GLOBAL SOLUTION OF THE INITIAL VALUE PROBLEM
FOR THE FOCUSING DAVEY-STEWARTSON II SYSTEM

EVGENY LAKSHTANOV AND BORIS VAINBERG

ABSTRACT. We consider the two dimensional focusing Davey-Stewartson
IT system and construct the global solution of the Cauchy problem for
a dense in L?(C) set of initial data. We do not assume that the initial
data is small. So, the solutions may have singularities. We show that
the blow-up may occur only on a real analytic variety and the variety is
bounded in each strip ¢t < T

1. INTRODUCTION

Let qo(2), z = z+iy, (z,y) € R? be a compactly supported (or fast
decaying) sufficiently smooth function. Consider the two dimensional focus-
ing Davey-Stewartson II (DSII) system of equations for unknown functions
q= Q(zat)7 (b = ¢(th)7 (iL’,y) € R27 t>0:

Gt = 2iqzy — 44(% — ),
dp = d|qf*,
(1.1) a(2,0) = qo(2).

A smooth, decaying in z at infinity solution of (1.1) exists for all ¢ > 0
if qo is small enough, [1, 20, 21, 22, 3]. We will call this solution classical.
If g is not small, the solution was constructed locally in our previous work
[14] via the IST (inverse scattering transform) using the d-method that has
been generalized in [16], [12], [13] to the case when Faddeev type exceptional
points may be present. The solution was obtained in a neighbourhood of
any point (zo,tp) for generic initial data gy that depend on the point. The
main objectives of this article are to obtain the solution for an arbitrary
initial data from a specific set and to get the global solution defined in the
whole space, including a description of the set where the solution blows up.
It will be shown that the latter set is a real analytic variety that is bounded
in every strip 0 <t <T.

Let us recall that the focusing DSII equation may have a finite time
blow-up (e.g., [17]). While the uniqueness is known for smooth (in some
sense) solutions, see [8], [9], one has to be careful with the definition of
the solution that has singularities. We understand these solutions in the
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following sense. Let us multiply the initial data gy by a positive parameter
a € (0,1]. We will show that the classical solution that exists when a <
1 allows an analytic continuation into a complex neighborhood of (0, 1],
and this analytic continuation will be used to single out the solution with
singularities when a = 1. The main statement of the present paper is given
in Theorem 2.2 of Section 2.

Let us mention some recent articles on DSII: [11],[18],[19].

2. THE SOLUTION OF THE CAUCHY PROBLEM, MAIN RESULTS
Let go(2) € L*(C). Denote

(2]‘) QU(Z) = ( —Q((])(Z) qo(()z) ) y z € C.

2
solution of the following problem for the Dirac equation in C :

Let 0 = % =1 (8% +i6%>, and let the 2 x 2 matrix (-, k), k € C, be a

(2.2) — =Qov, U(z, k)e_’%z/2 — I, z— oo.

The corresponding generalized Lippmann-Schwinger equation has the fol-
lowing form:

(23)  G(zk) = 2T 4 / Gz — 2 k) Qo( V(. K)do,
C

where G(z,k) = %eik;ﬂ, do, = dxz'dy’. Here and below we use the same
notation for functional spaces, irrespectively of whether those are the spaces

of matrix-valued or scalar-valued functions. After the substitution,

(2.4) w(z, k) = (z, k:)e_’%z/Z, w(z, k) —1—0, z— oo,

equation (2.3) takes the form

1 ez%(gz)
(2.5) wu(z, k) =1+ / ~Qo(2")a(Z', k)dor,

T o z—2
and becomes Fredholm in L(C), ¢ > 2, after the additional substitution
v=pu—1I (see, e.g., [15, lemma 5.3]).

Solutions 1 of (2.3) are called the generalized scattering solutions, and
the values of k such that the homogeneous equation (2.5) has a non-trivial
solution are called exceptional points. The set of exceptional points will be
denoted by &£. Thus the scattering solution may not exist if £ € £. Note
that the operator in equation (2.5) is not analytic in k, and £ C C may
contain one-dimensional components. There are no exceptional points in a
neighborhood of infinity (e.g., [20, lemma 2.8], [2, lemma C]). Let us choose
A > 1 and kg € C such that all the exceptional points are contained in the
disk

(2.6) D={keC:0<|k|] <A},
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and ko belongs to the same disc D and is not exceptional.

The generalized scattering data (an analogue of the scattering amplitude
in the standard scattering problem) are defined by the following integral
(when the integral converges)

/ e % 2Qu(2) (2, k)do,, s € C, k € C\E.
C

1
2.7 ho(s, k) =
( ) 0(§7 ) (2 71_)2
In fact, from the Green formula, it follows that hy can be determined without
using the potential @y or the solution v of the Dirac equation (2.2) if the
Dirichlet data at 02 are known for the solution of (2.2) in a bounded region
Q) containing the support of Qg:

(2.8) ho(s, k) = 8_7:2/ e (2, k)dz, c € C, kg E.
00

Note that hg is continuous when k ¢ D under minimal assumptions on @
[20], [21], and moreover,

(2.9) ho = ho(s, k) € C*°  when |k| > A

if @ is bounded and decays faster then any power at infinity. This follows
from the fact that (2.5) admits differentiation in z and k when k ¢ D.

The inverse problem (recovery of () when hg is given) was solved using
d—method in [1], [20, 21, 22] when the potential is small enough to guarantee
the absence of exceptional points. When £ # @, the inverse problem was
solved in a generic sense in [13]. The latter results were applied in [14] to
construct solutions of the focusing DSII system. Let us recall some results
obtained in [14].

Consider the space

(2.10) B = {u e L*(C\D) ﬂC(D)} , 5>2,

where C'(D) is the space of analytic functions in D with the norm |[ju|| =
supp |u|. Here and below, we use the same space notation for matrices as
for their entries.

