
Proceedings of the ASME 2020 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2020
August 16-19, 2020, St. Louis, USA

IDETC2020-22559

DESIGN FOR FLEXIBILITY: A GRAPH COLORING TECHNIQUE TO STUDY DESIGN
CHANGES IN THE TETHERED ECONOMY WORLD

Spenser Estrada

The Department of Mathematics and Statistics

San Jose State University

San Jose, California 95192

spenser.estrada@sjsu.edu

Emilyn Green

The Department of Mathematics and Statistics

San Jose State University

San Jose, California 95192

emilyn.green@sjsu.edu

Sogol Jahanbekam

The Department of Mathematics and Statistics

San Jose State University

San Jose, California, 95192

sogol.jahanbekam@sjsu.edu

Sara Behdad∗

Environmental Engineering Sciences

University of Florida

Gainesville, Florida 32606

sara.behdad@essie.ufl.edu

ABSTRACT

Digitization, connected networks, embedded software, and

smart devices have resulted in a major paradigm shift in business

models. Transformative service-based business models are dom-

inating the market, where advancement in technology has paved

the way for offering not only a set of new services but also alter-

ing product functionalities and services over time. This paradigm

shift calls for new design approaches. Designers should be able

to design flexible products and services that can adapt to a wide

range of consumer needs over time. To address the need for de-

signing for flexibility, the objective of this study is to develop a

graph coloring technique that can model changes in the func-

tional requirements of a product and determine the minimum

number of physical parts needed to meet future functionalities.

This technique relies on vertex labeling by the designer and the

construction of a core graph combining key elements of all de-

sired iterations, which is then colored by label. One numerical

example and one real-world example are provided to show the

application of the proposed model.

∗Address all correspondence to this author.

NOMENCLATURE

G A graph composed of a vertex set V (G) and an edge set E(G)
FR Functional Requirement

u,v,w, ... A vertex of a graph G.

ni The number of vertices in a graph Gi

mi The number of edges in a graph Gi

uv An edge in a graph between nodes u and v

G− v The graph formed from G with node v and all of its inci-

dent edges removed

G−X The graph formed from G with nodes in some set X ⊆
V (G) and all of their incident edges removed

G\H The graph formed from G by removing a subgraph H

G+uv The graph formed from G by adding edge uv

c The number of colors used in a coloring of G

χ(G) The chromatic number of G, i.e., the minimum possible

value of c

k A label used to group vertices

INTRODUCTION

The term “Tethered appliances” was first used in 2008 by

Zittrain [1], in his book about the future of the Internet, to refer to

1 Copyright c© 2020 by ASME



an emerging class of products defined by their ability to be mon-

itored and altered by their sellers or owners due to advancements

in wireless and GPS technology. “Internet of Things” devices,

smart appliances, embedded-sensor devices, and voice assistants

are examples of tethered products which require a consistent con-

nection between users and device makers. Hooftnagle et al. [2]

defined “tethered products” as devices whose functionalities and

future iterations rely on ongoing connections between user and

producer.

Corporations have come to the understanding that a prof-

itable approach for maintaining an ongoing connection with cus-

tomers is to focus on providing a continuous service, rather than

one-time purchased products. In this marketing model, manu-

facturers have better control over the life cycle of a product, and

in fact benefit from managing issues ranging from quality and

dependability of service, to end-of-use recovery, and ultimately

recycling of materials. In today’s IoT market, designers need

specific design tools and techniques that enable them to a) model

the dynamic nature of the various iterations of this new type of

product and b) bundle the concepts of product/service together to

create a successful commercial model that appeals to consumers.

Inspired by the discussion of Hooftnagle et al. around the

concept of the “Tethered Economy” [2], the objective of this

paper is to propose a graph unification and coloring technique

that considers successive product iterations and gives flexibility

to add or remove product functionalities over time. We include a

discussion of the advantages and disadvantages of tethered prod-

ucts as part of the background for this technique. While the intent

is not necessarily to promote the concept of tethered products, the

proposed model helps designers who are working on these types

of products to envision future iterations more accurately at the

early design stage.

