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Abstract. We consider the two dimensional focusing Davey-Stewartson
II system and construct the global solution of the Cauchy problem for
a dense in L2(C) set of initial data. We do not assume that the initial
data is small. So, the solutions may have singularities. We show that
the blow-up may occur only on a real analytic variety and the variety is
bounded in each strip t ≤ T .

1. Introduction

Let q0(z), z = x+ iy, (x, y) ∈ R2, be a compactly supported (or fast
decaying) sufficiently smooth function. Consider the two dimensional focus-
ing Davey-Stewartson II (DSII) system of equations for unknown functions
q = q(z, t), φ = φ(z, t), (x, y) ∈ R2, t ≥ 0 :

qt = 2iqxy − 4q(ϕ− ϕ),

∂ϕ = ∂|q|2,
q(z, 0) = q0(z).(1.1)

A smooth, decaying in z at infinity solution of (1.1) exists for all t > 0
if q0 is small enough, [1, 20, 21, 22, 3]. We will call this solution classical.
If q0 is not small, the solution was constructed locally in our previous work
[14] via the IST (inverse scattering transform) using the ∂-method that has
been generalized in [16], [12], [13] to the case when Faddeev type exceptional
points may be present. The solution was obtained in a neighbourhood of
any point (z0, t0) for generic initial data q0 that depend on the point. The
main objectives of this article are to obtain the solution for an arbitrary
initial data from a specific set and to get the global solution defined in the
whole space, including a description of the set where the solution blows up.
It will be shown that the latter set is a real analytic variety that is bounded
in every strip 0 ≤ t ≤ T .

Let us recall that the focusing DSII equation may have a finite time
blow-up (e.g., [17]). While the uniqueness is known for smooth (in some
sense) solutions, see [8], [9], one has to be careful with the definition of
the solution that has singularities. We understand these solutions in the
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following sense. Let us multiply the initial data q0 by a positive parameter
a ∈ (0, 1]. We will show that the classical solution that exists when a �
1 allows an analytic continuation into a complex neighborhood of (0, 1],
and this analytic continuation will be used to single out the solution with
singularities when a = 1. The main statement of the present paper is given
in Theorem 2.2 of Section 2.

Let us mention some recent articles on DSII: [11],[18],[19].

2. The solution of the Cauchy problem, main results

Let q0(z) ∈ L2(C). Denote

Q0(z) =

(
0 q0(z)

−q0(z) 0

)
, z ∈ C.(2.1)

Let ∂ = ∂
∂z = 1

2

(
∂
∂x + i ∂∂y

)
, and let the 2 × 2 matrix ψ(·, k), k ∈ C, be a

solution of the following problem for the Dirac equation in C :

(2.2)
∂ψ

∂z
= Q0ψ, ψ(z, k)e−ikz/2 → I, z →∞.

The corresponding generalized Lippmann-Schwinger equation has the fol-
lowing form:

ψ(z, k) = eikz/2I +

∫
C
G(z − z′, k)Q0(z

′)ψ(z′, k)dσz′ ,(2.3)

where G(z, k) = 1
π
eikz/2

z , dσz′ = dx′dy′. Here and below we use the same
notation for functional spaces, irrespectively of whether those are the spaces
of matrix-valued or scalar-valued functions. After the substitution,

(2.4) µ(z, k) = ψ(z, k)e−ikz/2, µ(z, k)− I → 0, z →∞,

equation (2.3) takes the form

µ(z, k) = I +
1

π

∫
C

ei<(kz)

z − z′
Q0(z

′)µ(z′, k)dσz′ ,(2.5)

and becomes Fredholm in Lq(C), q > 2, after the additional substitution
ν = µ− I (see, e.g., [15, lemma 5.3]).

Solutions ψ of (2.3) are called the generalized scattering solutions, and
the values of k such that the homogeneous equation (2.5) has a non-trivial
solution are called exceptional points. The set of exceptional points will be
denoted by E . Thus the scattering solution may not exist if k ∈ E . Note
that the operator in equation (2.5) is not analytic in k, and E ⊂ C may
contain one-dimensional components. There are no exceptional points in a
neighborhood of infinity (e.g., [20, lemma 2.8], [2, lemma C]). Let us choose
A� 1 and k0 ∈ C such that all the exceptional points are contained in the
disk

(2.6) D = {k ∈ C : 0 ≤ |k| < A},
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and k0 belongs to the same disc D and is not exceptional.
The generalized scattering data (an analogue of the scattering amplitude

in the standard scattering problem) are defined by the following integral
(when the integral converges)

(2.7) h0(ς, k) =
1

(2π)2

∫
C
e−iςz/2Q0(z)ψ(z, k)dσz, ς ∈ C, k ∈ C\E .

In fact, from the Green formula, it follows that h0 can be determined without
using the potential Q0 or the solution ψ of the Dirac equation (2.2) if the
Dirichlet data at ∂Ω are known for the solution of (2.2) in a bounded region
Ω containing the support of Q0:

(2.8) h0(ς, k) =
−i
8π2

∫
∂O
e−iςz/2ψ(z, k)dz, ς ∈ C, k 6∈ E .

Note that h0 is continuous when k /∈ D under minimal assumptions on Q
[20], [21], and moreover,

(2.9) h0 = h0(ς, k) ∈ C∞ when |k| ≥ A
if Q is bounded and decays faster then any power at infinity. This follows
from the fact that (2.5) admits differentiation in z and k when k /∈ D.

The inverse problem (recovery of Q when h0 is given) was solved using
∂−method in [1], [20, 21, 22] when the potential is small enough to guarantee
the absence of exceptional points. When E 6= ∅, the inverse problem was
solved in a generic sense in [13]. The latter results were applied in [14] to
construct solutions of the focusing DSII system. Let us recall some results
obtained in [14].

Consider the space

(2.10) Bs =
{
u ∈ Ls(C\D)

⋂
C(D)

}
, s > 2,

where C(D) is the space of analytic functions in D with the norm ‖u‖ =
supD |u|. Here and below, we use the same space notation for matrices as
for their entries.

Let operator Tz : Bs → Bs, s > 2, be defined as follows:

Tzφ(k) =
1

π

∫
C\D

ei(ςz+zς)/2φ(ς)Πoh(ς, ς)
dσς
ς − k

+
1

2πi

∫
∂D

dς

ς − k

∫
∂D

[ei(ςz+ς
′z)/2φ−(ς ′)Πo(2.11)

+ei(ς−ς
′)z/2φ−(ς ′)ΠdC]

[
Ln

ς ′ − ς
ς ′ − k0

]
h(ς ′, ς)dς ′,

where dσς = dςRdςI , z ∈ C, φ ∈ Bs, φ− is the boundary trace of φ from
the interior of D, C is the operator of complex conjugation, ΠoM is the
off-diagonal part of a matrix M , ΠdM is the diagonal part. Let us specify
the logarithmic function in (2.12). Let us shift the coordinates in C and
move the origin to the point ς ′ ∈ ∂D. Then we rotate the plane in such a
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way that the direction of the x-axis is defined by the vector from ς ′ to −ς ′.
Then | arg(ς ′ − ς)| < π/2, ς ′ 6= ς, and | arg(ς ′ − k0)| ≤ π/2, i.e.,∣∣∣∣arg

ς ′ − ς
ς ′ − k0

∣∣∣∣ < π, ς ′, ς ∈ ∂D, ς ′ 6= ς.

