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Abstract—Public transit stations and hubs can be diffi-
cult to navigate by people who are blind or have low vision,
and by people with cognitive impairment. We are building
a system, named RouteMe2, that provides microrouting
and guidance in these environments. A critical component
of this system is self-localization. In this paper, we present
a system for self-localization in outdoor places (such as a
train station), in which GPS signal is available but, due
to shading from nearby buildings, often unreliable. We
propose a new approach that uses a small number of Blue-
tooth low energy (BLE) beacons to increase self-localization
accuracy by means of statistical fusion with data from
GPS, paired with a Bayes discrete filter tracker. A number
of experiments were conducted at San Jose Diridon light
rail station to quantitatively assess the performance of the
proposed system.

I. INTRODUCTION

Public transit, when available, represents a safe, eco-
nomical, and environmentally responsible way to travel.
It is also the preferable, and sometimes the only, means
of transportation for those who cannot drive, and who
cannot rely on family or friends to be driven to places.
These include people who are old and lost their driver
license due to medical reasons; people who are blind
or have severe vision conditions (low acuity, tunnel
vision); and people with a certain level of cognitive
impairment (e.g. early stages of dementia). Although
private transportation, in the form of taxi cabs or ride
hailing services such as Uber and Lyft, is often available,
at least in urban areas, this may be too expensive for
regular use by people with low income. Paratransit is an
option for those who have a disability; but it is not an
ideal solution, as paratransit service has limited coverage
and require reservation long in advance of a trip.

Traveling by public transit, though, may be difficult
for some people, and especially for those who need it the
most. In many cases, the problem is one of information
access. Managing a trip, especially one that requires one
or more transfers, requires prior knowledge of where and
when to catch each vehicle. While en route, travelers
must acquire and process different types of information,
such as which platform to stand on while waiting for
a train, or whether the bus vehicle that just arrived
is the correct one. Travelers must maintain continuous
awareness of where they are in the scheduled itinerary;
make timely decisions (e.g. when to exit a bus); and

devise contingency plans when something goes wrong
(such as a missed transfer or a delayed arrival). Much of
the information available to a traveler is in visual form,
such as signs or displays, and thus inaccessible to those
who are blind or have low vision. Negotiating difficult
or unexpected situations may be cognitively demanding,
and may be challenging for those who are anxious, tend
to become easily confused, or have trouble processing
information in stressful situations.

We are developing a system, called RouteMe?2, that
is designed to assist travelers using public transit, by
providing individualized access to relevant information.
RouteMe?2 is embodied in a smartphone app and a cloud
server system. The software in the app and in the remote
server work in tandem to track the traveler, and to
provide trip-specific and location-aware information, in
a format that is convenient for the user. For example,
blind users may receive directional guidance in the form
of synthetic speech, with the app guiding them to specific
places (e.g. the location of a bus stop) while leveraging
landmarks that may be perceivable without sight (such
as a bench that is known to be located at the bus stop).
For people with cognitive impairment but with usable
sight, the app may provide simple directions at each
step of the way, possibly relying on visible landmarks
(“stand next to the red pole with a bus sign on top”),
and allowing them to read or hear the directions as many
times as desired. RouteMe?2 uses existing trip planning
APIs (such as Google Directions or OpenTripPlanner) to
determine a route, and tracks the user through the route,
re-routing when necessary.

Unlike existing routing and tracking apps already
available (e.g. Google Maps, Apple Maps, Transit,
Moovit, Citymapper), RouteMe2 is able to generate
microroutes, that is, pedestrian routes at a small spatial
scale. A typical pedestrian route (e.g. from Google Map)
normally specifies paths on roads or pedestrian routes
to a transit station or bus stop. Sometimes, when this
information is available (from a GTFS or NeTEx file),
these routes can even specify the bus slot in a large
transit center. But rarely, if ever, do these generated
routes include small-scale detailed spatial information.
Indeed, for blind travelers, who cannot rely on visual
landmarks, routes need to be defined at a much finer



scale than for sighted people. This is particularly the
case in the open, when there are no readily available
features that can be perceived by touch (such as a wall,
which can be tracked using a long cane) and that can be
used to follow a route. For the same reason, it is critical
that users be spatially localized within a microroute with
enough accuracy for the system to produce meaningful
directions.

