence of the H-representation, we know there must be a matrix V ∈ R

k×d and vector
e ∈ R

k such that T = {x ∈ R
d : V x ≤ e}. In fact, with a complete set of normals V , we
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know that e can be the support vector of each of the normals. However, finding V is not
always easy, so we assume that we are given V for now.

Now, for a given polytope ⊕pT , we want to ask when a given z ∈ R
d is in the polytope

⊕pT . We will later generalize to finding the set of p ∈ ∆Y for which 0 ∈ ⊕pT by substituting
z = 0. Throughout, assume we have V which is complete for T and consider E defined by
the support of each normal in V for all Ty ∈ T . We denote ey = E;y as the yth column of E,
or equivalently, the support vector for Ty given V .

Since we define Ty = {x : V x ≤ ey}, we can multiply the right side of the inequality
by the constant py ≥ 0 to yield pyTy = {x : V x ≤ pye

y}. Taking the Minkowski sum of
polytopes described by the same set of normals, we can take

⊕pT = {x : V x ≤ p1E;1} ⊕ . . .⊕ {x : V x ≤ pnE;n}

= {x : V x ≤ p1E;1 + . . .+ pnE;n}

= {x : V x ≤ Ep} .

The first to second line follows from Theorem 40 and preservation of inequalities under
addition. Now, we have z ∈ T (p) ⇐⇒ 〈vi, z〉 ≤ (Ep)i for all vi ∈ V .

Observe that this construction yields 0 ∈ ⊕pT if and only if Ep ≥ 0 by substitution.
We assume p ∈ ∆Y , so we now describe the cell D(T ) := {p ∈ ∆Y : Ep ≥ 0} as the

set of distributions such that 0 ∈ ⊕pT . We will see in Lemma 42 that this definition is
equivalent to the definition of D(T ) in Definition 13.

Given the complete set of normals V and constructing the support matrix for V and
T , E, we observe that E is unique up to rescaling. However, as discussed earlier, there are
always multiple complete sets of normals for T , and so in that sense, E is not unique.

We want to know the following: starting from T , can we derive the cell C ⊆ ∆Y where
0 ∈ T (p) for all p ∈ C? We know that if we are given T and a complete set of normals V ,
we can describe D(T ) = {p ∈ ∆Y : Ep ≥ 0}.

Lemma 42 Suppose we are given polytopes T = {T1, . . . , Tn} and a set of normals V that is
complete for T . Take E = (eyi ) where eyi = maxx∈Ty 〈vi, x〉, and D(T ) = {p ∈ ∆Y : Ep ≥ 0}.

Then {p ∈ ∆Y : 0 ∈ ⊕pT } = {p ∈ ∆Y : Ep ≥ 0}.

Proof First, let us fix a distribution p ∈ ∆Y . By Theorem 40, we have the support of the
(weighted) Minkowski sum is the (weighted) sum of the support of each polytope, which we
can re-write the weighted support as the product Ep.

Each halfspace is bounded by the support function of the weighted polytope by construc-
tion of E, so the support of the weighted polytope defined by an inequality on vi can be
described as 〈vi, z〉 ≤ 〈Ei, p〉. Taking this for all vi, we then have ⊕pT = {x ∈ R

d : V x ≤ Ep}.
Therefore, for fixed p, we have 0 ∈ ⊕pT ⇐⇒ Ep ≥ 0. As p ∈ ∆Y was arbitrary, we

observe the stated set equality.

The following result allows us to consider the sets of distributions for which 0 is in the
Minkowski sum in terms of the minimal rank matrix describing the cell.

Proposition 43 Suppose we are given polytopes T = {T1, . . . , Tn} and a set of normals
V that is complete for T . Take E = (eiy) where eiy = maxx∈Ty 〈vi, x〉, and take D(T ) =
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{p ∈ ∆Y : Ep ≥ 0} and take the minimal rank B ∈ R
k×n such that we have the given cell

C = {p ∈ ∆Y : Bp ≥ 0}.
Then {p ∈ ∆Y : 0 ∈ ⊕pT } = C if and only if C = D(T ).

Proof By Lemma 42, we have D(T ) = {p ∈ ∆Y : 0 ∈ ⊕pT }, and the result follows.

Definition 44 We say a vector v is redundant with respect to matrix Y if we have {z :
Y z ≥ b} = {z : [Y ; v]z ≥ b

∗}, where b∗ = [b; c] for some constant c ∈ R.