Let operator T, : B® — B*, s > 2, be defined as follows:

Top(k) = - /C I

™

do¢

c—k

1 dg

L i(<Z+<"2) 2 g = (IO
211 aDC_k 8D[€ (b (§)

(2.11)

' . o _c _
+e!mF 7 (nCy [Lnf ,:] h(<',)d<,
0

where do. = dsrdsy, z € C, ¢ € B®, ¢~ is the boundary trace of ¢ from
the interior of D, C is the operator of complex conjugation, II°M is the
off-diagonal part of a matrix M, TIM is the diagonal part. Let us specify
the logarithmic function in (2.12). Let us shift the coordinates in C and
move the origin to the point ¢/ € D. Then we rotate the plane in such a
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way that the direction of the z-axis is defined by the vector from ¢ to —¢'.
Then |arg(¢’ —3)| < 7/2, ¢/ #¢, and |arg(s’ — ko)| < 7/2, i.e.,

=
— G
arg = ‘<7T, ¢,ce€0D, ¢ #s.
¢ — ko

This defines the values of the logarithmic function uniquely.

It turns out that, after the substitution w = v — I € B*, s > 2, the
equation

(I+TH)v=1

becomes Fredholm in B*, and the potential gy can be expressed explicitly in
terms of v (see [12, 13]).

In order to solve the DSII problem (1.1), we apply this reconstruction
procedure to a specially chosen scattering data. We start with the scattering
data hg defined by ¢y and extend it in time as follows:

e -2 _
(212) Al k1) = e 2 IOR (o, k) 4 et 2R (6, k),
where ¢ € C, k € C\&, t > 0. For t > 0, we define the operator

Tz7t¢(k) — 1/ ei(§Z+E§)/2$(§)HOh(§’ g,t) dU§
T Jc\D s—k
(213) i ds [ei(CEJr?Z)/ng_ (g’)HO
2mi Jop S —k Jap
+el 2y {Lnf ﬂ h(',<, t)ds’.
S — Ko

Theorem 2.1. ([14]) Let qo(-) be a function with compact support. Assume
that it is 6 times differentiable in © and y. Alternatively, this condition can
be replaced' by the superexponential decay of qo:

(2.14) lgn e’Z'Z‘@;@gqo(z) =0 for each A>0, i+ j <6.
zZ— 00

Then, for each s > 2, the following statements are valid.

1) The operator T, is compact in B® for all z € C, t > 0, and depends
continuously on z and t > 0. The same property holds for its first deriva-
tive in time and all the derivatives in x,y up to the third order, where the
derivatives are defined in the norm convergence. The function T, I belongs
to B® for allt > 0.

2) Let the kernel of I + T, in the space B® be trivial for (z,t) in an open
or half open2 set w C R3. Let Uy = Wy + 1, where w,y € B® is the solution
of the equation

(215) (I + Tz’t)w,z’t = —TzﬂgI.

1This fact was not mentioned in the paper, but it can be easily checked

2We will say that a set w of points (z,t) in RS = R*({t > 0} is half-open if w contains
points where ¢ = 0 and, for each point (z0,0) € w, there is a ball By centered at this point
such that Bo ({t > 0} C w.
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Then functions q, ¢ defined by

o(z,t)  q(z,1) 1o Ard / i(S2+75) /25— o
= —(II I II
( Cae ) () 27T( +0I1%) C\De U2.4()II°R(s, s, t)do¢

1 P
_ d i(Z+¢'2) /2= (NT°
i s [ )
o J_c o
(2.16) — 22 (e [Ln;/ l:] h( ’,g,t)d§’> :
— R0

satisfy all the relations (1.1) in the classical sense when (z,t) € w. In
particular, q(z,0) = qo(2).

3) Consider a set of initial data aqo(z) that depend on a € (0,1]. Then
equation (2.15) with Q° replaced by aQ® (Q° is fized) is uniquely solvable
for almost every (z,t,a) € R? x RY x (0,1]. Moreover,® for each (z,t), the
solution of (2.15) is meromorphic in a € [0,1] and has at most a finite set
of poles a = aj(z,t).

Remark. All the exceptional points are located in a disk whose radius
depends only on the norm of aqg. Hence D and kg can be chosen indepen-
dently of a € [0,1] (see [13, Lemma 5.1]). From now on, we assume that
the disk D is fixed and contains the exceptional points for all the potentials
aqo, a € [0,1].

In order to state the main results of the present paper, we need to recall
the construction (e.g., [20]) of the global solution of (1.1) when ¢ is small.
The latter expression (”¢qg is small”) will be used below only for problem
(1.1) with initial data aqy where qo is infinitely smooth and satisfies (2.14),
and 0 < a < 1. Let us recall that the scattering problem (2.2) and the
Lippmann-Schwinger equation (2.3) are uniquely solvable for all & when ¢q
is small, i.e., there are no exceptional points in this case and ho(k, k) is
defined for all the values of k. Operator T, is needed only with D = ()
if go is small. Hence, only the first term is present in the right-hand side
of (2.13). Moreover, ||T.:|| < 1 when g is small, and therefore equation
(2.15) is uniquely solvable for all z € C, ¢ > 0. Then (g, ¢) given by (2.16)
with D = () is a smooth global solution of problem (1.1) with the small
initial data. We will call this solution classical. It exists under a weaker
assumption on the decay of ¢g than in Theorem 2.1.

We will consider analytic continuations of functions hg, qo, and we need
some notation. Let v = (v1,72) € C? and let A, : C — C? be the map
defined by A,z = A, (x +iy) = (z+ 71,y +72) € C?, ie., the map A, shifts
real points z,y into complex planes. If a function f = f(z) is analytic in
(x,y), then B, f(z) := f(Ayz) is the value of the analytic continuation of f
at point A, z. We will use notation A’ , B/, o € C2, for the same operations

o

3that statement can be found in [13, lemma 5.1]
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applied to a function of k € C, and A%’, B,’7’, n € C2, if they are applied to a
function of ¢ € C.

The main result of the paper is obtained under the following condition on
the initial data that must hold for large enough R:

Condition Q(R). The initial data gy admits analytic continuation in
(z,y) and, for a given R > 0, there exist a C' = C'(R) such that

|Byqo(2)] < Cce flFl 2 eC, when |y| <R.

Remark. Clearly, linear combinations of Gaussian functions satisfy Condi-
tion Q(R) for all R > 0, and it was shown in [4, 5] that these combinations
form a dense set in L?(C).

We will show that Condition Q(R) implies a similar behavior of the scat-
tering data, i.e., the validity of the following assumption.

Condition H(R). For a given R > 0, the estimate

[ho(s, ) < e as ] = o0

holds, and there exists C' = C(R) and ag(R) such that the scattering data
ho(s,s) for the potential agy with a € (0, ap) admits analytic continuation
BJho(s,s), In| < R, with respect to variables ¢;, and

|Bl'ho(s,<)| < C(R)e Tl ¢ € C, when [n| < R.