This contribution describes work on the localization
system that will be part of our RouteMe2 app. This
localization module is designed to function in challeng-
ing situations, of the type that are often found at transit
stations. Specifically, we address the case of an outdoor
transit station with poor GPS reception due to tall nearby
buildings. As well known, the presence of tall structures
may obscure view of one or more satellites (shading, also
known as urban canyon effect). If fewer than 4 satellites
are visible, signal from the remaining satellites can only
be received via multipath, generating localization errors.
Shading is very common in urban environments, and is
a major cause of GPS failure. In order to mitigate the
effect of shading, we propose the use of Bluetooth Low
Energy (BLE) beacons. BLE beacons are a popular tool
for localization in indoor, GPS-denied environments. Lo-
cation information is obtained from the received signal
strength (RSSI) from multiple beacons, using a mapping
function that is learned in a fingerprinting phase. The use
of BLE beacons in the outdoors, for situations with poor
GPS reception, has received much less attention by the
research community. In fact, whereas BLE beacons have
been shown to produce acceptable localization accuracy
in places characterized by networks of corridors [1],
where the user’s path is well constrained, they turn out
to be much less effective in open spaces, where the large
variance of their transmission power often results in large
localization error [2].

In our work, we explore the combination of spatial
information from GPS and BLE beacons via statistical
fusion. We show that, with a proper modeling of the
error distribution of the signals involved (spatial location
from GPS, RSSI from beacons), it is possible to achieve
substantially lower localization error than when using
either modality in isolation. In addition, we implemented
a spatial tracker based on discrete Bayes filtering. The
tracker updates a posterior probability distribution of the
user’s location over a grid of traversable locations. We
demonstrate our algorithms in a case study with a light
rail station (VTA Diridon station). Due to a tall building
next to the station, GPS signal is poor in a portion of the
traversable area, where it gives a large localization error.
BLE beacons placed on light poles on both walkable
sides of the tracks enable localization, but with high error
variance. We study the effect of fusing the two sources
of information, as well as the benefit of adding a spatial
tracker. In addition, we consider the effect of the density

of beacons on the overall error.

II. RELATED WORK

There is increasing interest in systems that enable self-
localization in GPS-denied environments (e.g. indoors).
A popular approach is to use the measured power of
wireless signal from WiFi or Bluetooth (including BLE)
beacons. While in principle it could be possible to use
power decay models [3], [4] to estimate the distance to
a beacon from the measured RSSI from that beacon,
then self-localize via multilateration, in practice this is
extremely challenging [2] due to issues such as multi-
path fading (an effect of signal reflection from nearby
surfaces) and variations in time of the signal power. For
this reason, it is customary to instead “learn” a mapping
from the set of received RSSI signal from one or more
beacons, to the user’s location. This mapping is learned
from measurements taken at multiple, known locations,
a process called fingerprinting [S5]-[8].

Localization using RSSI value from Wi-Fi access
points (AP) has been widely studied [5]-[7], [9]. This
approach leverages the widespread availability of Wi-
Fi APs in public environments. However, one generally
has no control on the actual density of placements
of APs (meaning that some areas of interest may not
be covered), or on other factors such as APs being
disconnected or moved after fingerprinting. BLE bea-
cons represent a popular alternative to Wi-FI APs [1],
[10]-[13]. BLE beacons are generally inexpensive, and
being battery-operated they can be placed where desired
without wiring concerns. Our work uses BLE beacons
for localization in an environment in which GPS data is
available, but with poor reliability. Although similar sit-
uations are relatively frequent in urban environments, we
are not aware of prior work that leverages both sources
of information (GPS and BLE beacons) to improve self-
localization in these scenarios.