Designers do not always have a complete picture of the fu-

ture iterations that will be needed during the entire life cycle of

a product, and yet modelling tools that allow them to plan for

many types of probable future iterations can improve the design

process for tethered products. Modeling tools that provide better

information about how to integrate the (sometimes competing)

needs of future iterations will enable designers to make informed

decisions when identifying the optimal number of parts for a

product. In this study, we demonstrate how graphs - composed of

vertices and edges - can be used to model the requirements of the

multiple stages that a product may go through during its entire

life cycle. We further develop a graph coloring and unification

process to model a consensus set of functional requirements, and

to help designers determine the minimal optimal number of parts

or modules for the product. This approach expands on previous

work done by some authors of this paper with Gopalakrishnan, et

al [3] in 2019, which also developed a graph coloring technique

for determining the minimum number of parts of a product. This

study extends the technique to modeling products with multiple

iterations, specifically in the case that functional requirements

change over time.

The next section provides a review of relevant research that

informs the work of this paper. Subsequent sections provide a

detailed methodology, as well as examples and a discussion of

possible applications.

BACKGROUND

There are several powerful disruptive trends in industry that

facilitate the broad adoption of “Tethered Economy” products.

First, extensive progress in the field of information technology

helps corporations to trace materials anywhere in their supply

chain and monitor the status of products during usage as well as

the end-of-use phase [4]. Advancements in data collection and

sensor-based technologies, big data analytics, distributed ledger

technologies, and autonomous systems are just a few examples

of novel technologies that revolutionize the way that corpora-

tions design and sell their products. Second, there is a perva-

sive shift in consumer behavior as younger generations of users

have shown that they prefer access over ownership [5]. Third,

the emergence of new business models paves the way for shift-

ing toward service-based strategies [6], where businesses switch

to subscription and membership models as opposed to selling the

ownership of their physical products to consumers.

The above-mentioned trends work together to move the mar-

ket towards the tethered economy. This complicates purchase de-

cisions for users, as they need to think about the future service

costs of a product, its compatibility with other devices, data se-

curity, and privacy concerns. Similarly, new complications arise

in the design process, as manufacturers now need to consider fu-

ture iterations of products, the merging of services, and blending

hardware and software features together.

According to Hooftnagle et al [2], corporations rely on two

primary mechanisms to tether a product: tethering through de-

sign and tethering through law. Tethered products often have

three distinctive features: (1) they depend on software codes for

their operations, (2) they are equipped with data collection tech-

nologies such as sensors to facilitate communication of product

life cycle data as well as consumer behavior, and (3) they require

persistent network connections to enable long distance usage and

control of the device [2].

While design is the main mechanism by which tethering is

implemented, force of law is another strategy used for tether-

ing. Device makers employ carefully drafted service contracts

and mechanisms like copyright and patent law to influence the

market. For example, companies could regulate the repair rights

of consumers with the help of current data privacy laws, restrict

the unlocking of smart devices for reuse and recycling, or debar

consumers from using third-party repair services by adding le-

gal terms into their warranty contracts [7]. Currently the law is

limited in its power to regulate manufacturers’ tethering of prod-

ucts. However, as legislatures and government agencies fight to

2 Copyright c© 2020 by ASME



protect consumers from the potential harm of such efforts (e.g.

implanted medical devices responding to remote control, auto-

matic alteration or deactivation of appliances), it is expected that

new laws and regulations will be enacted that will require manu-

facturers to pay special attention to the way that they design and

manipulate products with multiple iterations [8].

New challenges in design arise from this paradigm shift to-

ward ever-connected products. The ranking of functional re-

quirements can change based on which iteration of a given prod-

uct is under consideration, and additional consideration must be

given to evolving customer needs over time. Bearing this in

mind, the number of physical parts that are included in the prod-

uct usually remains fixed over the physical life cycle of a device,

while the device maker retains the ability to alter product features

and functionalities through software codes. Therefore, number

of physical parts is often a decision made at the early stage of the

design process, despite uncertainties regarding future iterations

of a product.

Zhang et al. [9] have highlighted the need for appropriate

mathematical models that simulate the entire ecosystem of a

product. Such models should consider product iterations over

time, as well as the evolution of its components, and even the

interaction of various performance attributes of a component

throughout the product’s life cycle. Mathematical exploration of

product life cycle decisions can be conducted with the use of nor-

mative methods such as Monte Carlo simulation [10], statistical

analysis, Bayesian approach [11], and probability theories [12],

to name a few. In this study, we will discuss the use of graph

theory and network modeling techniques for considering product

requirements over time. The idea behind this paper is to consider

N graphs, each representing the requirements of a specific itera-

tion of a product. The proposed modeling approach has unique

applications in different settings, including but not limited to the

following scenarios:

1. Technology Shifts: technological evolution of a product in-

cluding both functional and technological changes where

new features and functionalities will be added or removed

from the product over time.