We will show that there is a duality between these two conditions. To
be more exact, the validity of Q(R) implies the validity of H(R — ¢). Con-
versely, if the initial data is small, Condition H (R) holds, and hy is extended
in time according to (2.12), then the potential ¢(z,t) that corresponds to
the extended data h(s,s,t) satisfies Condition Q(R) with a smaller R that
depends on t. These results will be obtained in the next section. Note that
they are an analogue of similar results of L. Sung ([21, Cor. 4.16 ]) who
established a duality of the non-linear Fourier transform in the Schwartz
class. We need a refined result to study the more complicated form (2.13)
of operator T, ; that appears in the presence of exceptional points.

Below is the main statement of the present paper.

Theorem 2.2. Let us fix an arbitrary disk D containing all the exceptional
points for the potentials aqo(z), a € [0,1]. Let Condition Q(R) hold with
R > (1+2T)A, where A is the radius of the disk D. Then

1) for each point (z,t), 0 <t < T, the classical solution (q, ) of problem
(1.1) with the initial data aqy and small enough a > 0 admits a meromorphic
continuation with respect to a in a neighborhood of the segment [0,1]. This
meromorphic continuation is given by (2.16) with an arbitrary choice of the
disk D and an arbitrary choice of point ko € 0D,

2) when a = 1, the analytic continuation of (g, @) is infinitely smooth and
satisfies (1.1) everywhere, except possibly a set S that is bounded in the strip

4311 the exceptional points are inside D, i.e., all the points on 9D are non-exceptional.
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0<t<T, (z,y) € R?, and is such that S; = S({t = const} is a bounded
1D real analytic variety.

Remark. The theorem implies that the local solutions found in Theorem
2.1 are analytic continuations in a of the global classical solutions (under
the assumption that condition Q(R) holds). At the same time, the theorem
does not prohibit the solution from blowing up at an arbitrarily small time
t > 0 (see the recent paper [10] and citations there on instantaneous blow-
ups). We can’t say anything about relation between our global solution and
local solutions found in [8].

Two important technical improvements of the previous results will be
used in the proof of Theorem 2.2. First, we will show that the Hilbert space
B? can be used in Theorem 2.1 instead of the Banach space B%, s > 2. The
space B2 is defined as follows:

(2.17) B? = {u e (LA(C\D) & CY) ﬂLi(aD)} .
Here C! is the one-dimensional space of functions of the form b ]gk)’ where
c is a complex constant, 8 € C* is a fixed function that vanishes in a
neighbourhood of the disk D and equals one in a neighbourhood of infinity.
By L% (8D) we denote the space of analytic functions u = Y, ;2" in D
with the boundary values in L?(0D) and the norm
1/2

[ullz2 (op) = Aea” |,
+

n>0
where A is the radius of the disk D.

Secondly, we will simplify the form of the operator T, ; by writing the
second term in (2.12) and (2.13) without the logarithmic factor. We also
will allow kg to be on 9D, and not necessarily in D, and show that formula
(2.13) in the latter case can be written as

(2.18) Tz,t¢(/€) — 1/ ei(?z+2§)/2$(g)ﬂoh(g7g)t)
C\D

™

do

c—k

Z/ Ck/ [ei(cE—&-c’z)/zd)_(g/)Ho + ei(c—c’)E/Qd)—(g/)HdC] [h(gl,g,t)ﬂ :
oD S =k Jigs
where k‘/o,\§ is the arc on 9D between points ky and ¢ with the counter
clock-wise direction on it.

The following two difficulties were resolved in the paper. We show that
if one starts with a small potential gy and its scattering data hg(s,s), and
extends ho(s, <) in time according to (2.12), then the solution ¢(z, t) of the in-
verse scattering problem with the scattering data (2.12) decays exponentially
at infinity, and the scattering data (2.7) for this potential ¢(z,t) coincides
with the scattering data h(s,s,t) from which the potential was obtained
(this will be done in the next section). Another difficulty concerns the proof
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of the invertibility of operator I +1T, ; for large |z| in spite of the exponential
growth of the integrands in the second terms of (2.13) and (2.18) as |z| — oo
(see section 5).

3. EXPONENTIAL DECAY OF THE SCATTERING DATA AND OF ¢(z,t)

Lemma 3.1. Let

1= [ L8 0 g2 [ L84, Lec,

cC< % cC?— %

where f(z) is analytic in (z,y), and

C(v)
|f(Ay2)], [V f(Ay2)] < m
Then I(2), J(z) admit analytic continuation in (z,y), and

FAz) B, J(z) = FAz) 00

B 1(z) =
7(z> c *—Z CZ_ZI

Proof. Let us rewrite I(z) in the form

/fz—l—z1
Oz -

This immediately implies that I(z) is analytic in (z,y), and

B
B, I(z) :/ vf(2+21)dO,Zl _ flx+m +$1,y+’72+y2)d()_z1
C —Z1 C —Z1
A
f( ’YZl)dO'ZI.
Cc f— 21

The statement for J can be proved absolutely similarly.
O
Let us provide some examples of analytic continuations of functions from
Cinto C%: (1) If f(2) = z = x + iy, then B, f(z) =z +y +i(y + 1) =
249, Y =m+ineC. (2)If f(2) =z =1z —iy, then B,f(z) =x+ 71 —
i(y+72) = Z+7", v = y1—iy2 € C (note that v # 7 since ~; are complex.)
(3) if f(2) = (k:z) = kiz + kay, then B, f(z) = R(kZ) + k171 + k22 and
B,R(kzZ) = R(kZ) + 012 + 02y.

