®

Check for
updates

Trustless Framework for Iterative Double
Auction Based on Blockchain

Truc D. T. Nguyen®™) and My T. Thai

Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL. 32611, USA
truc.nguyen@ufl.edu, mythai@cise.ufl.edu

Abstract. One of the major problems in current implementations of
iterative double auction is that they rely on a trusted third party to han-
dle the auction process. This imposes the risk of single point of failures
and monopoly. In this paper, we aim to tackle this problem by proposing
a novel decentralized and trustless framework for iterative double auc-
tion based on blockchain. Our design adopts the smart contract and state
channel technologies to enable a double auction process among parties
that do not trust each other, while minimizing the blockchain transac-
tions. We provide a formal development of the framework and highlight
the security of our design against adversaries.

Keywords: Blockchain - Iterative double auction - Trustless - State
channel

1 Introduction

In recent years, following the great success of Bitcoin [1], the blockchain tech-
nology has emerged as a trending research topic in both academic institutes and
industries associations. In a nutshell, blockchain can be seen as a decentralized
database or digital ledger that contains append-only data blocks where each
block is comprised of valid transactions, timestamp and the cryptographic hash
of the previous block. By design, a blockchain system is managed by nodes in
a peer-to-peer network and operates efficiently in a decentralized fashion with-
out the need of a central authority. In specific, it enables a trustless network
where participants can transact although they do not trust one another. More-
over, a blockchain system may also employ the smart contracts technology to
enable a wide range of applications that go beyond financial transactions [2]. In
the context of blockchain, smart contracts are defined as self-executing and self-
enforcing programs that are stored on chain. They are deployed to the blockchain
system with publicly visible terms and conditions. Blockchain and smart con-
tracts together have inspired many decentralized applications and stimulated
scientific research in diverse domains [3-9)].

An auction is a market institution in which traders or parties submit bids
that can be an offer to buy or sell at a given price [10]. A market can enable only

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 304, pp. 3-22, 2019.
https://doi.org/10.1007/978-3-030-37228-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37228-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-37228-6_1

4 T. D. T. Nguyen and M. T. Thai

buyers, only sellers, or both to make offers. In the latter case, it is referred as a
two-sided or double auction. A double auction process can be one-shot or itera-
tive (repeated). The different between them is that an iterative double auction
process has multiple, instead of one, iterations [11]. In each iteration, each party
submits a bid illustrating the selling/buying price and supplying/demanding
units of resource. This process goes on until the market reaches Nash Equilib-
rium (NE). In practice, the iterative double auction has been widely used in
allocating divisible resources such as energy trading [7,12], mobile data offload-
ing [13], or resource allocation in autonomous networks [14]. However, current
implementations of double auction system require a centralized and trusted auc-
tioneer to regulate the auction process. This results in the risk of single point of
failures, monopoly, and privacy.

Although many research work has tried to develop a trading system com-
bining the iterative double auction and blockchain [7,15], nonetheless, they still
need a trusted third-party to handle the auction process. In this work, we lever-
age blockchain and smart contracts to propose a general framework for iterative
double auction that is completely decentralized and trustless. Although a naive
mechanism to eliminate the trusted third-party is to implement the auction-
eer in a blockchain smart contract, this results in high latency and transaction
fees. To overcome this problem, we adopt the state channel technology [16] that
enables the off-chain execution of smart contracts without changing the trust
assumption.

Contribution. The key contribution of this work is the formal development of a
novel decentralized and trustless framework for iterative double auction based
on blockchain. With this framework, we are able to run existing double auc-
tion algorithms efficiently on a blockchain network without being suffered from
the high latency of on-chain transactions. Specifically, we develop a Universally
Composable (UC)-style model [17] for the double auction protocol and prove the
security properties of our design using the simulation-based UC framework.

Organization. The remainder of this paper is organized in the following manners.
We summarize the related work in Sect. 2. In Sect. 3, we discuss how blockchain
and double auction can be combined. We will first present a straw-man design
and then provide a high-level view of our framework. Section4 presents the
formal security definitions of our work. Then, we provide a formal specification
of our framework in Sect. 5. Finally, Sect. 6 gives the concluding remarks.

2 Related Work

Double Auction Based on Blockchain. As blockchain is an emerging technology,
there has been many research work addressing double auction with blockchain.
Recently, Thakur et al. [18] published a paper on distributed double auction for
peer to peer energy trading. The authors use the McAfee mechanism to process
the double auction on smart contracts. In [19], the authors presented BlockCloud

Trustless Framework for Iterative Double Auction Based on Blockchain 5

which is a service-centric blockchain architecture that supports double auction.
The auction model in this work uses a trade-reduction mechanism. However, the
double auction mechanism in these work is one-shot and is only applicable to
single-unit demands. For applications like energy or wireless spectrum allocation,
these models greatly limit users’ capability to utilize the products [20].

In [7] and [15], the authors propose blockchain-based energy trading using
double auction. The auction mechanism is implemented as an iterative process
which can be used for divisible goods. Although the system presented in these
papers employ blockchain, the double auction process is still facilitated by a
central entity. The blockchain is only used for settling payments. Our work is
fundamentally different as we aim to design a framework that can regulate the
iterative double auction process in a decentralized and trustless fashion.

State Channel. Although there has been many research effort on payment chan-
nels [21,22], the state channel has only emerged in recent years. State channel is
a generalization of payment channel in which users can execute complex smart
contracts off-chain while still maintains the trustless property. Dziembowski et al.
[16] is the first work that present the formal specifications of state channels.