2. Product Generations: design for a product family where

platform-based product development is considered.

3. New Users: design for multiple iterations where needs of

several users should be satisfied

4. Updated Software: design in the tethered economy world

where the access of the original user is controlled by new

upcoming business models

5. Product Iterations: design that covers the needs of several

phases within the product life cycle, including manufactur-

ing, initial and subsequent users, and end-of-life product re-

covery, such as recycling.

There are several ongoing efforts to develop techniques that

can categorize and model different product requirements. Behera

et al. [13] discuss the use of lattice theory for sharing design defi-

nitions across different product life cycles. According to their ar-

gument, it is feasible to visualize the bill of materials of a product

as a lattice and then insert a given lattice into a complete lattice

generated from the same product. They showed that by utilizing

lattices, multiple Bills of Material (BoMs) can be embedded into

one complete lattice which contains every possible combination

of individual parts. They acknowledged that while lattice struc-

tures are helpful in providing a single visual representation of all

possible product structures, they are not efficient in integrating

functional requirements of products [13].

A Design Structure Matrix (DSM) is another common tech-

nique in the design literature which is used to enhance a de-

signer’s understanding of the architecture of the system and sup-

port decision making in redesigning the product. DSM has been

used for modeling product decomposition, structure analysis, and

identification of the interfaces among parts in a product [14–16].

In this paper, we will use coloring and unification of graphs

to represent changing requirements during different iterations of

the product. The final coloring of the unified graph can help

designers implement and manage design changes with greater

accuracy, and furthermore, can help define the proper number of

physical parts that to cover functional requirements over several

product iterations.

PROPOSED GRAPH COLORING METHOD

The proposed method addresses three needs of the design-

ers: (1) designers understand the effects of adding or removing

functional requirements during subsequent iterations, (2) they

can define which functional requirements remain fixed during the

product’s lifespan based on the service agreements, and (3) they

can define which functional requirements have the most potential

for ongoing alteration.

To model these relations we can use graphs. A

graph G is composed of a set of nodes called the

vertex set V (G) and an edge set defined as E(G) =
{vw | vw is an edge connecting nodes v and w}. A sub-

graph S ⊆ G is defined as any subset of vertices of G

with edges between them in E(G). Independent sets within

G are defined as a set of vertices I ⊆ G such that I =
{vi | viv j is not an edge in E(G) ∀ i, j}. An independent set I

is maximal if it cannot be extended by the inclusion of any vertex

v ∈ G \ I. Our preferred coloring algorithm takes advantage of

maximal independent sets within G to shorten the coloring pro-

cess.

Step 1: Construct Input Graphs

The method begins with N graphs {G1,G2,G3, ...,GN} cre-

ated by the designer to represent N iterations of a product. Each

graph Gi is made up of:

3 Copyright c© 2020 by ASME



V (Gi): a set of vertices, where each vertex represents a

Functional Requirement (FR) of the product during the ith

iteration.

E(Gi): a set of edges where each edge represents a funda-

mental conflict between FRs during the ith iteration.

All vertices and edges are set by the designer. Note that the

designer may choose to add Functional Requirements (as ver-

tices) to successive Gi’s, and/or new edges representing conflicts.

For example, in order for a product to be easily repaired, it may

need an additional feature that conflicts with one of the func-

tional requirements of the original design. Alternatively, the de-

signer may choose to remove Functional Requirements and/or

edges in subsequent iterations of a product - i.e., certain features

and requirements of the design may become obsolete in future

iterations. See Example 2, below, for a demonstration of how

Functional Requirements may shift between iterations.

The designer places edges between vertices (FRs) that

should not be combined into a single part of the finished prod-

uct. For example, in the design of a mechanical pencil, the FR of

’marking’ and the FR of ’erasing’ have the fundamental conflict

that they cannot be the same material. A designer would place

an edge between the vertices representing these FRs in the graph

representing the pencil.

Furthermore, the designer defines a set of labels k ∈
{1,2,3, ...}, where each label k corresponds to a subset of ver-

tices in Gi. These labels are used to group vertices according to

any design specification of interest. Examples of possible uses

include grouping FRs with similar expiry dates, or those with

equivalent costs to replace. These subsets of vertices grouped by

label partition V (Gi), so that each vertex has one and only one

label. The information in these labels will allow us to increase

the efficiency of our coloring algorithm, in a method inspired by

the work of Eppstein [17] and Byskov [18] which improved col-

oring algorithms by looking at maximal independent subsets of

graphs.