Lemma 3.2. Let the potential be aqo(z) where qo satisfies Condition Q(R)
for some R > 0. Then there exists ay = ao(R) such that function it = i(z, k)
defined by (2.3) via the solution of the Lippmann-Schwinger equation with
the potential aqo, a € (0,ao), admits analytic continuation to C* with respect
to variables x,y, k1, ko, and

(3.1) |B.Byui(z, k)| < C(R,e) when 2,k €C, |o],|y|<R—c¢, a< ap.
The statement remains valid if a = 1, but |k| > p(R) with large enough p.
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Proof. We will prove the statement of the lemma for the component 11
of the matrix p. Other components can be treated similarly. Let us iterate
equation (2.5). The following equation is valid for the first component:
(3.2)

1 ez%(kzl) - —iR(kz2)
m - 1 + 2/ dUZ1 / dUZQ inZ(zl)7Q21 (22)m(227 k)?
m C C — Z9

Z— 71 z1

where Q21 and Q12 are entries of the matrix QJg. Denote Q = Q12 = —Q21.
Assume that the analytic continuation B iy, exists. Then from Lemma 3.1,
formula (3.2) and the relation

B o EiR(KE) _ EiR(kE)Ei<ky>
W —

it follows that B, is equal to

1 B el (kzl) - —z%(kzg)
1-—= [ doyy, ———— — Q(=1)B, /dazZ Q(z2) 111 (22, k)

21 — %9

C
1 el (kz1) - e*i%(kfﬂ L
=1- ) . dUzllByQ(Zl)/ 73'762(*22)37#11(227 k)d022.

— C Rl — R2
Hence, if the analytic continuation ¥ := B/ B[, exists, then it satisfies
the equation
1 ei?R(kE1)+i<U,z1> -
U(z, k 1—— [ do B,Q(z1)-
(oK) = 1= g [ o B0

—iR(kz2)—i<o,z2>
- / ByQ(22) (20, k)dor,.
C

21— 22

Denote by K* = K ,;t oy the integral operators given by the exterior and
interior integrals above, respectively. Their norms in the space L>°(C) can

be estimated from above by the norms of the potential (see [20]):
IE=] < Clle™™7 ByQ(22)ll oy + e =77 By Q(22) | a(c)),

where 1 < p < 2 < ¢ < co. A similar estimate is valid for K. Thus the
assumption ap < 1 and Condition Q imply that |[K*| < 1, ¥ exists, and

|¥| < C(R) when [Sol,|v| < R, a < ap.

Moreover, the derivatives of K+ with respect to complex variables o;, 74 also
have small norms, i.e., ¥ = U(z, k,0,7) is analytic in (o1,092,71,72). One
can easily see that ¥ = W(z++, k+0). Hence ¥ is the analytic continuation
of .. The proof of (3.1) is complete.

In order to prove the statement of Lemma 3.2 concerning a = 1, one
needs only to show that operator K := K*K~ and its derivatives in oy, 7;
are small (less than one) as |k| — oo. This can be done by a standard
procedure: one splits K into two terms K = K7 + Ko, where K is obtained
by adding the factor a(*=*)a(#>%2) in the integral kernel of K. Here
a = a(z) is a cut-off function that is equal to one when |z| < 1 and vanishes
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when |z| > 2. Then ||K1|| — 0 as € — 0, and || K| = O(|k|™!) as |k| — oo.
The latter can be shown by appropriate integration by parts in z1,y;.
O

Theorem 3.3. If Condition Q(R) holds for some R > 0, then Condition
H(R — ¢) holds for each € > 0.

Proof. Recall that

1
ho(s,s) =

(2m)?2

We shift the complex plane C in the integral above by vector v = —i (gl‘;?) (R—

/ei%(Gz)QO(Z)M(z,g)dUZ, k,ceC.
C

€), and then apply operator B,. This leads to
1 4
| By ho| < (27T)2/(c )6_1(<"’Z>+<<’7>+<n’7>)QO(AVZ)BVBZﬁ(Z,€) do,.

It remains to use Lemma 3.2 and Condition Q(R).
O

Theorem 3.4. Let Condition Q(R) hold for some R > 0 and let the scat-
tering data hy be defined by the potential aqy, 0 < a < ap(R), where
ao(R) is defined in Lemma 3.2. Then the time dependent scattering data
h(s,s,t), 0 <t < T, given by (2.12), admits an analytic continuation in
(s1,%2), and

[Byh(s. <. 1)] < O(R,e)e T Iyl <

The statement remains valid if a = 1, but |[s| > p, where p = p(R) is large
enough.

Proof. The statement follows immediately from Theorem 3.3 and for-
mula (2.12). One needs only to combine the upper bound Ce(=F+e)ls| for the
analytic continuation of hg obtained in Theorem 3.3 with the upper bound

2TR
Ceir2r ! for the time-dependent factor in (2.12).
O

Let us recall again the procedure to obtain the classical solution of the
focusing DSII equation with initial data aggp and a very small a such that
there are no exceptional points. As the first step, one needs to solve the
equation (I +T,)v = I, where T} ; is given by (2.13) with D = 0, i.e., the
equation for v = v, ; has the form

d

os I
c—k
where w,4(-) = v;4(-) — I € B®. Then the solution of the focusing DSII
equation with initial data aqo is given by (2.16). In particular,

1

/ )2 ()11 () haa(s, <, t)do.
27 C

1 o
33) o)+ [ SR )

(3-4) q(z,t) =
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Theorem 3.5. Let Condition Q(R) hold for qo, and let the potential q(z,t),
0<t<T, in (3.4) be constructed from the initial data aqo(z) with 0 < a <
a1 < 1. Then there exists ay = a1(R,T) such that Condition Q(H% —g)
holds for the potential (3.4) for all t € [0,T).

Proof. There is a complete duality (e.g. [21, Th. 4.15]) between the
nonlinear Fourier transform given by (2.5), (2.7) and the inverse transform
(3.3), (3.4). Function h in (3.3) plays the role of the potential Qg in (2.5).
Theorem 3.4 implies that the Condition Q(R’) holds for h with R’ = H% —
5. From Lemma 3.2 applied to (3.3) instead of (2.5), it follows that v has the
same properties as the properties of y established in Lemma 3.2. One needs
only to take a small enough to guarantee that the analogues of operators

K7 have norms that do not exceed one. Then
|B.B,v(z, k)| < C(R,e) when z,keC, |o|,|]y] <R — % a< 1.

Then the statement of the theorem can be obtained similarly to the proof
of Theorem 3.3, i.e., by using the shift of the complex plane C in (3.4) by
the vector n = i%(R’ - 5).