Proposition 45 Suppose we have polytopes T = {T1, . . . , Tn} and a set of normals V that
is complete for T . Take E = (eyi ) where eyi = maxx∈Ty 〈vi, x〉, and take D(T ) = {p ∈ ∆Y :
Ep ≥ 0} and take the minimal matrix B such that a given cell C = {p ∈ ∆Y : Bp ≥ 0}.

Then {p ∈ ∆Y : 0 ∈ ⊕pT } = C if and only the rows of B appear in E (possibly scaled)
and every other row of E is redundant with respect to B.

Proof ( =⇒ ) First, assume C = {p ∈ ∆Y : 0 ∈ ⊕ypyTy}. By Proposition 43, we know that
C = DT := {p ∈ ∆Y : Ep ≥ 0}. Then we have {p ∈ ∆Y : Bp ≥ 0} = {p ∈ ∆Y : Ep ≥ 0}.
As B is minimal, we must have that every row of B appears (possibly scaled) in E. Otherwise,
we would contradict equality of the polytopes C and D(T ). Moreover, all rows in E not in
B are redundant with respect to B by equality of the polytopes.

( ⇐= ) Suppose that all rows of B appear in E, and every other row of E is redundant
with respect to B. Then we have D(T ) = {p ∈ ∆Y : Ep ≥ 0} = {p ∈ ∆Y : Bp ≥ 0} = C.

Then D(T ) = C, and by Proposition 43, we have C = {p ∈ ∆Y : 0 ∈ ⊕pT }.

Appendix C. d-dimensional omitted proofs

C.1. Details for the proof

The following condition formalizes a necessary condition on T in terms of the halfspace
representation of C; the subsequent one formalizes a sufficient condition using the vertex
representation.
Proof [Proof of Theorem 16] ( =⇒ ) Suppose D(T ) = C. First, we note that the vertex
condition is immediate: For all j ∈ [ℓ], pj ∈ C which gives pj ∈ D(T ). To show the halfspace
condition is satisfied, we first construct a matrix E such that Ep ≥ 0 ⇐⇒ Bp ≥ 0, then
use this construction to pick out the necessary vectors v1, . . . , vk.

By Lemma 46, there is a finite collection of vectors w1, . . . , wK ∈ R
d and such that 0 ∈

⊕pT if and only if, for all wi,
∑

y py maxx∈Ty 〈wi, x〉 ≥ 0. Hence, each vector wi generates a

row of a matrix E ∈ R
K×n with Eiy = maxx∈Ty 〈wi, x〉, and we have p ∈ D(T ) ⇐⇒ Ep ≥ 0.

By assumption of D(T ) = C, then, we have Ep ≥ 0 ⇐⇒ Bp ≥ 0. By Lemma 48 , because
B has the minimum possible number of rows, each row of B appears (scaled by some positive
constant) as a different row of E. Taking the collection of wi corresponding to these rows and
rescaling them by that positive constant, we get a collection of k vectors that we can rename
v1, . . . , vk ∈ R

d, with maxx∈Ty 〈vi, x〉 = Biy, hence the halfspace condition is satisfied.
( ⇐= ) Suppose Conditions 1 and 2 hold. Then by the vertex condition, pj ∈ D(T )

for all j ∈ [ℓ]. Because D(T ) is convex (Lemma 47), this implies C ⊆ D(T ). To show
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D(T ) ⊆ C, let p ∈ D(T ); by definition, 0 ∈ ⊕pT . Then in particular for each vector
v1, . . . , vk guaranteed by the halfspace condition, we have

0 ≤ max
x∈⊕pT

〈v, x〉

=
∑

y∈Y

py max
x∈Ty

〈vi, x〉

≤
∑

y∈Y

pyBiy.

This proves Bp ≥ 0, so p ∈ C.

Lemma 46 Given polytopes T , there exists a finite set of normal vectors w1, . . . , wK ∈ R
d

such that, for all p ∈ ∆Y , ⊕pT = {x : 〈wi, x〉 ≤
∑

y∈Y py maxx∈Ty 〈wi, x〉}.