Fig. 1. Left: An aerial picture of the San Jose Diridon light rail station,
with the walkable areas highlighted. Right: A GPS track measured
while walking on the East platform. Each point is shown with its
uncertainty radius (displayed as a green transparent circle). Note the
large localization error on the northernmost part of the track.

III. SELF-LOCALIZATION TECHNIQUE

We define a grid (with square cells 1 meter wide) over
the traversable area of the environment being mapped.
For the case of the Diridon station considered here,



shown in Fig, 1, left, there are two long and parallel
pathways (where the East pathway extends North to
connect with a pedestrian tunnel under the main station).
Travelers can cross the light rail tracks on two “cross-
walks”, with spring-operated gates. The grid is defined
on East, North, Up (ENU) local tangent plane coordi-
nates. A probability distribution of the user’s location is
defined on this grid using GPS or BLE beacons data as
described in the following.

A. GPS Error Modeling

Modern smartphones provide APIs that produce an
estimate of the accuracy of GPS data in the form of
radius of uncertainty. In first approximation, this could
be taken as the standard deviation ogpg of the GPS
localization error. We observed, however, that the uncer-
tainty radius produced by the API is not always reliable.
Specifically, there are situations (like the one shown in
Fig. 1, right), where the location provided by GPS may
have a consistent bias that is poorly modeled by white
additive Gaussian noise. For this reason, we decided to
use a mixture model instead. Specifically, the probability
p(z;|GPS) of being at a certain location x ;, where x; is
a cell in the grid, is modeled as the convex combination
of a normal distribution, centered at the location reported
by GPS and with a standard deviation equal to the un-
certainty radius, and of a uniform distribution (the latter
accounting for large deviations that may occasionally be
expected).

B. BLE Beacons RSSI Modeling

Inspired by [14], we model the received power from
various beacons at each location z; in our grid as a
normally distributed random vector with independent
entries (diagonal covariance). The mean of this random
vector is set equal to the average signal vector {RSSIJ?}
computed from the measurements received within a
square region with side of 5 meters (25 cells) centered
at x; (where 7 indexes the beacons). The entries of
the diagonal covariance matrix are set to a constant
value op, as this was found to give more stable results
than using the empirical variance values. (ocp was set
to 8 dBm in our experiments.) Thus, the conditional
likelihood of the received signal can be expressed as:

(RSSILRSSIJ?#
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Given a measured vector {RSSI'}, one can easily
compute the posterior distribution over locations under
uniform prior: p(z;|{RSST'}) o p({RSSI*}|z;). The
most likely location is computed as the cell z; that max-
imizes this posterior distribution. Note that this approach
involves computing p(z;|{ RSSI'}) for all grid cells ;.

In general, signal from only a limited set of beacons
(B(z;)) will be received at a given location z; during
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fingerprinting. (Note that only if we receive at least 3
measurements from the same beacon within the region
used to compute the average RSSI, will the beacon
be included in B(z;).) Let B be the set of beacons
whose signal is received at run time. Care must be taken
when computing p(z;|{RSSI'}) for any locations z;
such that the set of beacons with signal received during
fingerprinting, B(:cj), does not match B. In this case,
we adopt the following simple strategy: for each beacon
in B(z;) that is not in B, the missing RSSI value in
(1) is set to a small value (-95 dBm). Likewise, for each
beacon in B3 that is not in B(x;), we add a “fake” beacon
with the same small value for RSSI]’E in (1).

C. GPS and BLE Beacons Data Fusion

In order to combine localization information from
GPS and from the BLE beacons, we employ a standard
mechanism of statistical fusion. More precisely, we
assume that the signals measured using the two sensing
modalities are conditionally independent. Under uniform
location prior, this results in a separable posterior distri-
bution:

Prus(a;| {RSSI'Y, GPS) o pla; {RSST'})p(a; |G PS)

@

It is sometimes useful to allocate different “weights”

to the two measurements being combined together. We

enable this by expressing (2) in the log domain and
changing it to a convex combination:

log prus(;|[{RSSI'}, GPS) 3)
= (1 —a)logp(z;|{RSSI'}) + alog p(z;|GPS) + K

where 0 < o < 1 and K is a normalization constant.
Note that smaller values of « assign more weight to the
localization estimate from the BLE beacons, and vice-
versa. In our experiments, we set o = 0.2.

