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Abstract—Panoramic video streaming has received great at-
tention recently due to its immersive experience. Different from
traditional video streaming, it typically consumes 4 ~ 6x larger
bandwidth with the same resolution. Fortunately, users can only
see a portion (roughly 20%) of 360 scenes at each time and thus
it is sufficient to deliver such a portion, namely Field of View
(FoV), if we can accurately predict user’s motion. In practice, we
usually deliver a portion larger than FoV to tolerate inaccurate
prediction. Intuitively, the larger the delivered portion, the higher
the prediction accuracy. This however leads to a lower transmis-
sion success probability. The goal is to select an appropriate
delivered portion to maximize system throughput, which can
be formulated as a multi-armed bandit problem, where each
arm represents the delivered portion. Different from traditional
bandit problems with single feedback information, we have two-
level feedback information (i.e., both prediction and transmission
outcomes) after each decision on the selected portion. As such,
we propose a Thompson Sampling algorithm based on two-level
feedback information, and demonstrate its superior performance
than its traditional counterpart via simulations.

I. INTRODUCTION

Panoramic or 360° video streaming has received great atten-
tion in recent years, since it provides immersive experience for
users as if they are in a virtual 3D world. One key challenge in
high resolution panoramic video streaming is that 360° video
delivery typically consumes 4 ~ 6x bandwidth of a regular
video with the same resolution (see [1]). Fortunately, a user
may only need to see as low as 20% of 360° scenes, known as
Field of View (FoV), depending on her/his perspective without
affecting her/his visual perception. For instance, in the case of
a panoramic roller coaster video, a user can see either the front
views or the back views in a time slot. Thus, if a user’s motion
is accurately predicted, it is sufficient to deliver just 20% of
360° video scenes surrounding him/her, which dramatically
reduces the network bandwidth consumption.

In practice, we usually deliver a portion larger than FoV to
tolerate the motion prediction error. In order for the user to
successfully view his/her desired content, the portion should
be successfully delivered and covers the user’s FoV. Intuitively,
the larger the delivery portion, the more tolerance for motion
prediction error and the lower chance for successful wireless
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transmission. Therefore, the natural question is how to select
an appropriate delivery portion at each time with the goal of
maximizing system throughput.

Recent works (e.g., [1]-[7]) have developed efficient user’s
motion prediction algorithms and incorporated them into the
panoramic video delivery. However, these results require a
large training dataset to achieve desired performance and
thus are not directly applicable in fast changing wireless
environments. As such, we aim to develop an algorithm that
can quickly determine the optimal delivery portion over a
finite time horizon. This can be formulated as a multi-armed
bandit problem, where each arm corresponds to the delivery
portion of the panoramic scene and the goal is to minimize
the cumulative regret (i.e., the difference between the optimal
cumulative throughput and the cumulative throughput under
the proposed algorithm) over a finite time horizon. The main
difference lies in that the considered setup has two-level
feedback information, i.e., both prediction and transmission
outcomes are available after an arm is played. As such,
we develop an algorithm based on the state-of-the-art bandit
algorithm, known as Thompson Sampling (e.g., [8]-[11]),
which samples each arm according to its posterior distribution
and selects the optimal arm. In particular, we propose a
Thompson Sampling method based on two-level feedback
information and show that it outperforms its counterpart with
single feedback information via simulations.

II. SYSTEM MODEL

We consider a single user downloading a panoramic video
from an access point over a wireless channel. We assume that
the system operates in a time-slotted manner. At each time
slot, the user can only see a portion (typically 20%) of the
whole panoramic scene, namely a Field of View (FoV). If a
user’s head movement can be accurately predicted, then it is
sufficient to deliver just 20% of the panoramic images, which
significantly reduces the wireless bandwidth consumption.
Unfortunately, it is hard to accurately predict a user’s motion.
As such, we usually deliver a portion larger than the FoV to
overcome the inaccurate user’s motion prediction.