The completed iteration graphs Gi are the inputs to Algo-

rithm 1.

Step 2: Define Core Graph

The next task is to identify the core graph, GC which will

include those Functional Requirements common to all N graphs.

We build the vertex set of GC by taking the intersection of all

v(Gi) for each Gi ∈ {G1,G2, ...,GN}, as in Eqn. 1:

⋂

i≤n

V (Gi) =V (GC) (1)

We build the edge set of GC by first finding a subgraph HiC ∈ Gi

for each i such that HiC includes all edges induced by V (GC).
We then take the union of edges E(HiC) in those subgraphs as in

Input: A set of graphs G1,G2, ...,GN

Output: Void

Result: A set of N properly-colored graphs

1 Let GC be an empty graph;

2 for each vertex u ∈V (G1 ∩G2 ∩ ...∩GN) do

3 GC = GC +u;

4 end

5 for each edge uv in GC do

6 if e ∈ E(G1 ∪G2 ∪ ...∪GN) then

7 GC = GC +uv;

8 end

9 end

10 Let c = 1;

11 c = colorByLabel(c, Gc);

12 for each Gi of G1,G2, ...,GN do

13 Gi=Gi −GC;

14 colorByLabel(c, Gi);
15 Gi = Gi ∪GC;

16 end

Algorithm 1: main

Input: A graph H, each vertex having a numeric label

A number c, the next available color

Output: A number c representing the last used color

Result: H is now properly colored

1 for each label L in H do

2 Let HL be the subgraph of vertices of H having

label L;

3 c = color(HL);

4 end

5 return c;

Algorithm 2: colorByLabel

Eqn. 2:

⋃

i≤n

E(HiC) = E(GC) (2)

This process occurs during lines 1-9 of Algorithm 1.

Step 3: Color Core Graph

Now that GC has been identified, it can be colored.

(3)(a) Beginning with color c = 1 and the smallest natural

number label k present in GC, we properly color all those vertices

with label k using any convenient coloring algorithm. We prefer

the method enumerated in [18]. This coloring algorithm finds

the chromatic number of G by populating an array X of length 2n

4 Copyright c© 2020 by ASME



with the chromatic numbers of all the subgraphs in the power set

of G, including G itself. It then colors G by finding a subgraph

S ⊂ G such that X [S] = X [G]−1, and then assigns the first color

to the vertices of G−S. It then finds a subgraph T ⊂ S such that

X [T ] = X [S]−1 and assigns color 2 to the vertices of S−T and

so on until all the vertices of G are colored. Note that after we

have applied the coloring algorithm that the last color used in this

process is currently stored in the variable c.

(3)(b) Once all vertices with label k are colored, we move

to label k+ 1, and increment to the next color, c = c+ 1. This

ensures that parts with different labels are guaranteed to have dif-

ferent colors in the final graph. Once we have made it through

every label, the core graph GC is properly colored, and the num-

ber c+ 1 contains the next available color. This occurs during

lines 10-11 of Algorithm 1, which invokes Algorithm 2.

Step 4: Color Remaining Vertices

The next step is to color those vertices of each Gi in

{G1,G2, ...,GN} that are outside of GC. Note that we’ll be start-

ing with next available color after those in GC. We find Gi \GC,

which is all vertices and edges in Gi that do not appear in GC.

Then as before, we color Gi \GC by label as in Algorithm 2. We

then build the unified graph (Gi \GC)
⋃

GC, which is a properly

colored copy of Gi. This occurs over lines 12-16 of Algorithm

1. Note that we begin the complete coloring of subsequent iter-

ations G j \GC where j > i with the same initial color, the next

available color after coloring the Core Graph.

ALGORITHM ANALYSIS

Per Byskov’s improvement of Epstein’s coloring algorithm,

it takes O(2.0423n+2n) time to properly color a general graph of

n nodes [18] [17]. In our algorithm, we have N graphs to color,

raising the time to O(N(2.0423n + 2n)). The fact that we are

coloring by label, however, reduces this complexity somewhat.

Supposing that each graph has k labels and that the number of

vertices under each label is about n/k, then for each graph Gi we

are coloring k subgraphs of Gi with n/k nodes in the subgraph.

Our overall runtime is then O(Nk(2.0423n/k + 2n/k). This com-

pares favorably with minimum coloring runtimes established by

Beigel and Lawler [19, 20].