D. Discrete Bayes Tracker

Due to noise and ambiguity (the same RSSI vector
may be measured at different locations with similar like-
lihood), the distribution p(z;|{RSSI'}) (as well as the
fused distribution) is often multimodal, with competing
peaks that may lead to possibly large “jumps” in the
estimated location. In order to overcome this effect,
we employed a tracker, which smooths the computed
trajectory based on a suitable dynamic prior. (Note that
we don’t apply the tracker to the location data from GPS,
as it is normally already smoothed by the smartphone’s
APIL) Although most recent work in the localization
literature uses particle filtering trackers, we opted for
a Discrete Bayesian Filter (sometime called Histogram
Filter [15]) instead. This is a deterministic algorithm that
is appropriate when the spatial domain is discrete (such
as a grid) and the dynamic model is also discrete. In
our case, we augment the “state” xz(t), representing the
location of a person at time ¢, with the person’s velocity



v(t). The velocity (more precisely, the displacement
within one unit of time, which is assumed to be 1
second) can only take one of a small set of values. More
specifically, we assume that from time ¢ —1 to time ¢ the
user either remains within the same grid cell z;(¢t — 1),
or moves to one of the 8 neighboring cells. With some
abuse of notation, we will write z(t) = x(t—1)+v(t—1).
The algorithm recursively recomputes the posterior dis-
tribution of location and velocity at each time under
standard Markovian assumptions as follows:

p(x; (1), v () {RSSI'(t :)}) o p({RSSI'(t)} (1), vi(t))-

D pla; (), or()]a(t = 1), vp(t — 1))
3k

ples(t — 1), vplt — DI{RSSIi(t —1:)))

where k indicates one of the possible 9 values of
velocity, and RSSTi(t :) represents all RSSI readings
up to and including time t.

We will assume that the RSSI readings are indepen-
dent of the user’s velocity, and that the user’s velocity is
independent of his or her location. Under these assump-
tion, the recursion becomes:

pl;(t), o RSST'(t )}) o p({RSST' (#)}]a5(2))-

225505 (1) = (25(t = 1) + v (t — 1)p(uk () g (£ — 1))
plaj(t = 1), vt = H{RSST'(t —11)})

where 0(-) is 1 when its argument is 0, O otherwise.
For what concerns term p(uvg(t)|vg(t — 1)), we will
assume that with probability 1 — e the velocity remains
the same (k = k), while with probability ¢/8 it may
take any one of the other 8 possible values (where
0 < e <1 is a design parameter that was set to 0.2
in our experiments.) Note that, for each location z;, the
recursion only involves a small amount of operations,
which are well manageable on a smartphone platform.
The algorithm can be easily extended to the case of fused
localization from GPS and BLE beacons.

IV. EXPERIMENTS
A. Setup and Trial Sets

We instrumented the San Jose Diridon light rail station
(Fig. 1, left) with 21 BLE beacons (Kontakt Tough
Beacon TB15-1) configured as iBeacons and set to the
default power level (RSSI of -77 dBm at 1 meter) and
advertisement interval of 350 ms. The layout of the
beacons can be seen in Fig. 2, left plot. The beacons
were placed on light posts, approximately 4 meters tall.
Fingerprinting was performed in January of 2019 from
RSSI data collected with an iPhone 7. An experimenter
walked at constant velocity (approximately 0.5 m/s)
over a number of straight paths, while holding the

iPhone in her hand. The geodesic coordinates of the
endpoint locations of each path were measured using
Google Maps, and transformed to grid coordinates. By
timestamping the start and end of the walk, the walking
velocity was measured, which allowed us to assign a
timestamp to each cell in the grid overlapping with the
path, and thus to record RSSI measurements for that
cell. Overall, data was collected from walking over 22
paths (including walking on the same path in opposite
directions). In addition, we mimicked a case with fewer
(8) BLE beacons available (see layout of this subset of
beacons in Fig. 2, last two plots), by considering data
measured only from these beacons.