3 Double Auction with Blockchain

3.1 Auction Model

We consider a set of parties that are connected to a blockchain network. We
divide the set of parties into a set B of buyers who require resources from a set
S of sellers. These two sets are disjoint. The demand of a buyer 7 € B is denoted
as d; and the supply of a seller j € S is denoted as s;. In this work, we adopt the
auction model proposed in [23], which elicits hidden information about parties
in order to maximize social welfare, as a general iterative double auction process
that converges to a Nash Equilibrium (NE).

A bid profile of a buyer i € B is denoted as b; = (0;,x;) where ; is the
buying price per unit of resource and z; is the amount of resource that i wants
to buy. Likewise, a bid profile of a seller j € S is denoted as b; = (o, y;) where
o is the selling price per unit of resource and y; is the amount of resource that
J wants to supply.

The auction process consists of multiple iterations. At an iteration k, the

buyers and sellers submit their bid profiles bgk) and b§k) to the auctioneer. Then,

a double auction algorithm will be used to determine the best response bng)

and b;kﬂ) for the next iteration. This process goes on until the auction reaches

NE, at which the bid demand and supply (x;,y;) will converge to an optimal
value that maximizes the social welfare. An example of such algorithm can be
referred to [23]. The pseudo code for a centralized auctioneer is presented in
Algorithm 1.

6 T. D. T. Nguyen and M. T. Thai

Algorithm 1

k—1

while not NE do
Receive bid profiles bl(-k) and b;k) from buyers and sellers
Compute best responses bgkﬂ) and bg-k_"j) based on [23]
Send bgkﬂ) and bgkﬂ) back to sellers and buyers
k—k+1

end while

3.2 Straw-Man Design

In this section, we present a design of the trading system. The trading mechanism
must meet the following requirements:

(a) Decentralized: the auction process is not facilitated by any central middle-
man

(b) Trustless: the parties do not have to trust each other.

(¢) Non-Cancellation: parties may attempt to prematurely abort from the pro-
tocol to avoid payments. These malicious parties must be financially penal-
ized.

Based on the requirements, we will first show a straw-man design of the
system which has some deficiencies in terms of latency and high transaction fee.
Then, we will propose a trading system using state channels to address those
problems.

In this system, we deploy a smart contract to the blockchain to regulate the
trading process. Prior to placing any bid, all parties must make a deposit to the
smart contract. If a party tries to cheat by prematurely aborting the trading
process, he or she will lose that deposit and the remaining parties will receive
compensation. Therefore, the deposit deters parties from cheating. At the end
of the trading process, these deposits will be returned to the parties.

In this straw-man design, the auction process will be executed on-chain, that
is, the smart contract will act as an auctioneer and thus will execute Algorithm
1. As the auction process consists of multiple iterations, the system will follow
the activity diagram in Fig. 1 at each iteration.

At an iteration k, all buyers and sellers submit their bids bl(.k) and b§»k), respec-
tively, to the smart contract. In order to avoid unresponsiveness, a timeout is
set for collecting bids. Should any parties fail to meet this deadline, the system
considers that they aborted the process.

The smart contract then determines the best response bz(-kJrl) and b;kﬂ) for
buyers and sellers, respectively, until the trading system reaches NE. This design
works, however, has two main disadvantages:

1. Transaction latency: each message exchanged between parties and the smart
contract is treated as a blockchain transaction which takes time to get com-
mitted.

Trustless Framework for Iterative Double Auction Based on Blockchain 7

Auction

Buyer Smart contract Seller

Compute best

responses
(k+1) g (k+1)
bV, by

Submit p(+) ot ment| ASubmit 57

Compute best

responses
(k+2) (k+2)
B2

Iteration k

Fig. 1. Auction phase

2. High computational complexity on the smart contract which means that the
blockchain will require high transaction fees.

In other words, the buyers and sellers are having the entire blockchain to process
their auction.

3.3 Blockchain with State Channels

As the double auction process involves multiple iterations and has a fixed set of
participants, state channel [16] is a proper solution to address the deficiencies
of the straw-man design. Instead of processing the auction on-chain, the parties
will be able to update the states of the auction off-chain. Whenever something
goes wrong (e.g., some parties try to cheat), the users always have the option of
referring back to the blockchain for the certainty of on-chain transactions.

In the same manner as the straw-man design, the parties deploy a smart
contract to the blockchain. However, this smart contract does not regulate the
auction process, but instead acts as a judge to resolve disputes. The parties must
also make a deposit to this contract prior to the auction. Figure 2 illustrates the
overview of the operation in state channel.

After deploying the smart contract, the parties can now begin the auction
process in a “state channel”. At each iteration k of the auction, we define two
operations: (1) collecting bids and (2) determining the best responses. Denoting
the set of parties as P = BUS = {p1,p2,...,Pn}, in the first operation, each
party broadcasts a blockchain transaction containing its bid b;(,]f) to all other
parties. Note that this transaction is a walid blockchain transaction and it is
only broadcasted locally among the parties. Upon receiving that transaction,

8 T. D. T. Nguyen and M. T. Thai

On-chain 1. Deposit to 5. Return deposit
smart contract
Off-chain 2. Open channel 3. Broadcast Blockchain 4. Submit final result

transactions to submit bids and close channel
and determine best responses

Fig. 2. Double auction state channel

1
Deposit™
H
!

Deposit >

loop J : _‘broadcast(b‘,sigk)—": Verity sig
— I_?_bvoadcasl(b,.:lg,)

broadcast(Gy ,sigk) | Verify G,

E‘—broadcasl(veviﬁed(Gk).sig;)

Final :GA =E Verity G

P R ireturn deposit
SR return deposit - - ---- -+

Fig. 3. Sequence diagram of the double auction process.

each party has to verify its signature. After this operation, each party now has
the bid profiles of all other parties.