Proof For each p, ⊕pT is a polytope. For each of the finitely many supports (2n − 1),
we know ⊕pT is a polytope, and every polytope can be defined by a finite, complete set of
vectors for that polytope. As a two polytopes with the same support are combinatorially
equivalent, they can be defined by the same facet enumeration, and any set of normals
that is complete for ⊕pT is also complete for a ⊕p′T if supp(p) = supp(p′). We can simply
concatenate these finite set of normals for the finite polytope supports, with some normals
possibly becoming redundant. This yields finitely many normals defining the weighted
Minkowski sum ⊕pT for all p ∈ ∆Y .

Lemma 47 For any T , D(T ) is a polytope (in particular, is convex).

Proof Recall by definition, the notation ⊕pT = {
∑

y pyxy : xy ∈ Ty(∀y)}. Each Ty is
a polytope, so pyTy is a polytope. The Minkowski sum of polytopes is a polytope, so
⊕pT is a polytope (Weibel, 2007, Section 1.2). Since ⊕pT is a polytope for all p ∈ ∆Y ,
we know there is a halfspace representation of normals V so that for all y ∈ Y, we have
x ∈ pyTy ⇐⇒ 〈V, x〉 ≤ pye

y for some matrix V and the support vector ey, where
eyi = HTy (Vi). By Lemma 46, we know that there is a set of normals V ∗ that is complete for
T (p) for all p ∈ ∆Y . We construct E∗ as the support matrix for this complete set of normals.
The support of the Minkowski sum for a given normal is the sum of the normals (Weibel,
2007, Theorem 3.1.6), and so we we can take x ∈ ⊕pT ⇐⇒ 〈V ∗, x〉 ≤ E∗p. Substituting
x = 0, we see 0 ∈ ⊕pT ⇐⇒ E∗p ≥ 0 ⇐⇒ p ∈ D(T ) by Lemma 42, which defines a
polytope by construction of E∗.

Lemma 48 Let C = {p : Bp ≥ 0} where B has the minimum possible number of rows to
capture C, and suppose C = {p : Ep ≥ 0}. Then for each row in B there is some (unique)
row in E that is equal to αB for some positive α.

Proof Ziegler (2012, Exercise 2.15) alludes to this fact. Suppose there was a row j of B
that did not appear (possibly scaled, because of the inequality on 0) in E. Then there is
some x ∈ {x : Ex ≥ 0} so that 〈Bi, x〉 ≥ 0 for all i 6= j and 〈Bj , x〉 < 0 since B has the
minimum number of rows required to capture C. This contradicts x ∈ C = {x : x : Bx ≥ 0}.
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Appendix D. Simplifying the QFP for abstain1/2, d = 2

In order to prove Proposition 21, we take some simplifying steps to the quadratic feasibility
program for this specific problem. The strategy is to consider the level set γ⊥, the set of
distributions with modal mass at most 1/2. We show that the quadratic feasibility program
with this input cannot be satisfied with dimension 2 for n = 5.

Lemma 49 For the abstain loss ℓ1/2, the level set of abstain satisfies γ⊥ = conv{(δy +
δy′)/2 : y, y′ ∈ Y, y < y′} = {p : Bp ≥ 0} where δy puts probability one on y and
B = ✶✶

⊺ − 2I ∈ R
5×5, i.e. has entries −1 on the diagonal and 1 everywhere else.

Proof Recall that γ⊥ is the set of distributions p with maxy py = 1/2. First, note that each
distribution of the form (1/2, 1/2, 0, 0, 0) and so on is in γ⊥. Meanwhile, every such p can be
written as a convex combination of these corners. Second, note that if p ∈ γ⊥, then py ≤ 1/2
for all y ∈ Y . These constraints can be rewritten as 〈p, b〉 ≥ 0 where by = −1 and by′ = 1 for
all y′ 6= y, literally requiring py ≤

∑

y′ 6=y p(y
′).

Observation 1 For any invertible A ∈ R
d×d, if V, {Xj : j ∈ [ℓ]} is a feasible solution to

the quadratic feasibility program, then so is (V A), {A−1Xj : j ∈ [ℓ]}.

Proof The halfspace constraints are (V A)(A−1Xj) ≤ B ⇐⇒ V Xj ≤ B. The jth vertex
constraint is a vector equality

∑

y∈Y p
j
y(A

−1Xj)y = 0. If we let am be the mth row of A−1,

then the mth row of the vector equality is

0 =
∑

y∈Y

pjy〈am, x
j
y〉

= 〈am,
∑

y∈Y

pjyx
j
y〉

= 0

so the program is feasible.