We tested the performance of our localization system
over three different sets of trials. The first set (Trial
Set 1), collected on the same day of fingerprinting, is
formed by 10 trials, where in each trial the experimenter
walked at regular speed (approximately 1 m/s) over
straight paths, while holding the iPhone in her hand.
Timestamped RSSI data was collected during the trials.
By measuring the location of the endpoints of these
paths, and recording the start and end time of each
walk, we were able to estimate the “ground truth”
location of the experimenter at all times, and thus to
precisely measure the localization error. We report the
root mean square distance between the actual location
of the experimenter at time ¢ and the estimated location
as reported by the system based on the RSSI vector
collected at that point. This trial set represents an “ideal”
situation, as fingerprinting and data collection were
conducted under identical conditions. We tested multiple
configurations of the system: GPS tracks, BLE beacons
tracks (Sec. III-B), and GPS/BLE beacon fused tracks
(Sec. III-C). In addition, for the last two modalities, we
experimented with use of the Bayes discrete filter tracker
(Sec. III-D). We experimented with all 21 beacons, as
well as with the reduced set of 8 beacons.

A second smaller set (Trial Set 2) was collected in
May of 2019, 4 months after fingerprinting. Of note, all
beacons were turned off for a period of time (using the
Kontact’s beacon management app) between Trial Set 1
and 2, then turned on again before the data collection
for Trial Set 2 began. One of the beacons (located on
the East platform) stopped working in the process, and
thus only 20 beacons were available for Trial Set 2. 4
trials were conducted in an identical fashion as for the
previous case, with experimenter walking over straight
paths with known endpoints. Path reconstruction was
also conducted with the reduced set of beacons (only
7 beacons, due to the aforemontioned beacon failure).

The last set (Trial Set 3, collected in July of 2019)
is comprised of 3 trials, with the experimenter walking
through paths that included multiple turns. For these
trials we don’t have ground truth measurements of
the experiment’s location at all times, and thus cannot



compute the localization error. However, we recorded the
times at which the experimenter took each turn, which
allowed us to associate each data point with the segment
(between two consecutive turns) the experimenter found
herself when that data was collected. Based on this
information, we were able to compute all “jumps” —
situations in which the system returns a location that
is in an incorrect path segment. Our error metric in this
case is the proportion of the ‘“jump” events within a path.
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Fig. 2. Experiments with a sample path (East platform) from Trial
Set 1. The left plot shows the actual path taken (black) with the track
estimated from GPS (light blue) and the average error computed for
this path. The next two plots show results using all 21 beacons (whose
locations are shown on the map), while the last two plots only 8
beacons are used (locations also shown).
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Fig. 3. Experiments with a sample path (West platform) from Trial
Set 1. See caption of Fig. 2.

B. Results

Localization errors, averaged over all trials for each
trial set, are shown in Tab. I using the chosen met-
rics. Figs. 2-6 show tracks computed for representative
individual paths. A common characteristic of all trial
sets is that the GPS tracks were for the most part
correct while walking on the West platform, but grossly
incorrect when walking on the East platform. This results
in the large measured average error reported for the
GPS tracks. Localization using only BLE beacons also
produces substantial error, especially for the portion of
the platforms facing each other. This is due to the fact
that, when standing on one platform, the distance to
one or more beacons in the other platform is often
shorter than the distance to the nearest beacons on the
same platform. This generates a multimodal posterior

distribution, which results in frequent “jumps” from one
platform to the other. In fact, beacon-based localization
generates errors also when walking on the West platform,
where GPS produces very good results. The situation
was aggravated by the fact that, as noted above, one
beacon on the East platform stopped functioning after
Trial Set 1. In general, when using fewer beacons (see
Fig. 5), the error increases, as expected.
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Fig. 4. Experiments with a sample path (East platform) from Trial
Set 2. See caption of Fig. 2. Note that, due to a beacon failure, there
were only 20 beacons available, of which a subset of 7 beacons was
used for the last two plots.
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Fig. 5. Experiments with a sample path (West platform) from Trial
Set 2. See caption of Fig. 2.