Then we move to the second operation of determining the best response. A
party will be chosen to compute the best responses, in fact, it does not matter
who will execute this computation because the results will later be verified by
other parties. Therefore, this party can be chosen randomly or based on the
amount of deposit to the smart contract. Let p; be the one who carries out the
computation at iteration k, G be the result that consists of the best response
bng) for each party p;, pr will broadcast a blockchain transaction containing
G, to all other parties. Upon receiving this transaction, each party has to verify
the result Gg, then signs it and broadcasts another transaction containing Gy,
to all other parties. This action means that the party agrees with Gy,. After this
step, each party will have G together with the signatures of all parties.

Trustless Framework for Iterative Double Auction Based on Blockchain 9

When the auction process reaches NE, a party will send the final G, together
with all the signatures to the smart contract. The smart contract then verifies
the G, and if there is no dispute, the state channel is closed. Finally, the payment
will be processed on-chain and the smart contract refunds the initial deposit to
all parties. The entire process is summarized in the sequence diagram in Fig. 3.

As can be seen, the blockchain is invoked only two times and thus saves
tons of transaction fees comparing to the straw-man design. Moreover, as the
transactions are not sent to the blockchain, the latency is only limited by the
communication network among the parties. We can also see that the bid profiles
are only known among the involving parties, not to the entire blockchain, thus
enhances the privacy.

4 Formal Definitions and Security Models

In this section, we describe the formal security definitions and models used in
the construction of this framework. Before that, we establish some security and
privacy goals for our system.

4.1 Security and Privacy Goals

We consider a computationally efficient adversary who can corrupt any subset
of parties. By corruption, the attacker can take full control over a party which
includes acquiring the internal state and all the messages destined to that party.
Moreover, it can send arbitrary messages on the corrupted party’s behalf.

With respect to the adversarial model, we define the security and privacy
notions of interest as follows:

— Unforgeability: We use the ECDSA signature scheme which is believed to be
unforgeable against a chosen message attack [24]. This signature scheme is
currently being used in the Ethereum blockchain [2].

— Non-Repudiation: Once a bidder has submitted a bid, they must not be able
to repudiate having made the relevant bid.

— Public Verifiability: All parties can be verified as having correctly followed
the auction protocol.

— Robustness: The auction process must not be affected by invalid bids nor by
participants not following the correct auction protocol.

— Input independence: Each party does not see others’ bid before committing
to their own.

— Liveness: In an optimistic case when all parties are honest, the computation
is processed within a small amount of time (off-chain messages only). When
some parties are corrupted, the computation is completed within a predictable
amount of time.

10 T. D. T. Nguyen and M. T. Thai

4.2 Our Model

The entities in our system are modeled as interactive Turing machines that
communicate with each other via a secure and authenticated channel. The system
operates in the presence of an adversary A who, upon corruption of a party p,
seizes the internal state of p and all the incoming and outgoing packets of p.

Assumptions and Notation. We denote P = BUS = {p1,p2,...,pn} as the
set of n parties. We assume that P is known before opening the state channel
and |P| > 2. The blockchain is represented as an append-only ledger £ that is
managed by a global ideal functionality F, (such as [16]). The state of F is
defined by the current balance of all accounts and smart contracts’ state; and
is publicly visible to all parties. F, supports the functionalities of adding or
subtracting one’s balance. We also denote F(x) as retrieving the current value
of the state variable = from an ideal functionality F.

We further assume that any message destined to F, can be seen by all
parties (in the same manner as blockchain transactions are publicly visible). For
simplicity, we assume that all parties have enough fund in their accounts for
making deposits to the smart contract. Furthermore, each party and the ideal
functionality will automatically discard any messages originated from a party
that is not in P or the message’s signature is invalid.

Communication. In this work, we assume a synchronous communication net-
work. We define a round as a unit of time corresponding to the maximum delay
needed to transmit an off-chain message between a pair of parties. Any modifi-
cations on F, and smart contracts take at most A € N rounds, this A reflects
the fact that updates on the blockchain are not instant but can be completed
within a predictable amount of time. Furthermore, each party can retrieve the
current state of F, and smart contracts in one round.

5 Double Auction State Channel

In this section, we describe the ideal functionality of our system that defines how
a double auction process is operated using the state channel technology. After-
wards, we present the design of our protocol that realizes the ideal functionality.

5.1 Ideal Functionality

First, we define the ledger’s ideal functionality F. Based on Sect.4.2, the F.
supports adding and subtracting one’s balance, hence, we give the corresponding
definition in Fig. 4.

The formal definition of the ideal functionality F,qction is presented in Fig. 5.
As can be seen, it supports the following functionalities:

Trustless Framework for Iterative Double Auction Based on Blockchain 11

Functionality F.

Store a vector (z1,x2, ..., x,) that denotes the balance of n parties.

Adding and subtracting balances

— On input update(p;, s):
1. f s>0,set z; =x; + s
2. If s<0Oand z; > —s, set ©x; = x; + s
3. Otherwise, reply with an error() message and stop.

Fig. 4. Ledger’s functionality F.

— Open channel
Determine best response
— Revocation

— Close channel

The state channel creation is initiated by receiving a create() message from
a party. The functionality then waits for receiving create() from all other parties
within 1+ (n — 1)A rounds. If this happens then the functionality removes a
deposit from each party’s balance on the blockchain. Since, all parties have to
send the create() message, we achieve the consensus on creation.

Each iteration k of the double auction process starts with receiving the
best_response(k) message from a party. Then all parties must submit a com-
mitment of their bids which is a hash function of the bid and a random nonce.
After that, all parties must submit the true bid that matches with the hash they
sent before. Any party fails to submit in time or does not submit the true bid will
be eliminated from the double auction process. With the commitment step, one
party cannot see the other parties’ bid which satisfies the Input independence.