O

4. PROOF OF THE FIRST STATEMENT OF THEOREM 2.2

Consider problem (1.1) with gg replaced by aqg, a € (0,1]. Let D be a
disk containing all the exceptional points for problems (2.2), (2.3) for all
a € (0,1]. Let kg € OD be a non-exceptional point for all a € (0,1]. We will
use notation v! for the solution of (2.15) and (q!,¢') for the pair defined
by (2.16) when the operator 7. ; is defined using the disk D. We preserve
the notations v, (g, ) for the same objects when there are no exceptional
points and D = (). Since ¢', ¢! are meromorphic in a in a neighbourhood of
(0,1] (see Theorem 2.1), the first statement of Theorem 2.2 will be proved
if we show that (¢!, ¢!) = (¢, ) when a > 0 is small and ¢ > 0.

From (2.4), (2.7) and Condition Q(R) with R > (1+2T)A > A, it follows
that the scattering data ho = ho(s, k) is defined for all the potentials ago
when [c], |k| < A (i.e., ¢,k € D) and also for all ¢ = k. We define h(s, k,t)
(extension of hg in t) according to (2.12). Let v = v, = w,; + I, where
wyy € B s > 2, is the solution of (2.15) with T, given by (2.13) with
D = 0 (i.e., the right-hand side in (2.13) contains only the first term, see
equation (3.3)). Then (¢, ) given by (2.16) with D = 0 solves the DSII
equation (1.1) (see [7]), and

(4.1) v =1(z,k,t) = %Ge*=/2 4 e k2110, ¢ ke C, t >0,
is the solution of the scattering problem (2.2) (and the Lippmann-Schwinger

equation (2.3)) with the potential Q:(z) = < —q(oz 0 Q(%’ 2 ) instead of
Qo
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Consider now the scattering data

(4.2 Hsot) = oy | e QU b o
C

(2m)

defined by the solution v of the Lippmann-Schwinger equation (2.3) with the
potential Q¢(z). If 0 < ¢t < T, then from Theorem 3.5 (it is assumed there
that R > (1+2T)A) it follows that integral (4 2) converges when Is], k] < A
(ie., s,k € D) and when ¢ = k. Moreover, h(s, k,t) = h(k + a, k,t) is an
anti-analytic continuation of h(k k,t) in a. We will prove that R coincides
with the scattering data h(s, k,t) defined in (2.12). We also will prove that
there exists an analytic in k function v, = v, (k,t), k € D, such that

(4.3) (v =0 )keap =
_ / [ei/Q(gé—l—?z)i}\f(g/)Ho _ ez‘/2(§—§) ( )HdC] -9 /ﬁ (g c)dg
D J —k}
From these two facts and the d-equation (see [20])
(4.4) (fkv(z, k,t) = ! tZR) 250, | ) TI°h(k, k,t), Kk € C\D,

it follows (see [13, Lemma 3.3]) that the function

. o= {5, s

satisfies the integral equation (2.15), where operator T, ; is constructed using

the scattering data h. Equation (2.15) has a unique solution when «a is small
enough. Under the assumption that h = h, we have v! = v/. Therefore
vY(z, k) = v(z, k) when k € C\D. Solution (g, ¢) of the DSII equation can be
determined via the asymptotics of v at large values of k (e.g., [20, (1.17)], [14
Lemma 3.3]). Hence (¢!, ¢') = (¢, ¢) for small a. Thus the first statement
of the theorem will be proved as soon as we show that h = h, t > 0, and
that 01 exists. R

Justification of the equality h = h, t > 0. Everywhere below, till the
end of the section, we omit mentioning the parameter a and assume that
the initial data gp is small. Let us recall (see [14, Lemmas 4.1, 4.2]) that
the symmetry of the matrix Qo (see (2.1)) implies that hi; = hoo, h1o =
—ho1, and the same relations hold for matrix v determined from the integral
equation (2.15) and related to ¢ by (4.1).

Let us introduce functions

a b
( b a > :ho(k+a,k‘),
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and note that

1 — e T
bla, k) = (27T)2/Ce_o‘z/ze_’(kz+kz)/2qo(z)vn(z,k)daz,
1 —Qaz I
a(o, k) = W/Ce 2q0(2)012(2, k)do.
Now define

( a(a, k,t)  bla,k,t)

_b(Oz7 k,t) a(Oé7 k,t) > = h(k’ + «, k’,t),

where h is given by (2.12). Similar quantities @, b are defined via the solutions
v(-, k,t):

o~

b(a, k,t) :=

1 —az —i(kz+kz
(271—)2 /(Ce /26 et )/Qq(z’ t)vll(za ka t)dO'Z,

. 1 &z _
a(a, k,t) := @ny? /Ce Pq(z,t)12(2, k, t)do.

These quantities are well defined due to Theorem 3.5. Let

~ alo,k,t)  bla, k,t)
h=[ W > .
—bla, k,t) a(a,k,t)

Consider solution v (z, k, t) of (2.2) with potential Qg replaced by Q, and
let v be defined by (4.1). From (4.1) it follows that v — I uniformly on
each compact with respect to the variable z when k — oco. Therefore, from
Theorem 3.5 it follows that
(4.6) a(a, k,t) — 0, k — oc.

Obviously (see (2.12)), the same relation holds for a(o, k, t).

The 0-equation (4.4) implies that the following rules are valid when ¢ = 0:

ob  0b da

(4.7) ok 8a+ab0’ ok bbo, where bo=0b(0,k), o] <A, keC
Due to Theorem 3.5, the same relations are valid for a(«, k, t)j(a’ k,t):
(48)

0b ob ~ oa ~= ~ ~

% oa T gp T = <A <t<T.

o~ oa T W0 ap =bbo, bo=0(0,k,1), | <A, kEC, 0=t <

From (2.12), (4.7), and the obvious relations

P _—
e tF —(k+a)?)/2 _ o—t(k*—(k+0)*)/2—iSk?

O —tk2-GF?)/2 _ 9 (k)2

da ok ’
it follows that (4.8) holds for a(«, k,t), b(a, k, t):
ob b da  —
4. — = — +aby, — =0bby, by =050kt
( 9) 8k Ba +a 0,y ak 05 0 (0) ) )7

when |a| < A, keC, 0<t<T.
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Now we note that b(0, k, t) = b(0, k, t) (see [22, Theorem 5.3]). The second
relations in (4.8), (4.9) with @ = 0 imply that (@ — a)|o=0 is anti-analytic
in k. Then the maximum principle, together with (4.6) for both @ and a,
imply that @|a—0 = @|a=0. Now from the first relations in (4.8), (4.9), with
a = 0, it follows that %\a 0 = 6&‘0‘ o. Then we differentiate the second
relations in (4.8), (4.9) in @ and put a = 0 there. This leads to the anti-
analyticity in k of o |a=0— g—g la=0. The maximum principle with (4.6) imply
that cr’a|oé 0= 8 2| ,—0. After the differentiation in @ of the first relations

n (4.8), (4.9), we obtain that —|a 0= 652 la=0, and so on. Hence all the

derivatives in @ of the vectors (a, b) and (a,b) coincide when a = 0. Since
both vectors are anti-analytic in «, they are identical, i.e., h= h, t > 0.