EXAMPLES

We here include two examples of the coloring and unifica-

tion process. The first example represents an abstract product

with two input graphs. The second example is a real-world ex-

ample showing three iterations of a tethered Wi-Fi and Bluetooth

enabled speaker, which has three input graphs. Each input graph

represents some iteration of the product. In each example, labels

v11

v2 1

v3 2

v4 3v52

v63

v73

v8 2v9

1

v101

(a) Ex. 1 G1

v11

v2 1

v3 2

v4 3v52

v63

v73

v11 3v12

3

v132

(b) Ex. 1 G2

FIGURE 1: EXAMPLE 1 INPUT GRAPHS WITH LABELS

are shown as boldface numbers beside each node. Each node rep-

resents a specific FR, and the labels represent some shared qual-

ity such that we would like to unite those FRs into a single part

if possible. This desire is reflected in the algorithm itself, which

breaks the input graphs down label-wise, and tries to color nodes

of the same label with the same color, only failing to do so if the

presence of an edge forbids it.

Example 1

Step 1 Consider the example input graphs in Fig. 1.

Step 2 From these input graphs G1 and G2, we take the

intersection of vertices appearing in both graphs to find the core

graph GC.

Step 3a Once GC is found, we begin to color the graph

by first examining and coloring the vertices labelled 1. Thus,

any vertex labelled 1 will receive the same color, unless an edge

between vertices (representing a conflict between functional re-

quirements) forbids this. In this case, since the two vertices la-

belled 1 are adjacent to one another, we color the first, v1, red,

5 Copyright c© 2020 by ASME



v11

v2 1

v3 2

v52 v4 3

v63

v73

(a) Ex. 1 GC

FIGURE 2: EXAMPLE 1 CORE GRAPH WITH COLORING

v11

v2 1

v3 2

v52 v4 3

v63

v73

v8 2v9

1

v101

(a) Ex. 1 Result G1

v11

v2 1

v3 2

v52 v4 3

v63

v73

v11 3v12

3

v132

(b) Ex. 1 Result G2

FIGURE 3: EXAMPLE 1 COLORING RESULT

and the second, v2, green.

Step 3b Once all vertices labelled 1 are colored, we pro-

ceed to vertices labelled 2. At this stage, we choose the next

available color not used on vertices of label 1, thus guaranteeing

that vertices of different labels will have different colors. In this

case, the two vertices labelled 2 are not adjacent, so they are both

colored blue. This process continues through all the labels until

GC is properly colored (see Fig. 2).

Step 4 Once the core graph is colored, we return to each

of the input graphs G1 and G2 and color remaining vertices, again

proceeding by label, and beginning each Gi with the next avail-

able color after coloring the Core Graph. A final coloring of the

input graphs is shown in Fig. 3. The graph G1 has been colored

with 7 colors and the graph G2 with 8 colors. Thus the item rep-

resented by these graphs can be manufactured with 7 or 8 colors

depending on which input graph is of more importance to the de-

signer. If the designer chooses to retain the complete functional

requirements of both iterations, they will need 10 distinct parts

because 10 colors are used to color both of the two input graphs

completely.

Example 2

The second example is a real-world product: an internet-

enabled speaker. In our hypothetical scenario, the designer is

considering three iterations of the product:

1. Basic Model: The product has modest performance specifi-

cations and is controlled via Bluetooth only.

2. Voice Assistant Model: The product has modest perfor-

mance specifications and is Bluetooth and Wi-Fi enabled,

and has a microphone for voice control.

3. Hi-Fi Model: The product is Bluetooth and Wi-Fi enabled,

has a microphone for voice control, uses a high performance

speaker and amplifier, and has manual volume control.

The designer will apply our coloring algorithm to fix which func-

tional requirements will appear in each iteration, and to deter-

mine the effects of these differences on the number of parts re-

quired. Additionally, application of the algorithm will give the

designer an idea of which functional requirements have the ca-

pacity for ongoing development throughout the product’s life cy-

cle.

Step 1 Consider the example input graphs in Fig. 4. Each

vertex, in addition to its index, is assigned a label (appearing here

as a bold numeral next to the vertex). Any number of labels can

be used, and these labels could represent any classifications the

designer wishes to apply to the various functional requirements.

Possible uses for the labels include distinguishing between FRs

with different development or upgrade cycles; FRs designed by

different departments in a large corporation; or FRs with differ-

ent software requirements. In this case, let there be three labels

representing supply chain sources for each type of part, roughly

classified as 1: electronic, 2: physical, and 3: acoustic. Table 1

specifies the assignment of functional requirements to labels and

vertices, and indicates which FRs are included in each iteration.