This defines the values of the logarithmic function uniquely.
It turns out that, after the substitution w = v − I ∈ Bs, s > 2, the

equation

(I + Tz)v = I

becomes Fredholm in Bs, and the potential q0 can be expressed explicitly in
terms of v (see [12, 13]).

In order to solve the DSII problem (1.1), we apply this reconstruction
procedure to a specially chosen scattering data. We start with the scattering
data h0 defined by q0 and extend it in time as follows:

(2.12) h(ς, k, t) := e−t(k
2−ς2)/2Πoh0(ς, k) + e−t(k

2−ς2)/2Πdh0(ς, k),

where ς ∈ C, k ∈ C\E , t ≥ 0. For t ≥ 0, we define the operator

Tz,tφ(k) =
1

π

∫
C\D

ei(ςz+zς)/2φ(ς)Πoh(ς, ς, t)
dσς
ς − k

+
1

2πi

∫
∂D

dς

ς − k

∫
∂D

[ei(ςz+ς
′z)/2φ−(ς ′)Πo(2.13)

+ei(ς−ς
′)z/2φ−(ς ′)ΠdC]

[
Ln

ς ′ − ς
ς ′ − k0

]
h(ς ′, ς, t)dς ′.

Theorem 2.1. ([14]) Let q0(·) be a function with compact support. Assume
that it is 6 times differentiable in x and y. Alternatively, this condition can
be replaced1 by the superexponential decay of q0:

(2.14) lim
z→∞

eÃ|z|∂ix∂
j
yq0(z) = 0 for each Ã > 0, i+ j ≤ 6.

Then, for each s > 2, the following statements are valid.
1) The operator Tz,t is compact in Bs for all z ∈ C, t ≥ 0, and depends

continuously on z and t ≥ 0. The same property holds for its first deriva-
tive in time and all the derivatives in x, y up to the third order, where the
derivatives are defined in the norm convergence. The function Tz,tI belongs
to Bs for all t ≥ 0.

2) Let the kernel of I +Tz,t in the space Bs be trivial for (z, t) in an open
or half open2 set ω ⊂ R3. Let vz,t = wz,t + I, where wz,t ∈ Bs is the solution
of the equation

(2.15) (I + Tz,t)wz,t = −Tz,tI.

1This fact was not mentioned in the paper, but it can be easily checked
2We will say that a set ω of points (z, t) in R3

+ = R3 ⋂{t ≥ 0} is half-open if ω contains
points where t = 0 and, for each point (z0, 0) ∈ ω, there is a ball B0 centered at this point
such that B0

⋂
{t ≥ 0} ⊂ ω.
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Then functions q, ϕ defined by(
ϕ(z, t) q(z, t)
−q(z, t) ϕ(z, t)

)
:=
−i
2π

(Πo+∂Πd)

(∫
C\D

ei(ςz+zς)/2vz,t(ς)Π
oh(ς, ς, t)dσς

− 1

2i

∫
∂D
dς

∫
∂D

[ei(ςz+ς
′z)/2v−z,t(ς

′)Πo

(2.16) −ei(ς−ς′)z/2v−z,t(ς ′)ΠdC]

[
Ln

ς ′ − ς
ς ′ − k0

]
h(ς ′, ς, t)dς ′

)
,

satisfy all the relations (1.1) in the classical sense when (z, t) ∈ ω. In
particular, q(z, 0) = q0(z).

3) Consider a set of initial data aq0(z) that depend on a ∈ (0, 1]. Then
equation (2.15) with Q0 replaced by aQ0 (Q0 is fixed) is uniquely solvable
for almost every (z, t, a) ∈ R2 × R+ × (0, 1]. Moreover,3 for each (z, t), the
solution of (2.15) is meromorphic in a ∈ [0, 1] and has at most a finite set
of poles a = aj(z, t).

Remark. All the exceptional points are located in a disk whose radius
depends only on the norm of aq0. Hence D and k0 can be chosen indepen-
dently of a ∈ [0, 1] (see [13, Lemma 5.1]). From now on, we assume that
the disk D is fixed and contains the exceptional points for all the potentials
aq0, a ∈ [0, 1].

In order to state the main results of the present paper, we need to recall
the construction (e.g., [20]) of the global solution of (1.1) when q0 is small.
The latter expression (”q0 is small”) will be used below only for problem
(1.1) with initial data aq0 where q0 is infinitely smooth and satisfies (2.14),
and 0 < a � 1. Let us recall that the scattering problem (2.2) and the
Lippmann-Schwinger equation (2.3) are uniquely solvable for all k when q0
is small, i.e., there are no exceptional points in this case and h0(k, k) is
defined for all the values of k. Operator Tz,t is needed only with D = ∅
if q0 is small. Hence, only the first term is present in the right-hand side
of (2.13). Moreover, ‖Tz,t‖ < 1 when q0 is small, and therefore equation
(2.15) is uniquely solvable for all z ∈ C, t ≥ 0. Then (q, φ) given by (2.16)
with D = ∅ is a smooth global solution of problem (1.1) with the small
initial data. We will call this solution classical. It exists under a weaker
assumption on the decay of q0 than in Theorem 2.1.

We will consider analytic continuations of functions h0, q0, and we need
some notation. Let γ = (γ1, γ2) ∈ C2 and let Aγ : C → C2 be the map
defined by Aγz = Aγ(x+ iy) = (x+ γ1, y+ γ2) ∈ C2, i.e., the map Aγ shifts
real points x, y into complex planes. If a function f = f(z) is analytic in
(x, y), then Bγf(z) := f(Aγz) is the value of the analytic continuation of f
at point Aγz. We will use notation A′σ, B

′
σ, σ ∈ C2, for the same operations

3that statement can be found in [13, lemma 5.1]
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applied to a function of k ∈ C, and A′′η, B
′′
η , η ∈ C2, if they are applied to a

function of ς ∈ C.
The main result of the paper is obtained under the following condition on

the initial data that must hold for large enough R:
Condition Q(R). The initial data q0 admits analytic continuation in

(x, y) and, for a given R > 0, there exist a C = C(R) such that

|Bγq0(z)| ≤ Ce−R|z|, z ∈ C, when |γ| ≤ R.

Remark. Clearly, linear combinations of Gaussian functions satisfy Condi-
tion Q(R) for all R > 0, and it was shown in [4, 5] that these combinations
form a dense set in L2(C).

We will show that Condition Q(R) implies a similar behavior of the scat-
tering data, i.e., the validity of the following assumption.

Condition H(R). For a given R > 0, the estimate

|h0(ς, ς)| ≤ e−R|ς| as |ς| → ∞

holds, and there exists C = C(R) and a0(R) such that the scattering data
h0(ς, ς) for the potential aq0 with a ∈ (0, a0) admits analytic continuation
B′′ηh0(ς, ς), |η| ≤ R, with respect to variables ςi, and

|B′′ηh0(ς, ς)| ≤ C(R)e−R|ς|, ς ∈ C, when |η| ≤ R.