GPS/beacon fusion results in substantially lower over-
all localization error than with either modality alone,
especially when fewer beacons are used. Careful analysis
shows that, in this case, fusion mostly contributes to
reducing the extent of vertical (North-South) jumps
from beacon-based localization. This may be the reason
why no apparent benefit is observed from fusion with
GPS with respect to using beacons alone in the “jump
proportion” metric used for Trial Set 3. Vertical errors
within the same segment do not constitute a jump, and
are thus not penalized by this metric. In addition, fusion
contributes to reducing East-West platform jumps when
walking on the West platform.

As expected, the general effect of the tracker is to
“stabilize” and smooth the computed paths. Quantita-
tively, use of the tracker always reduces localization
error, although in the case of Trial Set 2, the error reduc-
tion is less dramatic than that achieved by GPS/beacon
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Fig. 6. Experiments with a sample path from Trial Set 3. See caption
of Fig. 2.

fusion. Only for Trial Set 1 does use of the tracker
on GPS/beacon fused data result in the best results.
Some insight on why use of the tracker may not be
as effective as expected in Trial Set 2 can be obtained
by observation of Fig.4, which shows a case with the
experimenter walking on the East platform. In this
case, the tracker generates a piecewise smooth trajectory
which sometimes places the user on the West platform,
amplifying (rather than reducing) the localization error
from the beacons. In this particular case, fusion with
GPS may even worsen the situation, as seen in the case
with 7 beacons.

Full set GPS BLE Fusion BLE+tracker Fusion+tracker

Trial Set 1 10.38 4.36 3.83 2.72 2.55

Trial Set 2 7.61 6.65 5.18 6.33 5.81

Trial Set 3 29% 17% 19% 9% 14%
Reduced set GPS BLE Fusion BLE+tracker Fusion+tracker
Trial Set | 10.38 8.10 5.40 5.37 4.24
Trial Set 2 7.61 11.04 6.01 8.72 6.83
Trial Set 3 29% 24% 25% 11% 21%

TABLE I

ERROR COMPUTED OVER ALL TRIALS IN EACH TRIAL SET. THE
ERROR IS EXPRESSED AS ROOT MEAN SQUARE DISTANCE BETWEEN
ESTIMATED AND ACTUAL LOCATION FOR TRIAL SETS 1 AND 2,
AND AS THE “JUMP PROPORTION” FOR TRIAL SET 3. TOP: ALL
AVAILABLE BEACONS USED (21 FOR TRIAL SET 1, 20 FOR TRIAL
SETS 2 AND 3). BOTTOM: REDUCED SET OF BEACONS USED (8 FOR
TRIAL SET 1, 7 FOR TRIAL SETS 2 AND 3).

V. CONCLUSIONS

We have described a system for self-localization in an
outdoor location (a light rail station) where GPS signal
is available, but often unreliable. This situation is rep-
resentative of many urban environments, where shading
effects reduce the accuracy of GPS-based localization.
A set of BLE beacons were installed, with the purpose
to enhance self-localization through measurement of the
RSSI from these beacons, using a mapping that was
learned with a standard fingerprinting phase. Due to the
open nature of the place, localization from BLE beacons
alone is generally poor, especially when a low density
subset of beacons is considered. Statistical fusion of data
from GPS and beacons is shown to improve accuracy in
most situations, as does use of a Bayes discrete filter
tracker with a simple motion model.

In future work, we plan to improve our algorithms
to deal with more challenging situations, including:
different placements of the smartphone on the user’s
body (which may lead to masking of the signal from
one or more beacons by the user’s body); indoor/outdoor
transitions; and robustness to sporadic beacons failure
(e.g. because of battery depletion).
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