6 Copyright c© 2020 by ASME



TABLE 1: EXAMPLE 2: TETHERED SPEAKER FUNC-

TIONAL REQUIREMENT VERTEX ASSIGNMENT

Iterations

Functional Requirement Vertex Label B
a

si
c

M
o

d
el

V
o

ic
e

A
ss

is
ta

n
t

H
i-

F
i

M
o

d
el

Sound Output v1 3 X X

Improved Sound Output v12 3 X

Sound Input v10 3 X X

Power Input v2 1 X X X

Amplification v3 1 X X

Improved Amplification v13 1 X

Computation v4 1 X X X

Bluetooth v5 1 X

Bluetooth & Wi-Fi v11 1 X X

Enclosure v6 2 X X X

Manual Level Control v14 2 X

Activation v7 2 X X X

Portability v8 2 X X

Power Storage v9 1 X X X

v13

v21 v31 v41 v51

v6

2

v7

2

v8

2

v91

(a) Ex. 2 G1 Basic Model

v1

3

v21 v31 v41

v6

2

v7

2

v91

v8

2

v10

3

v11 1

(b) Ex. 2 G2 Voice Assistant Model

v21 v41

v6

2

v7

2

v10

3

v11 1

v91

v12

3

v13 1

v14

2

(c) Ex. 2 G3 Hi-Fi Model

FIGURE 4: EXAMPLE 2 INPUT GRAPHS WITH LABELS

7 Copyright c© 2020 by ASME



Step 2 Following the unification process carried out by

Algorithm 1, the Core Graph for these inputs is shown in Fig. 5.

Note that the Core Graph contains only the following Functional

Requirements: v2 Power Input, v4 Computation, v9 Power Stor-

age, v6 Enclosure, and v7 Activation. These are the functional

requirements which are common to each iteration of the speaker.

Step 3(a,b) We color GC by label with a proper coloring

according to Algorithm 2. We first color all vertices labelled 1.

In this case, there is no conflict between v2 (Power Input) and v4

(Computation), so these two vertices can both receive the color

red. Since the remaining vertex of label 1, v9 (Power Storage),

has a conflict with the other two vertices labelled 1, it gets the

next available color, green. Note: this conflict stems from the

impracticability of affixing a large, removable battery to the same

circuit board as the parts associated with the other Functional

Requirements labelled 1. Next, we move on to label 2, and since

there is no conflict between v6 (Enclosure) and v7 (Activation),

we assign the next available color, blue, to both vertices labelled

2. Thus we see that three colors are sufficient to achieve a proper

coloring of the core graph GC. This indicates that three basic

components, corresponding to the three colors, can be built and

used in the assembly of all three iterations:

GC Core Graph Coloring Interpreted as Parts

Red Single circuit board with power supply (Power Input) and

system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Activation)

Green Replaceable battery (Power Storage)

Step 4 Once the Core Graph is colored, we return to the

remaining uncolored vertices in each iteration. We begin color-

ing G1 \GC with the next available color after core coloring is

complete: c+ 1 (in this case, orange) in reference to the out-

put c of Algorithm 1. We then proceed to color by label as in

Algorithm 2, beginning with vertices labelled 1. Since v3 (Ba-

sic Amplification) and v5 (Bluetooth) have no conflict, they can

both be colored orange. We proceed to v8 (Portability), the only

uncolored vertex labelled 2 in this iteration, which receives the

next available color: purple. Finally, we color the lone vertex

labelled 3, v1 (Basic Sound Output) yellow. Six colors suffice

to completely color G1, indicating that the Functional Require-

ments could be combined into six independent parts when the

Basic Model of the speaker is built (see Figure 7a for a render-

ing):

G1 Basic Model Coloring Interpreted as Parts

Red Single circuit board with power supply (Power Input)

and system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Activa-

tion)

Green Replaceable battery (Power Storage)

v21 v41

v6

2

v7

2

v91

(a) Ex. 2 GC Core Graph

FIGURE 5: EXAMPLE 2 CORE GRAPH WITH COLORING

Orange Circuit board with a 10 Watt 10db S/N Amplifier (Ba-

sic Amplification) and a bluetooth antennae (Bluetooth

Connectivity)

Purple Handle (Portability)

Yellow 5 Watt Speaker (Basic Sound Output)