We will show that there is a duality between these two conditions. To
be more exact, the validity of Q(R) implies the validity of H(R − ε). Con-
versely, if the initial data is small, Condition H(R) holds, and h0 is extended
in time according to (2.12), then the potential q(z, t) that corresponds to
the extended data h(ς, ς, t) satisfies Condition Q(R) with a smaller R that
depends on t. These results will be obtained in the next section. Note that
they are an analogue of similar results of L. Sung ([21, Cor. 4.16 ]) who
established a duality of the non-linear Fourier transform in the Schwartz
class. We need a refined result to study the more complicated form (2.13)
of operator Tz,t that appears in the presence of exceptional points.

Below is the main statement of the present paper.

Theorem 2.2. Let us fix an arbitrary disk D containing all the exceptional
points for the potentials aq0(z), a ∈ [0, 1]. Let Condition Q(R) hold with
R > (1 + 2T )A, where A is the radius of the disk D. Then

1) for each point (z, t), 0 ≤ t ≤ T , the classical solution (q, φ) of problem
(1.1) with the initial data aq0 and small enough a > 0 admits a meromorphic
continuation with respect to a in a neighborhood of the segment [0, 1]. This
meromorphic continuation is given by (2.16) with an arbitrary choice of the
disk D and an arbitrary choice of point k0 ∈ ∂D4.

2) when a = 1, the analytic continuation of (q, φ) is infinitely smooth and
satisfies (1.1) everywhere, except possibly a set S that is bounded in the strip

4all the exceptional points are inside D, i.e., all the points on ∂D are non-exceptional.
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0 ≤ t ≤ T, (x, y) ∈ R2, and is such that St = S
⋂
{t = const} is a bounded

1D real analytic variety.

Remark. The theorem implies that the local solutions found in Theorem
2.1 are analytic continuations in a of the global classical solutions (under
the assumption that condition Q(R) holds). At the same time, the theorem
does not prohibit the solution from blowing up at an arbitrarily small time
t > 0 (see the recent paper [10] and citations there on instantaneous blow-
ups). We can’t say anything about relation between our global solution and
local solutions found in [8].

Two important technical improvements of the previous results will be
used in the proof of Theorem 2.2. First, we will show that the Hilbert space
B2 can be used in Theorem 2.1 instead of the Banach space Bs, s > 2. The
space B2 is defined as follows:

(2.17) B2 =
{
u ∈

(
L2(C\D)⊕ C1

)⋂
L2
+(∂D)

}
.

Here C1 is the one-dimensional space of functions of the form cβ(k)
k , where

c is a complex constant, β ∈ C∞ is a fixed function that vanishes in a
neighbourhood of the disk D and equals one in a neighbourhood of infinity.
By L2

+(∂D) we denote the space of analytic functions u =
∑

n≥0 cnz
n in D

with the boundary values in L2(∂D) and the norm

‖u‖L2
+(∂D) =

∑
n≥0

A2n|cn|2
1/2

,

where A is the radius of the disk D.
Secondly, we will simplify the form of the operator Tz,t by writing the

second term in (2.12) and (2.13) without the logarithmic factor. We also
will allow k0 to be on ∂D, and not necessarily in D, and show that formula
(2.13) in the latter case can be written as

Tz,tφ(k) =
1

π

∫
C\D

ei(ςz+zς)/2φ(ς)Πoh(ς, ς, t)
dσς
ς − k

−(2.18)

i

∫
∂D

dς

ς − k

∫
k̂0,ς

[ei(ςz+ς
′z)/2φ−(ς ′)Πo + ei(ς−ς

′)z/2φ−(ς ′)ΠdC]
[
h(ς ′, ς, t)dς ′

]
,

where k̂0, ς is the arc on ∂D between points k0 and ς with the counter
clock-wise direction on it.

The following two difficulties were resolved in the paper. We show that
if one starts with a small potential q0 and its scattering data h0(ς, ς), and
extends h0(ς, ς) in time according to (2.12), then the solution q(z, t) of the in-
verse scattering problem with the scattering data (2.12) decays exponentially
at infinity, and the scattering data (2.7) for this potential q(z, t) coincides
with the scattering data h(ς, ς, t) from which the potential was obtained
(this will be done in the next section). Another difficulty concerns the proof
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of the invertibility of operator I+Tz,t for large |z| in spite of the exponential
growth of the integrands in the second terms of (2.13) and (2.18) as |z| → ∞
(see section 5).

3. Exponential decay of the scattering data and of q(z, t)

Lemma 3.1. Let

I(z) =

∫
C

f(z1)

z − z1
dσz1 , J(z) =

∫
C

f(z1)

z − z1
dσz1 , z ∈ C,

where f(z) is analytic in (x, y), and

|f(Aγz)|, |∇γf(Aγz)| ≤
C(γ)

1 + x2 + y2
.

Then I(z), J(z) admit analytic continuation in (x, y), and

BγI(z) =

∫
C

f(Aγz1)

z − z1
dσz1 , BγJ(z) =

∫
C

f(Aγz1)

z − z1
dσz1 .

Proof. Let us rewrite I(z) in the form

I(z) = −
∫
C

f(z + z1)

z1
dσz1 .

This immediately implies that I(z) is analytic in (x, y), and

BγI(z) =

∫
C

Bγf(z + z1)

−z1
dσz1 =

∫
C

f(x+ γ1 + x1, y + γ2 + y2)

−z1
dσz1

=

∫
C

f(Aγz1)

z − z1
dσz1 .

The statement for J can be proved absolutely similarly.
�

Let us provide some examples of analytic continuations of functions from
C into C2: (1) If f(z) = z = x + iy, then Bγf(z) = x + γ1 + i(y + γ2) =
z + γ′, γ′ = γ1 + iγ2 ∈ C. (2) If f(z) = z = x− iy, then Bγf(z) = x+ γ1 −
i(y+γ2) = z+γ′′, γ′′ = γ1−iγ2 ∈ C (note that γ′ 6= γ′′ since γi are complex.)
(3) if f(z) = <(kz) = k1x + k2y, then Bγf(z) = <(kz) + k1γ1 + k2γ2 and
Bσ<(kz) = <(kz) + σ1x+ σ2y.

Lemma 3.2. Let the potential be aq0(z) where q0 satisfies Condition Q(R)
for some R > 0. Then there exists a0 = a0(R) such that function µ = µ(z, k)
defined by (2.3) via the solution of the Lippmann-Schwinger equation with
the potential aq0, a ∈ (0, a0), admits analytic continuation to C4 with respect
to variables x, y, k1, k2, and

(3.1) |B′σBγµ(z, k)| < C(R, ε) when z, k ∈ C, |σ|, |γ| ≤ R− ε, a < a0.

The statement remains valid if a = 1, but |k| ≥ ρ(R) with large enough ρ.
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Proof. We will prove the statement of the lemma for the component µ11
of the matrix µ. Other components can be treated similarly. Let us iterate
equation (2.5). The following equation is valid for the first component:
(3.2)

µ11 = 1 +
1

π2

∫
C
dσz1

∫
C
dσz2

ei<(kz1)

z − z1
Q12(z1)

e−i<(kz2)

z1 − z2
Q21(z2)µ11(z2, k),

where Q21 and Q12 are entries of the matrix Q0. Denote Q = Q12 = −Q21.
Assume that the analytic continuation Bγµ11 exists. Then from Lemma 3.1,
formula (3.2) and the relation

Bγe
±i<(kz) = e±i<(kz)±i<k,γ>

it follows that Bγµ11 is equal to

1− 1

π2

∫
C
dσz1

Bγe
i<(kz1)

z − z1
BγQ(z1)Bγ

∫
C
dσz2

e−i<(kz2)

z1 − z2
Q(z2)µ11(z2, k)

= 1− 1

π2

∫
C
dσz1

ei<(kz1)

z − z1
BγQ(z1)

∫
C

e−i<(kz2)

z1 − z2
BγQ(z2)Bγµ11(z2, k)dσz2 .