Let R(t) denote the size of the portion of the panoramic
images that are going to be transmitted over the wireless
channel in time slot ¢ and thus we call R(t) the selected rate in
time slot ¢. We assume that R(t) can only be chosen from the
set R = {ry,7a,...,rn} ', where 0 < ry <7y < --- <71y

'In practice, panoramic images are usually projected into a rectangular and
divided into a finite number of tiles. For example, if you split the whole scene
into 4 rows and 8 columns, then you will get 32 tiles in total.



and r; and ry are the size of FoV and the whole panoramic
images, respectively. We use X,(t) = 1 to denote that
R(t) = ry, is large enough such that the delivered portion
covers the user’s FoV in time slot ¢ and X, (¢) = 0 otherwise.
Let o, = Pr{X,(t) = 1} be the prediction probability and
thus we have a; < az < --- < ay (since the larger the
delivered portion, the higher the prediction probability). Here,
the AP knows the FoV after each transmission even it fails,
since the user’s device automatically records user’s current
position (yaw, pitch, roll) and sends back to the AP. Hence,
the AP knows the outcome of X (¢) no matter whether the
transmission succeeds or fails in time slot ¢.

We use C(t) to capture user’s channel fading in time
slot ¢, which is assumed to be independently and identically
distributed (i.i.d.) over time. We do not know the channel rate
at the beginning of each time slot. If the selected rate is not
greater than the channel rate in time slot ¢ (i.e., R(t) < C(t)),
then the wireless transmission will be successful in time slot
t. Otherwise, the transmission will fail. We use Y,,(t) =1 to
denote a successful transmission by selecting 7, in time slot
t and Y,,(t) = 0 otherwise. Let 3,, = Pr{Y,(t) = 1} be the
transmission probability. Note that the higher the selected rate
R(t), the lower the probability that the wireless transmission
succeeds. Hence, we have 81 > B3 > --- > (.

In this paper, the AP needs to make a decision on the
selected rate in order to maximize the system throughput.
If both user’s prediction and transmission probabilities (i.e.,
{an,Bn,n = 1,2,...,N}) are known, then this can be
achieved by solving the following optimization problem:

n* € argmax 7,a,05,. (D
n=1,2,...,N

Unfortunately, both prediction and transmission probabilities
are unknown, since they depend on many factors such as user’s
behavior, panoramic video content, and wireless environment.
This requires the algorithm not only to learn these statistics
(also known as (ak.a.) exploration) but also to select the
best rate so far (a.k.a. exploitation). Let I(¢) € {1,2,..., N}
denote the index of the selected rate in time slot ¢. Our goal
is to design a learning algorithm that achieves the maximum
system throughput within 7' time slots, where T is some
positive integer. This is equivalent to minimizing the regret,
which is the gap between the accumulated throughput and the
optimal throughput, i.e.,

T
Reg(T) £ Trye v B —B | Y i X1y () Y1 ()| - ()
t=1
In the next section, we will develop an algorithm that effec-
tively minimizes the regret.

III. ALGORITHM DESIGN

In this section, we will design an algorithm to achieve a low
regret over a finite time-horizon T'. This is similar to the clas-
sical multi-armed bandit problem that can be efficiently solved
by the well-known Thompson Sampling (TS) algorithm (see
[12]). Indeed, we can combine the prediction and transmission

results by letting Z,(t) = X,(¢)Y,(t),Vn = 1,2,..., N,
and then the TS algorithm (see Algorithm 1) can asymptot-
ically minimize the regret if we only know the outcome of
Ziw(t),t =1,2,...,T. In Algorithm 1, We maintain a pair

Algorithm 1 Thompson Sampling with Single Feedback
for each rate r,,, n =1,2,...,N, set S, =0 and F,, = 0.
for cacht=1,2,...,T:
1) For each rate r,, draw 7, (t) ~ Beta (S, + 1, F,, +1)°.
2) Choose the selected rate rr(;) satisfying

I(t) = argmax r,7v,(t).
n=1,2,....N

3) Observe the random outcome Zy(t).
4) (Posterior Update) If Z;(,(t) = 1, set Syy) = Sy +1;
otherwise, set Fr) = Fry) + 1.
end for

of counters which count the number of successes or failures
for each arm until time slot ¢. Then, in each time slot ¢, we
draw posterior probability for each arm from its updated Beta
distribution. Finally, we choose the action with the maximal
product of the rate and posterior probability and update the
counters accordingly.