The ewistence of v can be shown similarly to the proof of same state-
ment in [13], where the potential was assumed to be compactly supported.
Namely, consider the following analogue of the Lippmann-Schwinger equa-
tion with different values ko, k € D of the spectral parameter in the operator
and in the free term of the equation:

(410) ¢+(Z7 k) - €Z%I + / G(Z - Z/, kO)Qt(Z,)wi(Zlv k)daz’y

elkZ/Q

where G(z, k) = 1
equation in terms of
(4.11) wt = pt (2, k) — RO € L(LRY p > 1.

The equation takes the form

. We substitute here ¢+ = ,u“‘eZkOZ/ 2 and rewrite the

efﬁR(koz ) .
wt(z, k) — / ———— () wt (¥, k)do =
zeC

Z—Z
—z?R(koz ) _
— v —iz'(k—ko)/2 .
(4.12) /ZGC —— Qe | do.

Theorem 3.5 implies that function [Qt(z’ )e"?(k_ko)/ 2] decays exponen-

tially as z — oo, and |k|, |kg| < A. The unique solvability of the problem
(4.12) is obvious since the potential is small.

Function 9 is defined by %™ in the same way as v is defined by 1 in
(4.1). The analyticity of " and (4.3) are proved in Lemmas 3.1 and 3.5 of
[13].

(]

5. PROOF OF STATEMENT 2 OF THE THEOREM 2.2.

Reduction to Theorem 5.2 and Lemma 5.3. Theorem 3.5 immedi-
ately implies that the operator T3 ; : B® — B®, s > 2, is analytic in x and
y in a complex neighborhood of R2. In order to use the multidimensional
analytic Fredholm theory ([24, Th. 4.11, 4.12] or [23]) and obtain a decay
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of operator norm ||7T’ ZQtH as |z| = oo, we would like to consider this operator
in the Hilbert space B2 instead of the Banach space B%, s > 2. All the
previous and new results mentioned in this paper remain valid if s > 2 is
replaced by s = 2 (with the appropriate definition of the space B? given
in (2.17)). In order to justify the latter statement, one needs to show that
the properties of the operator T’ ; are preserved when s > 2 is replaced by
s = 2. This will be done in Theorem 5.2 below (we will not discuss the
properties that obviously are s-independent), but we will show that opera-
tor T, : B> — B?,0 <t < T, is compact, continuous in (z,t), and analytic
in (x,%) in a complex neighborhood of R?. After that, we will show (Lemma
5.3) the invertibility of I + T, ; at large values of |z|. Then the second state-
ment of the theorem will be a simple consequence of the first statement
and the analytic Fredholm theory. Note that the invertibility of operator
I+ T, will be proved for z on each ray argz = 1 = const, |z| > Zy, with
y-independent Zy and with 77, ; defined (see (2.13)) using a special value of
ko = ko(¢). Since the solution (g, ¢) of problem (1.1) does not depend on
the choice of kg (see Theorem 2.2), it remains only to prove Theorem 5.2
and Lemma 5.3.

5.1. Compactness of operator T'. We will need the following lemma.

Lemma 5.1. Let operator M : B> — B? have the form
i = [ A pqan, kec
c\ps—k
where function gs = g(<)(1 + |s|)°has the following properties
95| < a1 <00, g5 — 0 as ¢ — oo, and ||gsl|2(c\p) = a2 < 00

for some § > 0. Then M is compact and ||M|| < C(a1 + a2).

Proof. Let P be the following operator in B? of rank one:

(5.1 pr=-B0 [ s0scian,

where 3 is the function introduced in the definition of the space B2. Since
Pf =0 in a neighborhood of D, and
f©) 2
ggfgdagag/ ———|*do. < Cas|| f| 52,
[, o5, o g e < Caal s

C\D

it is enough to prove the statement of the lemma for operator M — P =
M7 + My, where

Mif = | Ki(k,s)f(s)dos,
C\D
Kilh,) = 0000, Kot = (PEE1 4 P )

and o := 1 — B is a cut-off function which is equal to one in a neighborhood
of D.
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Let M be the operator defined by the same formulas as operators M;,
but considered as operators in L?(C). Let us show that operators M/ are
compact and their norms do not exceed C'(aj + a2).

Since |g| < a;, we have

sup/ ]Kl(k,g)\dag—i—sup/ |K1(k,¢)|doy, < Cay.
keCJC seCJC

Hence, from the Young theorem, it follows that ||M/|| < Ca;. Similarly,
using the decay of g; at infinity, we obtain that M{ = limp—,cc Mj p, Where
Mj p are operators in L?(C) with the integral kernels K7 (k,s)a(s/R). Op-
erators M r are pseudo-differential operators of order —1 (they increase
the smoothness of functions by one) defined in a bounded domain. Hence
operators Mj p and their limit M] are compact operators in L?(C).

The boundedness (with the upper bound Cag) and compactness of the
operator My will be proved if we show that

// |K2(k:,q)\Qdcrkalcrg < Cas.
CcJC

We split the interior integral in two parts: over region |k| < 2|s| and over
region |k| > 2|¢|, and estimate each of them separately. We have

: [ PR PR
[, st <250 [ R+ B
< Clg(QP(1+ <))’

A better estimate with a logarithmic factor is valid, but we do not need this
accuracy. Next,

|doy,

2, _ > [kB(s — k) + (s — k)B(K)|?
/k|>2g| |K2(k’,§)‘ dO'k - \g(§)| /k>2g| |(§ _ k)k‘|2

The denominator of the integrand can be estimated from below by %|k‘]4.
The numerator, denoted by n, has the following properties. If || is large
enough, than both beta functions in n are equal to one, and n = |s|2. The
same is true if || is bounded and |k| is large. If both variables are bounded,

than |n| is bounded. Thus |n| < (C+|s|)?, and the integrand above does not

1+s|?
[k[*

Thus there is a constant ¢ > 0 such that

1+ [g)?
[ et oPdo < Clo(o)? | <
|k|>2]s] |k|>max(c,2|s|) |k|

1 |2
< Clg()P / Lo+ Clg()P / IE 5 = crlg(o)P.
k|>c |K| k[>2<| K]

doy,.

exceed C . Obviously, the integrand vanishes when |k| is small enough.

doy

/ / K (k, <) doydo, < C / 19(9)2(1 + <)°do < Clas.
CcJC C
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Thus, operators M : L?(C) — L?(C) are compact and ||M|| < C(a1 + az).