Hence, if the analytic continuation Ψ := B′σBγµ11 exists, then it satisfies
the equation

Ψ(z, k) = 1− 1

π2

∫
C
dσz1

ei<(kz1)+i<σ,z1>

z − z1
BγQ(z1)·

·
∫
C

e−i<(kz2)−i<σ,z2>

z1 − z2
BγQ(z2)Ψ(z2, k)dσz2 .

Denote by K± = K±k,σ,γ the integral operators given by the exterior and

interior integrals above, respectively. Their norms in the space L∞(C) can
be estimated from above by the norms of the potential (see [20]):

‖K−‖ < C(‖e−i<σ,z2>BγQ(z2)‖Lp(C) + ‖e−i<σ,z2>BγQ(z2)‖Lq(C)),

where 1 < p < 2 < q < ∞. A similar estimate is valid for K+. Thus the
assumption a0 � 1 and Condition Q imply that ‖K±‖ < 1, Ψ exists, and

|Ψ| < C(R) when |=σ|, |γ| ≤ R, a < a0.

Moreover, the derivatives of K± with respect to complex variables σi, γj also
have small norms, i.e., Ψ = Ψ(z, k, σ, γ) is analytic in (σ1, σ2, γ1, γ2). One
can easily see that Ψ = Ψ(z+γ, k+σ). Hence Ψ is the analytic continuation
of µ. The proof of (3.1) is complete.

In order to prove the statement of Lemma 3.2 concerning a = 1, one
needs only to show that operator K := K+K− and its derivatives in σi, γj
are small (less than one) as |k| → ∞. This can be done by a standard
procedure: one splits K into two terms K = K1 +K2, where K1 is obtained
by adding the factor α( z1−zε )α( z1−z2ε ) in the integral kernel of K. Here
α = α(z) is a cut-off function that is equal to one when |z| < 1 and vanishes
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when |z| > 2. Then ‖K1‖ → 0 as ε→ 0, and ‖K2‖ = O(|k|−1) as |k| → ∞.
The latter can be shown by appropriate integration by parts in x1, y1.

�

Theorem 3.3. If Condition Q(R) holds for some R > 0, then Condition
H(R− ε) holds for each ε > 0.

Proof. Recall that

h0(ς, ς) =
1

(2π)2

∫
C
e−i<(ςz)Q0(z)µ(z, ς)dσz, k, ς ∈ C.

We shift the complex plane C in the integral above by vector γ = −i (ς1,ς2)|ς| (R−
ε), and then apply operator Bη. This leads to

|B′′ηh0| <
1

(2π)2

∫
C

∣∣∣e−i(<η,z>+<ς,γ>+<η,γ>)Q0(Aγz)BγB
′′
ηµ(z, ς)

∣∣∣ dσz.
It remains to use Lemma 3.2 and Condition Q(R).

�

Theorem 3.4. Let Condition Q(R) hold for some R > 0 and let the scat-
tering data h0 be defined by the potential aq0, 0 < a < a0(R), where
a0(R) is defined in Lemma 3.2. Then the time dependent scattering data
h(ς, ς, t), 0 ≤ t ≤ T, given by (2.12), admits an analytic continuation in
(ς1, ς2), and

|B′′ηh(ς, ς, t)| ≤ C(R, ε)e(−
R

1+2T
+ε)|ς|, |η| ≤ R

1 + 2T
.

The statement remains valid if a = 1, but |ς| > ρ, where ρ = ρ(R) is large
enough.

Proof. The statement follows immediately from Theorem 3.3 and for-
mula (2.12). One needs only to combine the upper bound Ce(−R+ε)|ς| for the
analytic continuation of h0 obtained in Theorem 3.3 with the upper bound

Ce
2TR
1+2T

|ς| for the time-dependent factor in (2.12).
�

Let us recall again the procedure to obtain the classical solution of the
focusing DSII equation with initial data aq0 and a very small a such that
there are no exceptional points. As the first step, one needs to solve the
equation (I + Tz,t)v = I, where Tz,t is given by (2.13) with D = ∅, i.e., the
equation for v = vz,t has the form

(3.3) vz,t(k) +
1

π

∫
C
ei(ςz+zς)/2vz,t(ς)Π

oh(ς, ς, t)
dσς
ς − k

= I,

where wz,t(·) = vz,t(·) − I ∈ Bs. Then the solution of the focusing DSII
equation with initial data aq0 is given by (2.16). In particular,

(3.4) q(z, t) =
1

2πi

∫
C
ei(ςz+zς)/2(vz,t)11(ς)h12(ς, ς, t)dσς .
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Theorem 3.5. Let Condition Q(R) hold for q0, and let the potential q(z, t),
0 ≤ t ≤ T, in (3.4) be constructed from the initial data aq0(z) with 0 < a <
a1 � 1. Then there exists a1 = a1(R, T ) such that Condition Q( R

1+2T − ε)
holds for the potential (3.4) for all t ∈ [0, T ].

Proof. There is a complete duality (e.g. [21, Th. 4.15]) between the
nonlinear Fourier transform given by (2.5), (2.7) and the inverse transform
(3.3), (3.4). Function h in (3.3) plays the role of the potential Q0 in (2.5).
Theorem 3.4 implies that the Condition Q(R′) holds for h with R′ = R

1+2T −
ε
2 . From Lemma 3.2 applied to (3.3) instead of (2.5), it follows that v has the
same properties as the properties of µ established in Lemma 3.2. One needs
only to take a small enough to guarantee that the analogues of operators
K± have norms that do not exceed one. Then

|B′σBγv(z, k)| < C(R′, ε) when z, k ∈ C, |σ|, |γ| ≤ R′ − ε

2
, a� 1.

Then the statement of the theorem can be obtained similarly to the proof
of Theorem 3.3, i.e., by using the shift of the complex plane C in (3.4) by

the vector η = i (x,y)|z| (R′ − ε
2).

�

4. Proof of the first statement of Theorem 2.2

Consider problem (1.1) with q0 replaced by aq0, a ∈ (0, 1]. Let D be a
disk containing all the exceptional points for problems (2.2), (2.3) for all
a ∈ (0, 1]. Let k0 ∈ ∂D be a non-exceptional point for all a ∈ (0, 1]. We will
use notation v1 for the solution of (2.15) and (q1, ϕ1) for the pair defined
by (2.16) when the operator Tz,t is defined using the disk D. We preserve
the notations v, (q, ϕ) for the same objects when there are no exceptional
points and D = ∅. Since q1, ϕ1 are meromorphic in a in a neighbourhood of
(0, 1] (see Theorem 2.1), the first statement of Theorem 2.2 will be proved
if we show that (q1, ϕ1) = (q, ϕ) when a > 0 is small and t > 0.