When one party fails to behave honestly, it will be eliminated from the auc-
tion process and will not receive the deposit back. A party can voluntarily abort
an auction process by sending a revoke() message and it will receive the deposit
back. Then, the auction can continue with the remaining parties. Therefore, the
functionality satisfies the Robustness. Moreover, a malicious party cannot delay
the advancing of the protocol to a great extent, because after timeout, the exe-
cution still proceeds. In the best case, when everyone behaves honestly and does
not terminate in the middle of the auction process, the computation is processed
within O(1) rounds, otherwise, O(A) rounds. Thus, the Liveness is satisfied.

In the end, the state channel begins its termination procedure upon receiving
a close() message from a party. Next, it awaits obtaining the close() messages
from the remaining parties within 1 4 (|P| — 1)A rounds. If all the parties are
unanimous in closing the state channel, the functionality returns the deposit
back to all parties’ account.

12 T. D. T. Nguyen and M. T. Thai

Functionality Fauction

Open channel

— On input create() from p;
1. For each party Pj, j # i, wait to receive create(). If not receiving after 1 +
(n — 1)A rounds then stop.

2. Otherwise, instruct F. to remove a deposit from each of the party’s account
on the blockchain within A rounds.
3. channel = created

Determine best response

— On input best _response(k) from p;
o Commitment:
1. For each party p;, wait until receiving Ci(k) = H(b§k>||rl(k)) from p; where
bl(.k) is the bid and rgk) is a random nonce.
2. If any party p; fails to submit the commitment within 1 round, remove p;
from P then stop.
e Reveal and compute:
1. For each party P;, wait until receiving Rl(k) = (bl(.k)HrZ(k)) from p;.
2. If any party p; fails to submit within 1 round or H(R§k>) #* Ci(m, remove
pi from P then stop.
3. Compute best response Gy, based on Algorithm 1
4. Send Gy to all parties in 1 round.

Revocation

— On input revoke() from p;: within A rounds
1. remove p; from P, add the deposit to p;’s balance on the blockchain

Close channel

— On input close() from p;: if p; ¢ P then stop. Otherwise:
1. Within 1+ (|P| — 1) A rounds, wait for receiving close() from p;,j # i
2. If fails to receive then stop.
3. Else, within A rounds, add the deposit to every party p;’s balance on the
blockchain, where p; € P
4. channel = L

Fig. 5. Ideal functionality Fauction

5.2 Protocol for Double Auction State Channel

In this section, we will discuss in details the double auction protocol based on
state channel that realizes the Fyction. The protocol includes two main parts:
(1) a Judge contact and (2) Off-chain protocol.

Trustless Framework for Iterative Double Auction Based on Blockchain 13

Judge Contract. The main functionality of this contract is to regulate the state
channel and handle disputes. Every party is able to submit a state that everyone
has agreed on to this contract. However, the contract only accepts the state
with the highest version number. Once a party submits a state G, the contract
will wait for some deadline T' for other parties to raise disputes. See Fig.6 for
the functionality of the Judge contract. Note that the contract Fj,q4¢. has a
state variable channel which indicates whether the channel is opened or not.
If the channel is not opened (channel = 1), the three functionalities “State
submission”, “Revocation”, and “Close channel” cannot be executed. In the
same manner, if the channel is already opened (channel = created) then the
functionality “Open channel” cannot be executed.

As the contract always maintains the valid state on which all parties have
agreed (by verifying all the signatures), we can publicly verify if all parties are
following the protocol. When the state channel is closed, the contract is now hold
the latest state with the final bids of all the parties, and by the immutability
of blockchain, no bidder can deny having made the relevant bid. Therefore, this
contract satisfies the Non-Repudiation and Public Verifiability goals.

Off-chain Protocol w. In this section, we present the off-chain protocol 7 that
operates among parties in a double auction process. In the same manner as
Fauction, the protocol 7 consists of four parts: (1) Create state channel, (2)
Determine best response, (3) Revocation, and (4) Close state channel.

First, to create a new state channel, the environment sends a message create()
to one of the parties. Let’s denote this initiating party as p;. The detailed protocol
is shown in Fig. 7. p; will send a create() message to the smart contract Fryage
which will take A rounds to get confirmed on the blockchain. As this message
is visible to the whole network, any p;+; can detect this event and also send a
create() message to Fyydge. To detect this event, each p; needs to retrieve the
current state of blockchain which takes 1 round and as there are n —1 parties p;,
thus p; has to wait 14 (n — 1) A rounds. If all parties agree on creating the state
channel, this process will be successful and the channel will be opened. After
that, the smart contract will take a deposit from the account of each party.

When parties run into dispute, they will have to resolve on-chain. In specific,
the procedure Submit() as shown in Fig. 8 allows any party to submit the current
state to the smart contract. However, as stated above, F juqq4e only considers the
valid state that has the highest version number. In this procedure, we also define
a proof of a state G. Based on the algorithm used for double auction, this proof
is anything that can verify whether the calculation of G in an iteration is correct
or not. For example, proof can be all the valid bids in that iteration. When any
party submits a state, the Fj,q4c Will raise the state variable flag = dispute.
Upon detecting this event, other parties can submit their states if they have
higher version numbers. After a deadline of T' rounds, if none of the parties can
submit a newer state, Fjuage Will set flag = L to conclude the dispute period.
Furthermore, we also note that this procedure also supports eliminating any
dishonest party that does not follow the protocol by setting the parameter p, to
that party. If a party p; wants to eliminate a party p,, it will need other parties,
except p,, to call the Submit() procedure to remove p, from P.