Denote by M!" : B2 — L?(C) operators with the same integral kernels K;
as for operators M, but with the domain B? instead of L?(C). Compact-
ness of these operators will be proved if we show the boundedness of MZ’ on
the one-dimensional space of functions of the form f.(s) = c@, ¢ =const.
The upper estimate on || M/ f.|| can be obtained by repeating the arguments
above used to estimate ||M/|. One needs only to replace f. by the func-
tion f = f./|s|%/? € L?*(C) and replace the kernel K; by K;|c|*/2. Hence,
operators M/ are compact and || M/|| < C(a; + a2).

Obviously, for each f € B2, the function (M; + Ma)f is analytic in D.
Consider its trace on D. Let Mp : B2 — L?(0D) be the operator that maps
each f € B2 into the trace of (My + Ms)f on D. In order to complete the
proof of the lemma, it remains to show that operator Mp is well defined,
compact, and ||[Mp| < C(a1 + az). To prove these properties of Mp, we
split the operator into two terms Mp = Mp¢p + Mp(1 — ¢), where ¢ is the
operator of multiplication by the indicator function of a disk D; of a larger
radius than the radius of D. Then M (1 — ¢)f is analytic in D;, and

1M1 = &) fllr2(py) < 1M fllr2c) < Clar + ag)||f|s2-

From a priori estimates for elliptic operators, it follows that

1M1= ¢)fllmspy < CsIM(1 = @) fllr2(py) < Cslar + a2)[ g2,

where H?® is the Sobolev space and s is arbitrary. Hence

1M1= &) fll 517200y < Clar + a2)|| f[|52-

This implies that operator Mp(1 — ¢) is compact and its norm does not
exceed C'(a1+ag). We will take D; not very large, so that function 5 vanishes
on D;. Then M¢f is the convolution of 1/k and ¢gf,i.e., Mopf = %* (pgf).
The latter expression is a pseudo differential operator of order —1 applied
to the function ¢gf with a compact support. Thus,

1M fllapy < Cliegfllizp,) < Carllflls2,

and therefore | Mpf| yi/2(py < Carl f|g2. Hence, operator Mpé is com-

pact and its norm does not exceed Cay.
O

Theorem 5.2. Let conditions of Theorem 2.2 hold. Then operator T, ; :
B2 — B%0 <t < T, is compact, continuous in (z,t), and analytic in
(x,y) in a complex neighborhood of R%. The same properties are valid for
derivatives of T, ; of any order in t,x,y.

Remark. T}, is analytic in z,y in the region |Sz|? + [Sy|? < R2.
Proof. The operator T, ; can be naturally split into two terms: T, ; =
M + D, where M involves integration over C\D and D involves integration
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over 0D. In particular,

iR(sZ) 4 o
Mo = 1/ TR, 1) 4
C\D

T c—k

The statements of the theorem are valid for operator M due to (2.9), Lemma
5.1 and Theorem 3.4. Indeed, the compactness and continuity of M in (z,t)
is proved in Lemma 5.1. The analyticity in (x,y) follows from the fast decay
of h at infinity which is established in Theorem 3.4.

Let us show that the same properties are valid for D. We write D in
the form D = I1I5, where operator Iy : L?*(0D) — C®(dD) is defined
by the interior integral in the expression for D in (2.13), and operator I :
C*(0D) — H?* is defined by the exterior integral in the same expression.
Here C*(9D) is the Holder space and « is an arbitrary number in (0,1/2).
The integral kernel of operator I has a logarithmic singularity at ¢ = ¢/,
i.e., I» is a pseudo differential operator of order —1, and therefore I is a
bounded operator from L?(9D) into the Sobolev space H'(dD). Thus it
is compact as operator from C(9D) to C*(0D),a € (0,1/2), due to the
Sobolev embedding theorem. Thus the compactness of D will be proved as
soon as we show that I; is bounded.

For each ¢ € C*(9D), function I ¢ is analytic outside of 9D and vanishes
at infinity. Due to the Sokhotski—Plemelj theorem, the limiting values (11¢)+
of (I1¢) on OD from inside and outside of D, respectively, are equal to

+ 1 (s)d
21 PVl fop 59;. Thus

max |[(11¢)+] < Cllglloa@p)-

From the maximum principle for analytic functions, it follows that the same
estimate is valid for function I1¢ on the whole plane. Taking also into
account that Io¢ has the following behavior at infinity Io¢ ~ ¢/k + O(|k|?),
we obtain that operator I is bounded. Hence operator D is compact. Since
h decays superexponentially at infinity, the arguments above allow one to
obtain not only the compactness of D, but also its smoothness in ¢, z,y and
analyticity in (x,y).

(|

5.2. The invertibility of /4T, ; at large values of z. We will prove the
following lemma.

Lemma 5.3. The following relation is valid for operator norm of Tz%t mn
B2:

max |72, -0, z€C, z— oco.
o<t<T ' *

Hence the operator I + T4 is invertible when z € C, |z| > 1.

We split operator 7T, ; into two terms 7,; = M + D that correspond
to the integration over C\D and D, respectively, in (2.13). The entries
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M4, DY, 4 j=1,2, of the matrix operators M and D are
Mll _ M22 =0

i%(cf)*t(‘CQ*EQ)/Qg(g)h (s,5)
M2¢=—M>"¢= / : o,
C\D <~k (
D¢ = D2y =
1 dC § L M\ b (2 2
Lo — S (6=NZH5 ("= () d(!
= omi op C—k ng ko hi1(¢;<)e? ? P(s)dc,
D2¢=_D¥¢ =
1 d¢ In 5 _;h12(§ g)eg(mc 2)+L(7 = )¢( Nds

T 2mi Jop C—k Jop & — ko
We used here the relations h1o = —his, h11 = hoo for the entries of hg that
were established, for example, in [14, Lemma 4.1].