From (2.4), (2.7) and Condition Q(R) with R > (1+2T )A > A, it follows
that the scattering data h0 = h0(ς, k) is defined for all the potentials aq0
when |ς|, |k| ≤ A (i.e., ς, k ∈ D) and also for all ς = k. We define h(ς, k, t)
(extension of h0 in t) according to (2.12). Let v = vz,t = wz,t + I, where
wz,t ∈ Bs, s > 2, is the solution of (2.15) with Tz,t given by (2.13) with
D = ∅ (i.e., the right-hand side in (2.13) contains only the first term, see
equation (3.3)). Then (q, φ) given by (2.16) with D = ∅ solves the DSII
equation (1.1) (see [7]), and

(4.1) ψ = ψ(z, k, t) := Πdveikz/2 + e−izk/2Πov, ς, k ∈ C, t ≥ 0,

is the solution of the scattering problem (2.2) (and the Lippmann-Schwinger

equation (2.3)) with the potential Qt(z) =

(
0 q(z, t)

−q(z, t) 0

)
instead of

Q0.
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Consider now the scattering data

(4.2) ĥ(ς, k, t) :=
1

(2π)2

∫
C
e−iςz/2Qt(z)ψ(z, k, t)dσz

defined by the solution ψ of the Lippmann-Schwinger equation (2.3) with the
potential Qt(z). If 0 ≤ t ≤ T , then from Theorem 3.5 (it is assumed there
that R > (1+2T )A) it follows that integral (4.2) converges when |ς|, |k| ≤ A
(i.e., ς, k ∈ D) and when ς = k. Moreover, ĥ(ς, k, t) = ĥ(k + α, k, t) is an

anti-analytic continuation of ĥ(k, k, t) in α. We will prove that ĥ coincides
with the scattering data h(ς, k, t) defined in (2.12). We also will prove that
there exists an analytic in k function v̂+1 = v̂+1 (k, t), k ∈ D, such that

(4.3) (v − v̂+1 )|ς∈∂D =

=

∫
∂D

[ei/2(ςz+ς
′z)v̂+1 (ς ′)Πo − ei/2(ς−ς′)z v̂+1 (ς ′)ΠdC]Ln

ς ′ − ς
ς ′ − k10

ĥt(ς
′, ς)dς ′.

From these two facts and the ∂-equation (see [20])

(4.4)
∂

∂k
v(z, k, t) = ei(kz+zk)/2v(z, k, t)Πoh(k, k, t), k ∈ C\D,

it follows (see [13, Lemma 3.3]) that the function

(4.5) v′(z, k) :=

{
v(z, k), k ∈ C\D,
v̂+1 (z, k), k ∈ D,

satisfies the integral equation (2.15), where operator Tz,t is constructed using

the scattering data ĥ. Equation (2.15) has a unique solution when a is small

enough. Under the assumption that ĥ = h, we have v1 ≡ v′. Therefore
v1(z, k) = v(z, k) when k ∈ C\D. Solution (q, φ) of the DSII equation can be
determined via the asymptotics of v at large values of k (e.g., [20, (1.17)], [14,
Lemma 3.3]). Hence (q1, φ1) = (q, φ) for small a. Thus the first statement

of the theorem will be proved as soon as we show that ĥ = h, t > 0, and
that v̂+ exists.

Justification of the equality ĥ = h, t > 0. Everywhere below, till the
end of the section, we omit mentioning the parameter a and assume that
the initial data q0 is small. Let us recall (see [14, Lemmas 4.1, 4.2]) that
the symmetry of the matrix Q0 (see (2.1)) implies that h11 = h22, h12 =
−h21, and the same relations hold for matrix v determined from the integral
equation (2.15) and related to ψ by (4.1).

Let us introduce functions(
a b
−b a

)
= h0(k + α, k),
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and note that

b(α, k) =
1

(2π)2

∫
C
e−αz/2e−i(kz+kz)/2q0(z)v11(z, k)dσz,

a(α, k) =
1

(2π)2

∫
C
e−αz/2q0(z)v12(z, k)dσz.

Now define (
a(α, k, t) b(α, k, t)
−b(α, k, t) a(α, k, t)

)
= h(k + α, k, t),

where h is given by (2.12). Similar quantities â, b̂ are defined via the solutions
v(·, k, t):

b̂(α, k, t) :=
1

(2π)2

∫
C
e−αz/2e−i(kz+kz)/2q(z, t)v11(z, k, t)dσz,

â(α, k, t) :=
1

(2π)2

∫
C
e−αz/2q(z, t)v12(z, k, t)dσz.

These quantities are well defined due to Theorem 3.5. Let

ĥ =

(
â(α, k, t) b̂(α, k, t)

−b̂(α, k, t) â(α, k, t)

)
.

Consider solution ψ(z, k, t) of (2.2) with potential Q0 replaced by Qt, and
let v be defined by (4.1). From (4.1) it follows that v → I uniformly on
each compact with respect to the variable z when k →∞. Therefore, from
Theorem 3.5 it follows that

(4.6) â(α, k, t)→ 0, k →∞.
Obviously (see (2.12)), the same relation holds for a(α, k, t).

The ∂-equation (4.4) implies that the following rules are valid when t = 0:

(4.7)
∂b

∂k
=
∂b

∂α
+ ab0,

∂a

∂k
= bb0, where b0 = b(0, k), |α| ≤ A, k ∈ C.

Due to Theorem 3.5, the same relations are valid for â(α, k, t), b̂(α, k, t):
(4.8)

∂b̂

∂k
=
∂b̂

∂α
+ âb̂0,

∂â

∂k
= b̂b̂0, b̂0 = b̂(0, k, t), |α| ≤ A, k ∈ C, 0 ≤ t ≤ T.

From (2.12), (4.7), and the obvious relations

e−t(k
2−(k+α)2)/2 = e−t(k

2−(k+α)2)/2e−i=k2 ,

∂

∂α
e−t(k

2−(k+α)2)/2 =
∂

∂k
e−t(k

2−(k+α)2)/2,

it follows that (4.8) holds for a(α, k, t), b(α, k, t):

(4.9)
∂b

∂k
=
∂b

∂α
+ ab0,

∂a

∂k
= bb0, b0 = b(0, k, t),

when |α| ≤ A, k ∈ C, 0 ≤ t ≤ T.
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Now we note that b̂(0, k, t) = b(0, k, t) (see [22, Theorem 5.3]). The second
relations in (4.8), (4.9) with α = 0 imply that (â − a)|α=0 is anti-analytic
in k. Then the maximum principle, together with (4.6) for both â and a,
imply that â|α=0 = a|α=0. Now from the first relations in (4.8), (4.9), with

α = 0, it follows that ∂b̂
∂α |α=0 = ∂b

∂α |α=0. Then we differentiate the second
relations in (4.8), (4.9) in α and put α = 0 there. This leads to the anti-

analyticity in k of ∂â∂α |α=0− ∂a
∂α |α=0. The maximum principle with (4.6) imply

that ∂â
∂α |α=0 = ∂a

∂α |α=0. After the differentiation in α of the first relations

in (4.8), (4.9), we obtain that ∂2b̂
∂α2 |α=0 = ∂b2

∂α2 |α=0, and so on. Hence all the

derivatives in α of the vectors (â, b̂) and (a, b) coincide when α = 0. Since

both vectors are anti-analytic in α, they are identical, i.e., ĥ = h, t > 0.
The existence of v̂+ can be shown similarly to the proof of same state-

ment in [13], where the potential was assumed to be compactly supported.
Namely, consider the following analogue of the Lippmann-Schwinger equa-
tion with different values k0, k ∈ D of the spectral parameter in the operator
and in the free term of the equation:

ψ+(z, k) = ei
kz
2 I +

∫
z∈C

G(z − z′, k0)Qt(z′)ψ+(z′, k)dσz′ ,(4.10)

where G(z, k) = 1
π
eikz/2

z . We substitute here ψ+ = µ+eik0z/2 and rewrite the
equation in terms of

(4.11) w+ = µ+(z, k)− ei(k−k0)z/2I ∈ L∞z (Lpk), p > 1.