14 T. D. T. Nguyen and M. T. Thai

Contract Fjudge

Open channel

— On input create() from p;:
e For each party pj, j # 4, wait to receive create(). If not receiving after A
rounds then stop.

e Otherwise:
* channel = created.
* instruct Fr to remove a deposit from each of the party’s account on the

blockchain within A rounds.

* Initialize bestVersion = —1, state = (), flag = L, the set of parties P

State submission

— On input state__submit(p,,v, G, proof) from p;
1. if pr # L1, wait for (|P| — 2)A rounds. Then, if it receives
state__submit(p;.,v', G, proof’), such that p, = p,, from all parties except
pr and p; then remove p, from P
2. if v < bestVersion the stop.
. Verify the signatures of P on G and verify the state G using proof. If failed
then stop
. bestVersion =v
. state = G
. flag = dispute
. Set flag = L after a deadline of T" rounds unless bestVersion is changed.

w

N O Ut

Revocation

— On input revoke() from p;: within A rounds
1. remove p; from P, instruct F. to add the deposit to p;’s balance on the
blockchain

Close channel

— On input close() from p;: if p; ¢ P then stop. Otherwise:

If flag = dispute then stop.

Within 1 + (|P| — 1) A rounds, wait for receiving close() from pj,j # 4

If fails to receive then stop.

Else, within A rounds, add the deposit to every party p;’s balance on the
blockchain, where p; € P

5. channel = L

L

Fig. 6. Judge contract

Trustless Framework for Iterative Double Auction Based on Blockchain 15

Protocol 7: Create state channel

Party p;: On input create() from environment ‘

1. Send create() to Fjudage and wait for 1 + (n — 1)A rounds.

’ Party p;-i: Upon p; sends create() to Frudge

2. Send create() to Frudge and wait for (n — 2)A rounds.

For each party:

3. If Fjudge(channel) = created then outputs created() to the environment.

Fig. 7. Protocol 7: Create state channel

Procedure: Submit(ps, pr,v,G)

1. If p; = L and v < Fjudge(bestVersion) then stop.

2. Otherwise, construct proof for G and send state _submit(p,,v, G, proof) to Fjudge
in A rounds.

3. Wait until Fjuage(flag) = L then stop.

’ Party pj=i: On Fjudge(flag) = dispute ‘

4. If the latest valid state G has k > Fjuage(bestVersion) then construct proof for
Gy and send state__submit(L, k, Gy, proof) to Fjudage in A rounds.
5. Wait until Fjyage(flag) = L then stop.

Fig. 8. Procedure Submit

Next, in Fig.9, we present the protocol for determining the best response
which only consists of off-chain messages if all the parties are honest. In each
iteration k, this process starts when the environment sends best_response(k) to
a party p;. Again, this does not violate the trustless property since p; can be
any party chosen at random. First, p; broadcasts the commitment Ci(k) of its
bid which only takes one round since this is an off-chain message. Other parties
upon receiving this message will also broadcast their commitments. Then, p;
proceeds to broadcast the reveal ng) of its bid and hence, other parties upon

receiving this Rl(k) also broadcast their reveals. If any party refuses to send their
bids or sends an invalid bid, other parties will call the Submit procedure to

16 T. D. T. Nguyen and M. T. Thai

eliminate that dishonest party from the auction process. Thus, that party will
lose all the deposit. In practice, one may consider refunding a portion of deposit
back to that party. To achieve this, we only need to modify the first line of the
functionality “State submission” in Fjyu4ge to return a portion of deposit to p,.

During the auction process, some parties may want to abort the auction
process. In order to avoid losing the deposit, they must use the Revocation
protocol described in Fig. 10 to send a revoke() message to Fyyqge. In this case,
they will get the deposit back in full and be removed from the set P. Other
parties upon detecting this operation also update their local P to ensure the
consistency.

Finally, Fig. 11 illustrates the protocol for closing the state channel. One
technical point in this protocol is that we must check whether there is any
ongoing dispute. If so then we must not close the channel. In the same way of
opening the channel, a party p; also initiates the request by sending a message
close() to the smart contract. Upon detecting this event, other parties may also
send close(). If all parties agreed on closing the channel, they will get the deposit
back.

5.3 Security and Privacy Analysis

We denote EXEC, 4,¢ as the outputs of the environment £ when interacting
with the adversary A and parties running the protocol 7. From [17], we have
the following definition:

Definition 1 (UC-Security). A protocol m UC-realizes an ideal functionality
F if for any adversarial A, there exists a simulator S such that for any envi-
ronment £ the outputs EXECy 4¢ and EXECr s ¢ are compulationally indis-
tinguishable.

In this section, we will prove the following theorem:

Theorem 1. Under the assumptions given in Sect. 4.2, the protocol m UC-
realizes the ideal functionality Fouction 1 the (Fjudge, Fr)-hybrid model.

Proof. The main goal of this analysis is to ensure the consistency of timings,
i.e., the environment £ must receive the same message in the same round in
both worlds. Furthermore, in any round, the messages exchanged between any
entities as well as the internal state of each party must be identical between the
two worlds, which will make £ unable to perceive whether it is interacting with
the real world or the ideal one.

Per Canneti [17], the proof strategy consists of constructing the simulator S
that handles the corrupted parties and simulates the (Fjyuage, Fr)-hybrid world
while interacting with Fyqction- Hence, the simulator will maintain a copy of the
hybrid world internally. We further assume that upon receiving a message from
a party, the ideal functionality F,yction Will leak that message to the simulator.
For simplicity, we omit these operations from the description of the simulator.
Since S locally runs a copy of the hybrid world, & knows the behavior of the

Trustless Framework for Iterative Double Auction Based on Blockchain 17

Protocol 7: Determine best response

Party p;: On input best _response(k) from the environment

1.