We proceed next to G2 \GC, which we will color by label as

in Algorithm 2. Note that we will begin coloring G2 \GC with

the same initial color that we used to begin coloring G1 \GC:

orange. Since the two vertices labelled 1, v3 (Basic Amplifica-

tion) and v11 (Bluetooth and Wi-Fi), have no conflict, they are

both labelled orange. The lone uncolored vertex labelled 2, v8

(Portability), is colored purple. Finally, the two vertices labelled

3 have a conflict in the form of a shared edge, so they are col-

ored yellow for v1 (Basic Sound Output) and light blue for v10

(Sound Input). Thus seven colors complete the coloring of G2,

indicating that the Functional Requirements could be combined

into seven independent parts when the Voice Assistant Model of

the speaker is built (see Figure 7c for a rendering):

G2 Voice Assistant Model Coloring Interpreted as Parts

Red Single circuit board with power supply (Power In-

put) and system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Acti-

vation)

Green Replaceable battery (Power Storage)

Orange Circuit board with a 10 Watt 10db S/N Amplifier

(Basic Amplification) and a combined Bluetooth

and Wi-Fi antennae (Bluetooth and Wi-Fi)

Purple Handle (Portability)

Yellow 5 Watt Speaker (Basic Sound Output)

Light Blue Microphone (Sound Input)

Finally, we begin to color G3\GC, again starting with orange

as the first available color after core coloring is complete. This

iteration of the product includes the FRs of Improved Sound Out-

put and Improved Amplification, so will include new vertices.

Since the two vertices labelled 1, v13 (Improved Amplification)

8 Copyright c© 2020 by ASME



and v11 (Bluetooth and Wi-Fi), have no conflict, they are both

labelled orange. The lone uncolored vertex labelled 2, v14 (Man-

ual Level Control), is colored purple. Finally, the two vertices

labelled 3 have a conflict in the form of a shared edge, so they

are colored yellow for v10 (Sound Input) and light blue for v12

(Improved Sound Output). Thus seven colors complete the col-

oring of G3, indicating that the Functional Requirements could

be combined into seven independent parts when the Hi-Fi Model

of the speaker is built (see Figure ?? for a rendering):

G3 Hi-Fi Model Coloring Interpreted as Parts

Red Single circuit board with power supply (Power In-

put) and system on a chip (Computation)

Blue Case (Enclosure) with built-in on/off button (Acti-

vation)

Green Replaceable battery (Power Storage)

Orange Circuit board with a 100 Watt 50 db S/N Ampli-

fier (Improved Amplification) and a combined Blue-

tooth and Wi-Fi antennae (Bluetooth and Wi-Fi)

Purple Volume Buttons (Manual Level Control)

Yellow Microphone (Sound Input)

Light Blue 50 Watt Speaker (Improved Sound Output)

A final coloring of the input graphs is shown in Figure 6.

A rendering of possible build structures for the three iterations

is shown in Figure 7. For each iteration, every color in the final

coloring has been interpreted as a part with one or more com-

ponents. These parts are outlined in the color used in the corre-

sponding graph for each iteration. Note that this technique allows

the designer to clearly see which functional requirements remain

fixed over time, and which can be modified over time. Addition-

ally, the changes to the product over time, as FR’s are added and

removed, is clearly rendered in both the coloring graphs and the

final renderings.

This is a small-scale example of how our proposed coloring

method can be used to design for multiple product iterations, and

as such is quite simple. We include this example to show how

the method works, and to indicate the utility of our proposed

algorithm in cases with many more iterations and Functional Re-

quirements.

v13

v21 v31 v41 v51

v6

2

v7

2

v8

2

v91

(a) Ex. 2 G1 Basic Model Final Coloring

v1

3

v21 v31 v41

v6

2

v7

2

v91

v8

2

v10

3

v11 1

(b) Ex. 2 G2 Voice Assistant Model Final Coloring

v21 v41

v6

2

v7

2

v10

3

v11 1

v91

v12

3

v13 1

v14

2

(c) Ex. 2 G3 Hi-Fi Model Final Coloring

FIGURE 6: EXAMPLE 2 COLORING RESULT

9 Copyright c© 2020 by ASME





ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation–USA under grants CMMI-2017968

and CMMI-1903810. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] Zittrain, J., 2008. The Future of the Internet - and How to

Stop It. Yale University Press, New Haven, CT.

[2] Hoofnagle, C., Kesari, A., and Perzanowski, A., 2019.

“The tethered economy”. George Washington Law Review,

87(4), July, p. 783.