The equation takes the form

w+(z, k)−
∫
z∈C

e−i<(k0z
′)

z − z′
Qt(z

′)w+(z′, k)dσz′ =

=

∫
z∈C

e−i<(k0z
′)

z − z′
[
Qt(z

′)e−iz
′(k−k0)/2

]
dσz′ .(4.12)

Theorem 3.5 implies that function
[
Qt(z

′)e−iz
′(k−k0)/2

]
decays exponen-

tially as z → ∞, and |k|, |k0| ≤ A. The unique solvability of the problem
(4.12) is obvious since the potential is small.

Function v̂+ is defined by ψ+ in the same way as v is defined by ψ in
(4.1). The analyticity of v̂+ and (4.3) are proved in Lemmas 3.1 and 3.5 of
[13].

�

5. Proof of statement 2 of the Theorem 2.2.

Reduction to Theorem 5.2 and Lemma 5.3. Theorem 3.5 immedi-
ately implies that the operator Tz,t : Bs → Bs, s > 2, is analytic in x and
y in a complex neighborhood of R2. In order to use the multidimensional
analytic Fredholm theory ([24, Th. 4.11, 4.12] or [23]) and obtain a decay
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of operator norm ‖T 2
z,t‖ as |z| → ∞, we would like to consider this operator

in the Hilbert space B2 instead of the Banach space Bs, s > 2. All the
previous and new results mentioned in this paper remain valid if s > 2 is
replaced by s = 2 (with the appropriate definition of the space B2 given
in (2.17)). In order to justify the latter statement, one needs to show that
the properties of the operator Tz,t are preserved when s > 2 is replaced by
s = 2. This will be done in Theorem 5.2 below (we will not discuss the
properties that obviously are s-independent), but we will show that opera-
tor Tz,t : B2 → B2, 0 ≤ t ≤ T, is compact, continuous in (z, t), and analytic
in (x, y) in a complex neighborhood of R2. After that, we will show (Lemma
5.3) the invertibility of I+Tz,t at large values of |z|. Then the second state-
ment of the theorem will be a simple consequence of the first statement
and the analytic Fredholm theory. Note that the invertibility of operator
I + Tz,t will be proved for z on each ray arg z = ψ = const, |z| ≥ Z0, with
ψ-independent Z0 and with Tz,t defined (see (2.13)) using a special value of
k0 = k0(ψ). Since the solution (q, φ) of problem (1.1) does not depend on
the choice of k0 (see Theorem 2.2), it remains only to prove Theorem 5.2
and Lemma 5.3.

5.1. Compactness of operator T . We will need the following lemma.

Lemma 5.1. Let operator M : B2 → B2 have the form

(Mf)(k) =

∫
C\D

g(ς)

ς − k
f(ς)dσς , k ∈ C,

where function gδ = g(ς)(1 + |ς|)δhas the following properties

|gδ| < a1 <∞, gδ → 0 as ς →∞, and ‖gδ‖L2(C\D) = a2 <∞
for some δ > 0. Then M is compact and ‖M‖ ≤ C(a1 + a2).

Proof. Let P be the following operator in B2 of rank one:

(5.1) Pf = −β(k)

k

∫
C\D

g(ς)f(ς)dσς ,

where β is the function introduced in the definition of the space B2. Since
Pf = 0 in a neighborhood of D, and∫

C\D
g(ς)f(ς)dσς ≤ a2

∫
C\D
| f(ς)

(1 + |ς|)δ
|2dσς ≤ Ca2‖f‖B2 ,

it is enough to prove the statement of the lemma for operator M − P =
M1 +M2, where

Mif =

∫
C\D

Ki(k, ς)f(ς)dσς ,

K1(k, ς) =
α(ς − k)

ς − k
g(ς), K2(k, ς) = [

β(ς − k)

ς − k
+
β(k)

k
]g(ς),

and α := 1− β is a cut-off function which is equal to one in a neighborhood
of D.
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Let M ′i be the operator defined by the same formulas as operators Mi,
but considered as operators in L2(C). Let us show that operators M ′i are
compact and their norms do not exceed C(a1 + a2).

Since |g| ≤ a1, we have

sup
k∈C

∫
C
|K1(k, ς)|dσς + sup

ς∈C

∫
C
|K1(k, ς)|dσk ≤ Ca1.

Hence, from the Young theorem, it follows that ‖M ′i‖ ≤ Ca1. Similarly,
using the decay of g1 at infinity, we obtain that M ′1 = limR→∞M

′
1,R, where

M ′1,R are operators in L2(C) with the integral kernels K1(k, ς)α(ς/R). Op-

erators M1,R are pseudo-differential operators of order −1 (they increase
the smoothness of functions by one) defined in a bounded domain. Hence
operators M ′1,R and their limit M ′1 are compact operators in L2(C).

The boundedness (with the upper bound Ca2) and compactness of the
operator M2 will be proved if we show that∫

C

∫
C
|K2(k, ς)|2dσkdσς ≤ Ca2.

We split the interior integral in two parts: over region |k| < 2|ς| and over
region |k| > 2|ς|, and estimate each of them separately. We have∫

|k|<2|ς|
|K2(k, ς)|2dσk ≤ 2|g(ς)|2

∫
|k|<2|ς|

[
β2(ς − k)

|ς − k|2
+
β2(k)

|k|2
]dσk

≤ C|g(ς)|2(1 + |ς|)δ.
A better estimate with a logarithmic factor is valid, but we do not need this
accuracy. Next,∫

|k|>2|ς|
|K2(k, ς)|2dσk = |g(ς)|2

∫
|k|>2|ς|

|kβ(ς − k) + (ς − k)β(k)|2

|(ς − k)k|2
dσk.

The denominator of the integrand can be estimated from below by 1
4 |k|

4.
The numerator, denoted by n, has the following properties. If |ς| is large
enough, than both beta functions in n are equal to one, and n = |ς|2. The
same is true if |ς| is bounded and |k| is large. If both variables are bounded,
than |n| is bounded. Thus |n| < (C+ |ς|)2, and the integrand above does not

exceed C 1+|ς|2
|k|4 . Obviously, the integrand vanishes when |k| is small enough.

Thus there is a constant c > 0 such that∫
|k|>2|ς|

|K2(k, ς)|2dσk ≤ C|g(ς)|2
∫
|k|>max(c,2|ς|)

1 + |ς|2

|k|4
dσk

≤ C|g(ς)|2
∫
|k|>c

1

|k|4
dσk + C|g(ς)|2

∫
|k|>2|ς|

|ς|2

|k|4
dσk = C1|g(ς)|2.