2. Broadcast C](-k) = 'H(bgk)Hr;k)) to other parties and wait for 1 round.

3. If there exists a party piz; such that it doesn’t receive Cl(k) then execute

10.
11.
12.

13.

. Broadcast R§k> = (bj(.k)||rj(-k>) to other parties and wait for 1 round.
7. If there exists a party p;x; such that it doesn’t receive Rl(k> or H(Rl(k)) a C’l(k)

. If there exists a party p; such that it doesn’t receive R;k) or 'H(R;k)) #* C;k) then

. Compute best response Gy, sigg’“ = signy,(Gx) and broadcast

Broadcast CZ-(k) = ’H(bEMH’I‘Ek)) to other parties and wait for 1 round. Then go to
step 4.

’ Party pj»i: On input Cz.(k) from p;

Submit(p;, k — 1, Gr—1) and stop.

If there exists a party p; such that it doesn’t receive C’J(-k) then execute
Submit(pj, k — 1,Gr—1) and stop.

Broadcast Rik) = (bgk)\|r£k)) to other parties and wait for 1 round. Then go to
step 8.

Party pj+;: On input Rl(k) from p;

then execute Submit(p;, k — 1, Gx—_1) and stop.

execute Submit(p;, k — 1,Gr_1) and stop.

best_response(Gy, sigs®) to other parties. Wait for 1 round then go to
step 13.

Party pjx;: On input best _response(Gy, sigg’””) from p;

Verify Gy,

If Gy is not correct then execute Submit(p;,k — 1, Gr—1) and stop.

Otherwise, let siggk = signy,(Gx) and broadcast verified(Gk,sigg’“) to other
parties. Then wait for 1 round.

For each party:

If there exists a party pi»; such that it doesn’t receive verified(Gy, singl’“) then
execute Submit(pi, k — 1, Gr—1) and stop.

Fig. 9. Protocol m: Determine best response

18 T. D. T. Nguyen and M. T. Thai

Protocol 7: Revocation

Party p;: On input revoke() from the environment ‘

1. Send revoke() to Fjudge in A rounds then stop.

’ Party pj-;: On changes of Fjyage(P) ‘

2. Update the local P with Fjuage(P)

Fig. 10. Protocol 7: Revocation

Protocol 7: Close state channel

Party p;: On input close() from environment ‘

1. If Fruage(flag) = dispute then stop.
. Send close() to Fruage and wait for 1 + (|P| — 1) A rounds. Then go to step 4

[\

’ Party p;-i: Upon p; sends close() to Frudge

w

. Send close() to Frudage and wait for (|Fauction(P)| — 2)A rounds.

For each party:

4. Wait for A rounds and check if Fjuage(channel) = L then outputs closed() to the
environment.

Fig. 11. Protocol 7: Close state channel

corrupted parties and the messages sent from A to Fjudge, therefore, S can
instruct the Fuyucrion to update the ledger £ in the same manner as the hybrid
word. We provide the description of S for each of the functionalities as follows.

Open Channel. Let p; be the party that initiates the request. We analyze the
following cases:

— p; is corrupted: Upon p; sends create() to Frudge
1. S waits for A rounds
2. Then sends create() to Fauction to make sure that Fuuction receives
create() in the same round as Fjuqge. Then wait for 1+ (n —1)A rounds
3. if Fauction(channel) = created then sends created() to £ on behalf of p;.
— pjzi s corrupted: Upon p; sends create() to Fouction
1. S waits for A rounds

Trustless Framework for Iterative Double Auction Based on Blockchain 19

2. If p; sends create() to Fyyudge then S sends create() to Foyction and wait
for (n — 2)A rounds
3. if Fauction(channel) = created then sends created() to £ on behalf of p;.

In all cases above, according to Fig. 7, p; or p; will output created() to £ if
Fauction(channel) = created. Hence, S also outputs created() in the same round.

Therefore, the environment £ receives the same outputs in the same round in
both worlds.

Close Channel. Let p; be the party that initiates the request. We analyze the
following cases:

— p; is corrupted: Upon p; sends close() to Frudge
1. if Fjudge(flag) = dispute then stop. Otherwise, S waits for A rounds
2. Then sends close() to Fauction t0 make sure that Fyyction receives close()
in the same round as Fjyqge- Then wait for 1+ (Fayction (|P]) —1) A rounds
3. Wait for another A round and check if Fyyction(channel) = L then sends
created() to £ on behalf of p;.
— pjzi s corrupted: Upon p; sends close() to Fauction
1. S waits for A rounds
2. If p; sends close() to Fyydge then S sends close() to Fyuction and wait
for (| Fauction(P)| — 2)A rounds
3. Wait for another A round and check if Fyyction(channel) = L then sends
closed() to £ on behalf of p;.

The indistinguishability in the view of €& between the two worlds holds in the
same manner as Open channel.

Revocation. Let p; be the party that initiates the request. We analyze the fol-
lowing cases:

— p; is corrupted: Upon p; sends revoke() to Fryage
1. S waits for A rounds
2. Then sends revoke() to Fauction to make sure that Fauction receives
revoke() in the same round as Frudge-
— pj+i s corrupted: Upon p; sends revoke() to Fauction
1. If p; updates the local P then S also updates its P.

In both cases, S ensures that the messages exchanged between the entities
are identical in both worlds. Moreover, since P is updated according to the real
world, thus the internal state of the each party are also identical. Therefore, the
view of £ between the two worlds are indistinguishable.

20 T. D. T. Nguyen and M. T. Thai

Determine Best Response. We define S_Submit() as the simulator of the proce-
dure Submit() in the ideal world. Let p; be the party that calculates the best
responses. In each iteration k, we analyze the following cases:

— p; s corrupted: Upon p; broadcasts CZ-(k) to other parties

1. Send Ci(k) to Fauction and wait for 1 round.

2. If Fuuction removes any party then stop. If p; executes the Submit() then
S also calls the S_Submit() in the same round.