Lemma 5.1 implies the uniform boundedness of M 21, M2 when 0 < t <
T, z € C. Thus Lemma 5.3 will be proved if we show that operator norms of
M2 M2 and D% i,j = 1,2, vanish as z — co. Let us prove the statement
about D%,

Lemma 5.4. For each T > 0, there exists a constant Cp such that

1D¢lls> < lellgz, 2€C, 0<t<T,

B 1+\ |1/4
if ko in the definition of operator D is chosen to belong to 0D and equal to
ko = —iAe™, where 1) = argz and A is the radius of the disk D.

Proof. We will prove the estimate for the component D'? of the matrix
D. Other components of D can be estimated similarly. Consider the interior
integral in D12

7

62 RE= [ InS il eR I gd,
where ¢ € 0D, ¢ € B2. Our goal is to show that

Cr
(5.3) IR0l 1o (op) < W”d’”m(ap ¢ € B

The integrand in (5.2) is anti-holomorphic in ¢’ € D with logarithmic
branching points at kg and ¢. If kg is strictly inside D, then the integration
over dD in (5.2) can be replaced by the integration over two sides of the
segment [ko, <], which are passed in the counter clock-wise direction. The
values of the logarithm on these sides differ by the constant 27. This leads
to an alternative form of the operator D:

d i —2 o
D¢ = D21¢_Z/apg—<k; Ik }h12(§’,<) e (TG
0,S
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If kg € 0D, the contour of integration above can be replaced by arc[kg,].
Thus
il 2 __
R2¢ =i /A hia(s',¢)e2 AT =) (AT ¢ € OD, ¢ € L2(0D).
kOS

Consider the following function (from the exponent in the integrand 'above):
® = R [4cz] . This function is linear in ¢, and for each fixed z = [z]e™, ¢ €
[0,27), it has the unique global maximum on D. The maximum occurs on
the boundary at the point ¢o = —iAe”, which depends only on the argu-
ment of z. Due to Theorem 2.2, point ky € 0D can be chosen arbitrarily.
We choose kg = ¢p € 9D, and we get that

1/2
r2 <0 ([ ewa2(00) - o) o) lolue

Let us estimate the integral above. Let ¢ = —iAde!¥*+%) |p| < m. For
¢’ € G, <, we have

O(<) = Alz|(cos ) /2, ®(c) = Alz[(cosp)/2,

and the integral is equal to

/gp eA|z|(cos<p—cosap’)/2d(p/ _ O(

1
0 VA

This justifies (5.3).

), z— o0.

Let us show now that the following statement holds.

Lemma 5.5.

(5.4) max [|[M*M2|zg —0, z€C, z— oo
0<t<T

Proof. Kernels of M2, M?! are smooth, see (2.9 ). From Theorem 3.4,
it follows that the kernels and rapidly decaying functions in C. Therefore,
Lemma 5.1 implies that operators M2, M?! can be approximated in B2 by
operators with function his replaced by a compactly supported one. There-
fore, without loss of the generality, we will assume below that the supports
of hig, ho1 belong to a bounded domain O.

We will use the notation P for the one-dimensional operator defined in
(5.1) with the density g = R /2 10(¢,¢). Let M := (M2 —
P)(M?' — P). We will prove that
(5.5) max ||M|g: =0, z€C, z— oo.

0<t<T
The other three terms M'2(M?2! — P), (M'? — P)M?!, and PP can be
treated in the same way. We have
— 1 _ o _
Mep=— A(2,5,52)ha1 (52, 60)e D TUR=TD2 () dor
T Jo\D



GLOBAL SOLUTION OF THE FOCUSING DAVEY-STEWARTSON II SYSTEM 21

where A(z,¢,¢2) is given by the following integral
(5.6)

/ 6m(qz)t(qqz)/th(q,q)( ! +B(§)>< ! +ﬁ(g1)>d0c1-
O\D

1 —¢ S G2 — 61 S1

The Minkovsky inequality in the integral form implies the following two
estimates, that are valid when f € B2:

1/2
M fllL2(c\p) S/ [/O\D!A(Za€,<2)!2da<] |ha1(s2, s2) f(s2)|dog,,

O\D

. 1/2
1575 omy < [ [ / |A<z,<,<2>|2|d<|] s (<2 2) () [dr
o\p LJap

Since the norm of the operator L?(C\D) — L'(C\D) of multiplication by
ho1 can be estimated by a constant, the validity of (5.5) will follow from the
estimates above if we show that the following relations hold as z — oc:

sup / |A(z,§,§2)|2d0§—>0, sup / |A(2,g,§2)|2\dg|—>0.
s2€C\D JO\D «2€C\D JOD

We will prove only the first of them, since the second one can be proved
similarly. Note that, uniformly in ¢ € O,

/ ‘A(Z7§7§2)‘2d0'§ <
O\D

/ / h12(<1,§1)< ! + B(g)) ( 1 + B(gl))dagl
o\p |Jo\p §1—¢ S S2 — 61 <1

The boundedness follows from the fact that the internal integral is O(In |¢ —
¢2|),s —s2 — 0. Let A® be given by (5.6) with the extra factor ns := n(s|s —
c1))n(sls1 — s2])), s > 0, in the integrand, where n € C*°(R), n = 1 outside
of a neighborhood of the origin, and n vanishes in a smaller neighborhood
of the origin.

For each ¢, there exists s = so(e) such that

/ |A— A2 do, < ¢
O\D

for all the values of ¢o € O, z € C. Denote by RSONthe function A% with the
potential hjy replaced by its Li-approximation hijp € C§°(C\D). We can
choose this approximation in such a way that

/ |A% — R®|?do, < ¢
O\D

2
do. < C.

for all the values of ¢, z. Now it is enough to show that

|IR*°(s,62,2)| = 0 as z— 00



22 E. LAKSHTANOV AND B. VAINBERG

uniformly in ¢, 3 € O. The latter can be obtained by integration by parts in
R*°(¢, ¢, 2), defined by integral (5.6) with his replaced by (1 —ns)hi2(s1,1)
(integrating e®(<1%) and differentiating the complementary factor). This
completes the proof of (5.4).
O
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