Hence ∫
C

∫
C
|K2(k, ς)|2dσkdσς ≤ C

∫
C
|g(ς)|2(1 + |ς|)δdσς ≤ C ′a2.
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Thus, operators M ′i : L2(C)→ L2(C) are compact and ‖M ′i‖ ≤ C(a1 + a2).
Denote by M ′′i : B2 → L2(C) operators with the same integral kernels Ki

as for operators M ′i , but with the domain B2 instead of L2(C). Compact-
ness of these operators will be proved if we show the boundedness of M ′i on

the one-dimensional space of functions of the form fc(ς) = cβ(ς)ς , c =const.

The upper estimate on ‖M ′′i fc‖ can be obtained by repeating the arguments
above used to estimate ‖M ′i‖. One needs only to replace fc by the func-

tion f = fc/|ς|δ/2 ∈ L2(C) and replace the kernel Ki by Ki|ς|δ/2. Hence,
operators M ′′i are compact and ‖M ′i‖ ≤ C(a1 + a2).

Obviously, for each f ∈ B2, the function (M1 + M2)f is analytic in D.
Consider its trace on ∂D. Let MD : B2 → L2(∂D) be the operator that maps
each f ∈ B2 into the trace of (M1 +M2)f on ∂D. In order to complete the
proof of the lemma, it remains to show that operator MD is well defined,
compact, and ‖MD‖ ≤ C(a1 + a2). To prove these properties of MD, we
split the operator into two terms MD = MDφ+MD(1− φ), where φ is the
operator of multiplication by the indicator function of a disk D1 of a larger
radius than the radius of D. Then M(1− φ)f is analytic in D1, and

‖M(1− φ)f‖L2(D1) ≤ ‖Mf‖L2(C) ≤ C(a1 + a2)‖f‖B2 .

From a priori estimates for elliptic operators, it follows that

‖M(1− φ)f‖Hs(D) ≤ Cs‖M(1− φ)f‖L2(D1) ≤ Cs(a1 + a2)‖f‖B2 ,

where Hs is the Sobolev space and s is arbitrary. Hence

‖M(1− φ)f‖Hs−1/2(∂D) ≤ C(a1 + a2)‖f‖B2 .

This implies that operator MD(1 − φ) is compact and its norm does not
exceed C(a1+a2). We will takeD1 not very large, so that function β vanishes
on D1. Then Mφf is the convolution of 1/k and φgf , i.e., Mφf = 1

k ∗(φgf).
The latter expression is a pseudo differential operator of order −1 applied
to the function φgf with a compact support. Thus,

‖Mφf‖H1(D) ≤ C‖φgf‖L2(D1) ≤ Ca1‖f‖B2 ,

and therefore ‖MDφf‖H1/2(D) ≤ Ca1‖f‖B2 . Hence, operator MDφ is com-

pact and its norm does not exceed Ca1.
�

Theorem 5.2. Let conditions of Theorem 2.2 hold. Then operator Tz,t :
B2 → B2, 0 ≤ t ≤ T, is compact, continuous in (z, t), and analytic in
(x, y) in a complex neighborhood of R2. The same properties are valid for
derivatives of Tz,t of any order in t, x, y.

Remark. Tz,t is analytic in x, y in the region |=x|2 + |=y|2 ≤ R2.
Proof. The operator Tz,t can be naturally split into two terms: Tz,t =

M+D, whereM involves integration over C\D and D involves integration
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over ∂D. In particular,

Mφ =
1

π

∫
C\D

ei<(ςz)φ(ς)Πoh(ς, ς, t)

ς − k
dσς .

The statements of the theorem are valid for operatorM due to (2.9), Lemma
5.1 and Theorem 3.4. Indeed, the compactness and continuity of M in (z, t)
is proved in Lemma 5.1. The analyticity in (x, y) follows from the fast decay
of h at infinity which is established in Theorem 3.4.

Let us show that the same properties are valid for D. We write D in
the form D = I1I2, where operator I2 : L2(∂D) → Cα(∂D) is defined
by the interior integral in the expression for D in (2.13), and operator I1 :
Cα(∂D) → Hs is defined by the exterior integral in the same expression.
Here Cα(∂D) is the Holder space and α is an arbitrary number in (0, 1/2).
The integral kernel of operator I2 has a logarithmic singularity at ς = ς ′,
i.e., I2 is a pseudo differential operator of order −1, and therefore I2 is a
bounded operator from L2(∂D) into the Sobolev space H1(∂D). Thus it
is compact as operator from C(∂D) to Cα(∂D), α ∈ (0, 1/2), due to the
Sobolev embedding theorem. Thus the compactness of D will be proved as
soon as we show that I1 is bounded.

For each φ ∈ Cα(∂D), function I1φ is analytic outside of ∂D and vanishes
at infinity. Due to the Sokhotski–Plemelj theorem, the limiting values (I1φ)±
of (I1φ) on ∂D from inside and outside of D, respectively, are equal to
±φ
2 + P.V. 1

2πi

∫
∂D

φ(ς)dς
ς−λ . Thus

max
∂D
|(I1φ)±| ≤ C‖φ‖Cα(∂D).

From the maximum principle for analytic functions, it follows that the same
estimate is valid for function I1φ on the whole plane. Taking also into
account that I2φ has the following behavior at infinity I2φ ∼ c/k+O(|k|2),
we obtain that operator I1 is bounded. Hence operator D is compact. Since
h decays superexponentially at infinity, the arguments above allow one to
obtain not only the compactness of D, but also its smoothness in t, x, y and
analyticity in (x, y).

�

5.2. The invertibility of I+Tz,t at large values of z. We will prove the
following lemma.

Lemma 5.3. The following relation is valid for operator norm of T 2
z,t in

B2:

max
0≤t≤T

‖T 2
z,t‖ → 0, z ∈ C, z →∞.

Hence the operator I + Tz,t is invertible when z ∈ C, |z| � 1.

We split operator Tz,t into two terms Tz,t = M + D that correspond
to the integration over C\D and D, respectively, in (2.13). The entries
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M ij , Dij , i, j = 1, 2, of the matrix operators M and D are

M11 = M22 = 0,

M12φ = −M21φ =
1

π

∫
C\D

ei<(ςz)−t(ς
2−ς2)/2φ(ς)h12(ς, ς)

ς − k
dσς ,

D11φ = D22φ =

=
1

2πi

∫
∂D

dζ

ζ − k

∫
∂D

Ln
ς ′ − ς
ς ′ − k0

h11(ς ′, ς)e
i
2
(ς−ς′)z+ t

2
(ς′2−ς2)φ(ς ′)dζ ′,

D12φ = −D21φ =

=
1

2πi

∫
∂D

dζ

ζ − k

∫
∂D

Ln
ς ′ − ς
ς ′ − k0

h12(ς
′, ς)e

i
2
(ςz+ς′z)+ t

2
(ς′

2−ς2)φ(ς ′)dς ′.

We used here the relations h12 = −h12, h11 = h22 for the entries of h0 that
were established, for example, in [14, Lemma 4.1].

Lemma 5.1 implies the uniform boundedness of M21,M12 when 0 ≤ t ≤
T, z ∈ C. Thus Lemma 5.3 will be proved if we show that operator norms of
M21M12 and Dij , i, j = 1, 2, vanish as z → ∞. Let us prove the statement
about Dij .