3. Otherwise, if p; broadcasts RZ(-k) to other parties then S sends Rl(»k) to
Fauction and waits for 1 round. Else, stop.

4. If Fauction removes any party then stop. If p; executes the Submit() then
S also calls the S_Submit() in the same round. Otherwise, wait for 1
round

5. Receive G, from Fyetion and wait for 1 round.

6. If p; executes the Submit() then S also calls the S_Submit() in the same
round. Otherwise, stop.

— pj=; 48 corrupted: Upon p; sends best_response(k) to Fouction

1. Wait until p; sends CZ-(k) to Fauction, then forwards that C’i(k) to p; in the
same round.

2. If p; broadcasts CJ(»k) to other parties then S sends C’](»k) to Fuuction-
Else, execute S_Submit() to eliminate the party that made p; refuse to
broadcast and stop.

3. Wait for 1 round. If p; sends ng) to Fauction, then forwards that Rl(k) to
p; in the same round. Otherwise, stop.

4. If p; broadcasts R;k) to other parties then S sends R;k) to Fauction-
Else, execute S_Submit() to eliminate the party that made p; refuse to
broadcast and stop.

5. Wait for 1 round, if S doesn’t receive Gy from Fuyction then stop. Oth-
erwise, S forwards that Gy, to p;.

6. If p; executes the Submit() then S also calls the S_Submit() in the same
round. Otherwise, stop.

Since the messages exchanged between any entities are exact in both worlds,
the indistinguishability in the view of £ between the two worlds holds.

6 Conclusion

In this paper, we have proposed a novel framework based on blockchain that
enables a complete decentralized and trustless iterative double auction. That is,
all parties can participate in the auction process without having to rely on an
auctioneer and they do not have to trust one another. With the aid of the state
channel technology, we were able to reduce the blockchain transactions to avoid
high transaction fee and latency. We have provided a formal specification of the
framework and our protocol was proven to be secured in the UC model.

Acknowledgment. This paper is partially supported by DTRA HDTRA1-14-1-0055
and NSF CNS-1814614.

Trustless Framework for Iterative Double Auction Based on Blockchain 21

References
1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

10.

11.

12.

13.

14.

15.

16.

17.

Ethereum Proj. Yellow Pap. 151, 1-32 (2014)

Nguyen, L.N., Nguyen, T.D., Dinh, T.N., Thai, M.T.: OptChain: optimal trans-
actions placement for scalable blockchain sharding. In: 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pp. 525-535. IEEE
(2019)

Saad, M., Cook, V., Nguyen, L., Thai, M.T., Mohaisen, A.: Partitioning attacks
on bitcoin: colliding space, time, and logic. In: 2019 IEEE 39th International Con-
ference on Distributed Computing Systems (ICDCS). IEEE (2019)

Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: International Conference on
Open and Big Data (OBD), pp. 25-30. IEEE (2016)

Dinh, T.N., Thai, M.T.: Al and blockchain: a disruptive integration. Computer
51(9), 48-53 (2018)

Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., Hossain, E.: Enabling local-
ized peer-to-peer electricity trading among plug-in hybrid electric vehicles using
consortium blockchains. IEEE Trans. Ind. Inform. 13(6), 3154-3164 (2017)
Aitzhan, N.Z., Svetinovic, D.: Security and privacy in decentralized energy trading
through multi-signatures, blockchain and anonymous messaging streams. IEEE
Trans. Dependable Secure Comput. 15(5), 840-852 (2016)

Nguyen, T.D.T., Pham, H.-A., Thai, M.T.: Leveraging blockchain to enhance
data privacy in IoT-based applications. In: Chen, X., Sen, A., Li, W.W., Thali,
M.T. (eds.) CSoNet 2018. LNCS, vol. 11280, pp. 211-221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04648-4_18

Friedman, D.: The double auction market institution: a survey. Double Auction
Market Inst. Theor. Evid. 14, 3-25 (1993)

Parsons, S., Marcinkiewicz, M., Niu, J., Phelps, S.: Everything you wanted to know
about double auctions, but were afraid to (bid or) ask (2006)

Faqiry, M.N., Das, S.: Double-sided energy auction in microgrid: equilibrium under
price anticipation. IEEE Access 4, 3794-3805 (2016)

lTosifidis, G., Gao, L., Huang, J., Tassiulas, L.: An iterative double auction for
mobile data offloading. In: 2013 11th International Symposium and Workshops on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),
pp. 154-161. IEEE (2013)

Tosifidis, G., Koutsopoulos, I.: Double auction mechanisms for resource allocation
in autonomous networks. IEEE J. Sel. Areas Commun. 28(1), 95-102 (2010)
Wang, J., Wang, Q., Zhou, N.: A decentralized electricity transaction mode of
microgrid based on blockchain and continuous double auction. In: 2018 IEEE Power
& Energy Society General Meeting (PESGM), pp. 1-5. IEEE (2018)
Dziembowski, S., Faust, S., Hostakova, K.: General state channel networks. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS 2018, pp. 949-966. ACM, New York (2018). https://doi.
org/10.1145/3243734.3243856

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 2001 IEEE International Conference on Cluster Com-
puting, pp. 136-145. IEEE (2001)

https://doi.org/10.1007/978-3-030-04648-4_18
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856

22

18.

19.
20.

21.

22.

23.

24.