Different from the traditional multi-armed bandit problem,
both prediction and transmission outcomes are available after
each decision on the selected rate. As such, we obtain two-
level feedback information from the environment. This mo-
tivates us to develop a two-level feedback TS algorithm, as
shown in Algorithm 2.

Algorithm 2 Thompson Sampling with two-level Feedback

for each rate r,, n =1,2,..., N, set S,(Ll) =0 and F,(Ll) =0
for the first-level feedback, S£L2) = 0 and F,gz) = 0 for the
second-level feedback.
for each t=1,2,...,7T :
1) For each rate r,,, draw «,(t) ~ Beta (S,(}) +1, F,E” +1)
and 3, (t) ~ Beta (Sﬁf) +1,FP + 1).
2) Choose the selected rate rr(;) satisfying
I(t) = argmax rpan(t) - Bu(t).
N

n=1,2,...,

3) Observe the random outcomes for both prediction
X (t) and transmission Y7 ) (t).
4) (Posterior Update) If X (t) = 1, set Si()) = S{() +1;

I(t)
otherwise, set FI((lt)) = FI((lt)) + 1 If Yy (t) = 1, set
(2) _ o2 . : (2 _ p®
S’I(t) = Sl(t) + 1; otherwise, set FI(t) = Fl(t) + 1.
end for

In Algorithm 2, we maintain one pair of counters for each
outcome in each arm. In particular, we maintain counters for
successful and unsuccessful predictions or transmissions. In

Beta(a, b) refers to the beta distribution whose probability density function
is given by pgp(z) £ 29711 — 2)*1/B(a,b), z € [0,1], where
B(a,b) 2 T'(a)T'(b)/T'(a + b) and T'(-) is the Gamma function.



each time slot, we generate posterior probabilities of motion
prediction and wireless transmission for each arm indepen-
dently. Then, we select the arm with the maximum product
of prediction and transmission probabilities as well as its
rate. Since Algorithm 2 has two-level feedback information,
it yields better performance compared with Algorithm 1, as
demonstrated via simulations in the next section.

IV. NUMERICAL RESULTS

In this section, we compare the regret performance between
both Algorithm 1 with single feedback information and Algo-
rithm 2 with two-level feedback information. We consider two
different simulation setups, both with five available selected
rates, as listed in TABLE 1. In the simulations, we set the
time horizon T to 10* time slots, and run 5000 experiments
to make sure that the average regret is sufficiently accurate.
The simulation results are shown in Fig. 1. From Fig. 1,
we can observe that Algorithm 2 with two-level feedback
information outperforms the traditional Thompson Sampling
algorithm with single feedback information. The reason lies
in that two-level information provides a much richer feedback
on both prediction and transmission decisions than the single
feedback on the successful/unsuccessful decisions.

arml | arm2 | arm3 | arm4 | arm5
Rate 7, 2 3 5 6 2
Prediction 0.1 03 0.5 0.65 0.9
prob. a,
Transmission 0.99 0.6 0.4 0.2 0.05
prob. S,
Average 0.198 | 054 | 1 | 0.78 | 0.405
throughput

(a) First simulation setup

arml | arm2 | arm3 | arm4 | arm5
Rate 7, 2 3 8 10 1
Prediction 0.01 0.08 0.8 0.88 0.95
prob. ay,
Transmission 0.99 0.9 085 | 0.15 0.05
prob. 53,
Average 0.198 | 0.216 | 544 | 132 | 05225
throughput

(b) Second simulation setup

TABLE I: Simulation Parameters
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Fig. 1: Regret Performance

V. CONCLUSION

In this paper, we considered the problem of adaptive rate
selection for panoramic video streaming and formulated it
as a multi-armed bandit problem with two-level feedback
information, where both prediction and transmission outcomes
of the selected arm are available after each play. Intuitively,
a larger selected rate increases the probability of success-
ful prediction but is at the cost of increasing the chance
of unsuccessful transmission. Our goal was to appropriately
determine the selected rate in each time slot with the goal of
maximizing system throughput over a finite horizon. To this
end, we proposed a modified Thompson Sampling algorithm
efficiently leveraging the two-level feedback information and
demonstrated that its performance is much better than its
counterpart with single-feedback information.
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