Lemma 5.4. For each T > 0, there exists a constant CT such that

‖Dϕ‖B2 ≤
Cα,T

1 + |z|1/4
‖ϕ‖B2 , z ∈ C, 0 ≤ t ≤ T,

if k0 in the definition of operator D is chosen to belong to ∂D and equal to
k0 = −iAeiψ, where ψ = arg z and A is the radius of the disk D.

Proof. We will prove the estimate for the component D12 of the matrix
D. Other components of D can be estimated similarly. Consider the interior
integral in D12:

(5.2) R12φ =

∫
∂D

Ln
ς ′ − ς
ς ′ − k0

h12(ς
′, ς)e

i
2
(ςz+ς′z)+ t

2
(ς′

2−ς2)φ(ς ′)dς ′,

where ς ∈ ∂D, φ ∈ B2. Our goal is to show that

(5.3) ‖R12φ‖L∞(∂D) ≤
CT

1 + |z|1/4
‖φ‖L2(∂D), φ ∈ B2.

The integrand in (5.2) is anti-holomorphic in ς ′ ∈ D with logarithmic
branching points at k0 and ς. If k0 is strictly inside D, then the integration
over ∂D in (5.2) can be replaced by the integration over two sides of the
segment [k0, ς], which are passed in the counter clock-wise direction. The
values of the logarithm on these sides differ by the constant 2π. This leads
to an alternative form of the operator D:

D12φ = −D21φ = i

∫
∂D

dζ

ζ − k

∫
[k0,ς]

h12(ς
′, ς)e

i
2
(ςz+ς′z)+ t

2
(ς′

2−ς2)φ(ς ′)dς ′.
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If k0 ∈ ∂D, the contour of integration above can be replaced by arc[k0, ς].
Thus

R12φ = i

∫
k̂0,ς

h12(ς
′, ς)e

i
2
(ςz+ς′z)+ t

2
(ς′

2−ς2)φ(ς ′)dζ ′, ς ∈ ∂D, φ ∈ L2(∂D).

Consider the following function (from the exponent in the integrand above):
Φ = <

[
i
2 ςz
]
. This function is linear in ς, and for each fixed z = |z|eiψ, ψ ∈

[0, 2π), it has the unique global maximum on D. The maximum occurs on
the boundary at the point ς0 = −iAeiψ, which depends only on the argu-
ment of z. Due to Theorem 2.2, point k0 ∈ ∂D can be chosen arbitrarily.
We choose k0 = ς0 ∈ ∂D, and we get that

|R12φ| ≤ C
(∫

ς̂0,ς
exp 2

(
Φ(ς)− Φ(ς ′)

)
|dς ′|

)1/2

‖φ‖L2 .

Let us estimate the integral above. Let ς = −iAei(ψ+ϕ), |ϕ| ≤ π. For
ς ′ ∈ ς̂0, ς, we have

Φ(ς ′) = A|z|(cosϕ′)/2, Φ(ς) = A|z|(cosϕ)/2,

and the integral is equal to∫ ϕ

0
eA|z|(cosϕ−cosϕ

′)/2dϕ′ = O(
1√
|z|

), z →∞.

This justifies (5.3).
�

Let us show now that the following statement holds.

Lemma 5.5.

(5.4) max
0≤t≤T

‖M21M12‖B2 → 0, z ∈ C, z →∞.

Proof. Kernels of M12,M21 are smooth, see (2.9 ). From Theorem 3.4,
it follows that the kernels and rapidly decaying functions in C. Therefore,
Lemma 5.1 implies that operators M12,M21 can be approximated in B2 by
operators with function h12 replaced by a compactly supported one. There-
fore, without loss of the generality, we will assume below that the supports
of h12, h21 belong to a bounded domain O.

We will use the notation P for the one-dimensional operator defined in

(5.1) with the density g = ei<(ςz)−t(ς−ς
2)/2h12(ς, ς). Let M̂ := (M12 −

P )(M21 − P ). We will prove that

(5.5) max
0≤t≤T

‖M̂‖B2 → 0, z ∈ C, z →∞.

The other three terms M12(M21 − P ), (M12 − P )M21, and PP can be
treated in the same way. We have

M̂ϕ =
1

π2

∫
O\D

A(z, ς, ς2)h21(ς2, ς2)e
−i<(ς2z)+t(ς2−ς22)/2ϕ(ς2)dσς2 ,
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where A(z, ς, ς2) is given by the following integral
(5.6)∫
O\D

ei<(ς1z)−t(ς1−ς1
2)/2h12(ς1, ς1)

(
1

ς1 − ς
+
β(ς)

ς

)(
1

ς2 − ς1
+
β(ς1)

ς1

)
dσς1 .

The Minkovsky inequality in the integral form implies the following two
estimates, that are valid when f ∈ B2:

‖M̂f‖L2(C\D) ≤
∫
O\D

[∫
O\D
|A(z, ς, ς2)|2dσς

]1/2
|h21(ς2, ς2)f(ς2)|dσς2 ,

‖M̂f‖L2(∂D) ≤
∫
O\D

[∫
∂D
|A(z, ς, ς2)|2|dς|

]1/2
|h21(ς2, ς2)f(ς2)|dσς2 .

Since the norm of the operator L2(C\D) → L1(C\D) of multiplication by
h21 can be estimated by a constant, the validity of (5.5) will follow from the
estimates above if we show that the following relations hold as z →∞:

sup
ς2∈C\D

∫
O\D
|A(z, ς, ς2)|2dσς → 0, sup

ς2∈C\D

∫
∂D
|A(z, ς, ς2)|2|dς| → 0.

We will prove only the first of them, since the second one can be proved
similarly. Note that, uniformly in ς2 ∈ O,∫

O\D
|A(z, ς, ς2)|2dσς ≤

∫
O\D

∣∣∣∣∣
∫
O\D

h12(ς1, ς1)

(
1

ς1 − ς
+
β(ς)

ς

)(
1

ς2 − ς1
+
β(ς1)

ς1

)
dσς1

∣∣∣∣∣
2

dσς < C.

The boundedness follows from the fact that the internal integral is O(ln |ς−
ς2|), ς − ς2 → 0. Let As be given by (5.6) with the extra factor ηs := η(s|ς −
ς1|)η(s|ς1 − ς2|)), s > 0, in the integrand, where η ∈ C∞(R), η = 1 outside
of a neighborhood of the origin, and η vanishes in a smaller neighborhood
of the origin.

For each ε, there exists s = s0(ε) such that∫
O\D
|A−As0 |2 dσς < ε

for all the values of ς2 ∈ O, z ∈ C. Denote by Rs0 the function As0 with the

potential h12 replaced by its L1-approximation h̃12 ∈ C∞0 (C\D). We can
choose this approximation in such a way that∫

O\D
|As0 −Rs0 |2 dσς < ε

for all the values of ς2, z. Now it is enough to show that

|Rs0(ς, ς2, z)| → 0 as z →∞
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uniformly in ς, ς2 ∈ O. The latter can be obtained by integration by parts in

Rs0(ς, ς2, z), defined by integral (5.6) with h12 replaced by (1−ηs)h̃12(ς1, ς1)
(integrating ei<(ς1z) and differentiating the complementary factor). This
completes the proof of (5.4).
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