Corollary 50 If there is a feasible solution to the quadratic feasibility program, then there
is a feasible solution where v1 is the first standard basis vector and ‖vi‖ ≤ ‖v1‖ = 1 for all i.

Proof In particular, we can take a series of matrices A in Observation 1 that permute the
rows of V , scale2 all rows by 1

‖v1‖ , and linearly map v1 to (1, 0, . . . , 0).

2. Note one can show V = 0 is not feasible unless B is a trivial property, i.e. essentially has no rows at all.
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Notation for the quadratic program. Recall that in the quadratic program, each
vertex p in the convex-hull representation corresponds to a matrix variable X. Here, the
vertices are indexed by a pair of distributions, so for each i < j, we refer to that vertex of
γ⊥ by pij = (δi + δj)/2, with corresponding variable Xij . The yth column of this matrix is
denoted xijy ∈ R

d.

Lemma 51 In any feasible solution to the QFP for γ⊥ and ℓ1/2, we have xiji = −xijj for
all i < j in Y.

Proof Directly from the vertex constraints: pij = 1
2δi + 1

2δj , so the ij constraint reduces to
1
2x

ij
i + 1

2x
ij
j = 0.

Lemma 52 There is no feasible solution to the QFP for γ⊥ and ℓ1/2 where vi = cvj for
c > 0 and any i 6= j.

Proof There is an open halfspace through the origin strictly containing both the feasible
regions Fi = {x : 〈vi, x〉 ≤ −1, 〈vj , x〉 ≤ 1 ∀j 6= i} and Fj , so there is no set of witnesses

such that xiji ∈ Fi and xijj ∈ Fj , as this would contradict Lemma 51.

Lemma 53 For d = 2 and the level set γ⊥ for ℓ1/2, any pair of linearly independent vi, vj

rule out all except for a unique feasible value for xiji and also for xijj .

Proof From the halfspace constraints, we must have 〈vi, x
ij
i 〉 ≤ −1 and 〈vi, x

ij
j 〉 ≤ 1, which

combines with Lemma 51 to give 〈vi, x
ij
i 〉 = 1. This immediately also gives 〈vj , x

ij
i 〉 = −1.

This system of two inequalities in two dimensions has exactly one solution if vi, vj are linearly
independent.

Lemma 54 There is no feasible solution to the QFP for γ⊥ and ℓ1/2 where three vectors
vi, vj , vm lie strictly within a halfspace through the origin (i.e. all within 180◦ of each other).

Proof Let three of the vectors be given, lying strictly inside a halfspace, and label them
clockwise as v1, v2, v3. WLOG suppose v1 points vertically “up”, as in Figure 5. By Lemma
53, the possible locations of the following points are all uniquely determined: xiji , x

ij
j for

(i, j) ∈ {(1, 2), (1, 3), (2, 3)}. Both points x12
1 and x13

1 lie on the line 〈v1, x〉 = −1, i.e. a
horizontal line below the origin. We have constraints 〈v2, x

12
1 〉 = 1 and 〈v2, x

13
1 〉 ≤ 1. This

implies x13
1 is left of x12

1 on the horizontal line 〈v1, x〉 = 1. But the symmetric constraints
〈v3, x

13
1 〉 = 1 and 〈v3, x

12
1 〉 ≤ 1 imply symmetrically that x12

1 is left of x13
1 on the line. This

implies we must have x12
1 = x13

1 . An example of this contradiction is shown in Figure 6.
If we consider the four lines 〈v2, x〉 = 1, 〈v2, x〉 = −1, 〈v3, x〉 = 1, 〈v3, x〉 = −1, we

therefore have three points of intersection with the line 〈v1, x〉 = 1 and three with the line
〈v1, x〉 = −1, as shown in Figure 7. WLOG, these points from top left to top right are: x12

2

(which equals x13
3 ), the intersection with 〈v2, x〉 = 1, and the intersection with 〈v3, x〉 = 1;
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and therefore from bottom left to bottom right are: the intersection with 〈v3, x〉 = −1, the
intersection with 〈v2, x〉 = −1, and the intersection with x12

1 (which equals x13
1 ).

This implies that the lines 〈v2, x〉 = −1 and 〈v3, x〉 = 1, in particular, do not intersect
anywhere within the bounds of 〈v1, x〉 ∈ [−1, 1]. Therefore, either their intersection point
x23

2 or its negative x23
3 violates the feasibility constraint 〈v1, x〉 ≤ 1, as in Figure 8. This

proves there is no feasible solution with three normals lying strictly in the same halfspace
through the origin.