[3] Gopalakrishnan, P., Cavallaro, J., Jahanbekam, S., and Be-

hdad, S., 2019. “A graph coloring technique for identi-

fying the minimum number of parts for physical integra-

tion in product design”. In International Design Engineer-

ing Technical Conferences and Computers and Information

in Engineering Conference, Vol. 4 of American Society of

Mechanical Engineers Digital Collection. Paper number

DETC2019-98251.

[4] Kiritsis, D., Bufardi, A., and Xirouchakis, P., 2003. “Re-

search issues on product lifecycle management and infor-

mation tracking using smart embedded systems”. Advanced

Engineering Informatics, 17(3), July, pp. 189–202.

[5] Kjaer, L., Pigosso, D., Niero, M., Bech, N., and McAloone,

T., 2019. “Product/service systems for a circular economy:

The route to decoupling economic growth from resource

consumption?”. Journal of Industrial Ecology, 23(1),

February, pp. 22–35.

[6] Lewandowski, M., 2016. “Designing the buisness models

for circular economy - towards the conceptual framework”.

Sustainability, 8(1), January, p. 43.

[7] Svensson, S., Richter, J., Maitre-Ekern, E., Pihlajarinne, R.,

Maigret, A., and Dalhammar, C., 2018. The emerging ‘right

to repair’ legislation in the eu and the u.s. Paper Presented

at Going Green CARE INNOVATION 2018 Conference,

November.

[8] Crootof, R., 2019. “The internet of torts: Expanding civil

liability standards to address corporate remote interefer-

ence”. Duke Law Journal, 69(3), December, pp. 583–667.

[9] Zhang, G., Morris, E., Allaire, D., and McAdams, D., 2020.

“Research opportunities and challenges in engineering sys-

tem evolution”. Journal of Mechanical Design, 142(8),

August.

[10] Vinodh, S., and Rathod, G., 2014. “Application of life cy-

cle assessment and monte carlo simulation for enabling sus-

tainable product design”. Journal of Engineering, Design

and Technology, 12(3).

[11] Zhao, Y., Xu, J., and Thurston, D., 2011. “A hierarchical

bayesian method for market positioning in environmentally

conscious design”. In Proceedings of the ASME Design

Engineering Technical Conference, Vol. 9 of American So-

ciety of Mechanical Engineers Digital Collection, pp. 3–16.

Paper number DETC2011-47898.

[12] Du, X., 2006. “Uncertainty analysis with probability and

evidence theories”. In Proceedings of the ASME De-

sign Engineering Technical Conference, Vol. 1 of Amer-

ican Society of Mechanical Engineers Digital Collection,

pp. 1025–1038. Paper number DETC2006-99078.

[13] Behera, A., McKay, A., Earl, C., Chau, H., Robinson,

M. A., de Pennington, A., and Hogg, D., 2019. “Sharing

design definitions across product life cycles”. Research in

Engineering Design, 30(3), January, pp. 339–361.

[14] Tilstra, A., Seepersad, C., and Wood, K., 2009. “Analysis

of product flexibility for future evolution based on design

guidelines and a high-definition design structure matrix”.

In Proceedings of the ASME Design Engineering Techni-

cal Conference, Vol. 5 of American Society of Mechanical

Engineers Digital Collection, pp. 951–964. Paper number

DETC2009-87118.

[15] Eppinger, S., and Browning, T., 2012. Design Structure

Matrix Methods and Applications. MIT Press, Cambridge,

MA.

[16] Borjesson, F., and Hölttä-Otto, K., 2012. “Improved clus-

tering algorithm for design structure matrix”. In Proceed-

ings of the ASME Design Engineering Technical Con-

ference, Vol. 3 of American Society of Mechanical En-

gineers Digital Collection, pp. 921–930. Paper number

DETC2012-70076.

[17] Eppstein, D., 2003. “Small maximal independent sets and

faster exact graph coloring”. Journal of Graph Algorithms

and Applications, 7(2), pp. 131–140.

[18] Byskov, J. M., 2004. “Enumerating maximal independent

sets with applications to graph colouring”. Operations Re-

search Letters, 32, November, pp. 547–556.

[19] Beigel, R., and Eppstein, D., 2005. “3-coloring in time

O(1.3289n)”. Journal of Algorithms, 54(2), February,

pp. 168–204.

[20] Lawler, E., 1976. “A note on the complexity of the chro-

matic number problem”. Information Processing Letters,

5(3), August, pp. 66–67.

11 Copyright c© 2020 by ASME