Proposition 55 The abstain loss ℓ1/2 with n = 5 is not 2-embeddable.

Proof Let any 5 vectors be given, numbered clockwise. v1, v2, v3 cannot lie in a cone of
strictly less than 180◦, as this would contradict Lemma 54. So the clockwise angle between
v1 and v3 is at least 180◦. Since there are no duplicate angles (Lemma 52), this implies that
the clockwise angle between v4 and v1, which includes v5, is strictly less than 180◦. This
contradicts Lemma 54.

Proof [Matrix rank proof of Proposition 21] We can formulate the QFP given in Section 4 for
abstain1/2 as a matrix rank problem. First, as observed in Lemma 51, the vertex constraints

are exactly equivalent to requiring that, in our notation, xiji = −xijj for all i < j. Therefore,

we can substitute in for all variables of the form xijj and eliminate them from the problem.
Second, we can observe that the program is only easier to satisfy if one drops the halfspace
constraints on all variables of the form xijm, i < j, m 6∈ {i, j}. This allows us to drop all such
variables, and we are now left with only the variables v1, . . . , vk and {xiji : i < j}, with the

understanding that xijj = −xiji . We can therefore simplify the following constraints of the
QFP:

〈vi, x
ij
i 〉 ≤ Bii = −1

〈vi, x
ij
j 〉 ≤ Bij = 1

=⇒ 〈vi, x
ij
i 〉 = −1

〈vi, x
ji
i 〉 ≤ Bii = −1

〈vi, x
ji
j 〉 ≤ Bij = 1

=⇒ 〈vi, x
ji
j 〉 = 1

〈vi, x
jm
j 〉 ≤ Bij = 1

〈vi, x
jm
m 〉 ≤ Bim = 1

=⇒ 〈vi, x
jm
j 〉 ∈ [−1, 1].

This gives us the following simplified feasibility problem.

〈vi, x
ij
i 〉 = −1 (∀i < j)

〈vi, x
ji
j 〉 = 1 (∀i < j)

〈vi, x
jm
j 〉 ∈ [−1, 1] (∀j < m, i 6∈ {j,m}).
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If we consider the matrix V and construct Y whose columns are {xiji : i < j}, this problem
asks us to find such a V and Y whose product M = V Y is a matrix with certain fixed
entries and others bounded.

In particular, with n = 4, we obtain the following matrix rank problem: does there exist

M4 =











−1 −1 −1 · · ·
1 · · −1 −1 ·
· 1 · 1 · −1
· · 1 · 1 1











where each unknown entry · is in [−1, 1], of rank d = 2?
Since M4 is a submatrix of the matrix obtained when n = 5, any rank-2 solution for the

large matrix given below must also solve the above problem.

M5 =















−1 −1 −1 · · · −1 · · ·
1 · · −1 −1 · · −1 · ·
· 1 · 1 · −1 · · −1 ·
· · 1 · 1 1 · · · −1
· · · · · · 1 1 1 1















We have verified with Mathematica that M4 has rank 2 if and only if it is in the following
form, up to a couple symmetries.











−1 −1 −1 1 1 a
1 1 1 −1 −1 −a
b 1 −1 1 −1 −1

−b −1 1 −1 1 1











with a, b ∈ [−1, 1]. Plugging in this solution set into the larger matrix yields

M ′
5 =















−1 −1 −1 1 1 a −1 · · ·
1 1 1 −1 −1 a · −1 · ·
b 1 −1 1 −1 −1 · · −1 ·

−b −1 1 −1 1 1 · · · −1
· · · · · · 1 1 1 1















In particular, the submatrix of the last four columns alone cannot be completed.

28


	Introduction
	Related work

	Setting
	One-dimensional embeddings
	General characterization via property elicitation
	Constructing a surrogate
	Including general convex surrogates

	Higher dimensions
	Setup: subgradient sets at embedding points.
	General characterization
	Characterizing optimality

	Example: Abstain loss
	Abstain, d=1
	Abstain, = 1/2, d=2

	Discussion
	1-dimensional characterization omitted proofs
	Example construction of real-valued embedding

	Polytope notes
	d-dimensional omitted proofs
	Details for the proof

	Simplifying the QFP for abstain1/2, d=2