T. D. T. Nguyen and M. T. Thai

Thakur, S., Hayes, B.P., Breslin, J.G.: Distributed double auction for peer to
peer energy trade using blockchains. In: 2018 5th International Symposium on
Environment-Friendly Energies and Applications (EFEA), pp. 1-8. IEEE (2018)
Ming, Z., et al.: Blockcloud: a blockchain-based service-centric network stack
Sun, Y.-E., et al.: SPRITE: a novel strategy-proof multi-unit double auction scheme
for spectrum allocation in ubiquitous communications. Pers. Ubiquit. Comput.
18(4), 939-950 (2014)

Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 455-471.
ACM (2017)

Miller, A., Bentov, 1., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, 1., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508-526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7_30

Zou, S., Ma, Z., Shao, Y., Ran, L., Liu, X.: Efficient and dynamic double auctions
for resource allocation. In: 2016 IEEE 55th Conference on Decision and Control
(CDC), pp. 6062-6067. IEEE (2016)

Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36-63 (2001)

https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Blockchains
	Trustless Framework for Iterative Double Auction Based on Blockchain
	1 Introduction
	2 Related Work
	3 Double Auction with Blockchain
	3.1 Auction Model
	3.2 Straw-Man Design
	3.3 Blockchain with State Channels

	4 Formal Definitions and Security Models
	4.1 Security and Privacy Goals
	4.2 Our Model

	5 Double Auction State Channel
	5.1 Ideal Functionality
	5.2 Protocol for Double Auction State Channel
	5.3 Security and Privacy Analysis

	6 Conclusion
	References

	Towards a Multi-chain Future of Proof-of-Space
	1 Introduction
	1.1 Related Works
	1.2 Paper Organization

	2 Backgrounds
	2.1 Notations
	2.2 Proof-of-Space

	3 Single-Chain Proof-of-Space
	3.1 Graph Labeling Game
	3.2 PoC Definition
	3.3 SpaceMint

	4 A Multi-chain Scheme
	4.1 Functionalities
	4.2 A Protocol for lsize=1

	5 Framework Analysis
	5.1 Incentive Compatibility
	5.2 System Security

	6 Conclusion
	References

	Secure Consistency Verification for Untrusted Cloud Storage by Public Blockchains
	1 Introduction
	2 Preliminary: Secure Consistency Verification Protocols
	3 Research Formulation
	3.1 Target Applications
	3.2 System and Security Model
	3.3 Goals

	4 The Security Protocols
	4.1 Design Motivation
	4.2 Protocol Overview
	4.3 Protocol Design Alternatives
	4.4 The Protocol: Execution and Construction

	5 Protocol Analysis
	5.1 Correctness
	5.2 Security Under Server/Client Attacks
	5.3 Security Under Blockchain Exploits
	5.4 Incentivize DoS Attacks

	6 Evaluation
	6.1 Cost Analysis
	6.2 Experiments

	7 Conclusion
	References

	An Enhanced Verifiable Inter-domain Routing Protocol Based on Blockchain
	Abstract
	1 Introduction
	2 Background
	2.1 Problem Description
	2.1.1 Single-Point Attack Scenario
	2.1.2 Multi-point Collusion Attack Scenario

	2.2 Routing Promise
	2.3 Verifiability and Privacy

	3 BRVM: Principle and Model
	3.1 Assumption
	3.2 Definition
	3.3 Blockchain-Based Routing Verification Model
	3.3.1 Introduction to the Principle of BRVM
	3.3.2 Introduction of Route Proof
	3.3.3 The Verification Process of a Route Proof
	3.3.4 The Process for Request of Verifying a Route

	3.4 Example
	3.4.1 Defend Single-Point Attack
	3.4.2 Defend Multi-point Attack Scenario

	3.5 Correctness of BRVM

	4 EVIRP: Mechanism and Protocol
	4.1 Protocol Design
	4.2 Mechanism

	5 Prototype and Experiment
	5.1 Prototype of EVIRP
	5.2 Experiment and Evaluation

	6 Related Work
	7 Future Work
	Acknowledgements
	References

	Internet of Things
	Edge-Assisted CNN Inference over Encrypted Data for Internet of Things
	1 Introduction
	2 Background of Convolutional Neural Network
	3 Problem Formulation
	3.1 Threat Model

	4 Detailed Construction
	4.1 Offline Phase
	4.2 Online Phase
	4.3 Discussion - Storage and Update of Pre-computed Keys

	5 Security and Performance Analysis
	5.1 Security Analysis
	5.2 Numerical Analysis

	6 Prototype Evaluation
	6.1 Evaluation Results

	7 Related Work
	8 Conclusion
	References

	POKs Based Secure and Energy-Efficient Access Control for Implantable Medical Devices
	1 Introduction
	2 Background and Key Generation
	2.1 Background: Physical Obfuscation Keys
	2.2 Key Pair Generator

	3 System Overview and Threat Model
	3.1 System Overview
	3.2 Assumptions
	3.3 Threat Model

	4 The Authentication Protocol
	4.1 Enrollment
	4.2 Service Request
	4.3 Authorization
	4.4 Session Establishment

	5 Enhancement
	5.1 Emergent Access
	5.2 Biometric Encryption of the Cached Temporary Key
	5.3 Recovery Mode

	6 Security Analysis
	6.1 Active Attacks
	6.2 Desynchronization Attack
	6.3 Identity Impersonation Attack
	6.4 Security of the Emergent Access
	6.5 Security of Trivium

	7 Evaluation
	7.1 Overhead Statistics
	7.2 Experiment Results

	8 Related Work
	8.1 Pre-loaded-Key Based Solutions
	8.2 Physiological Feature Based Solutions
	8.3 Proxy Based Solutions

	9 Conclusion
	References

	USB-Watch: A Dynamic Hardware-Assisted USB Threat Detection Framework
	1 Introduction
	2 Background
	2.1 USB Protocol
	2.2 USB Human Interface Device Reports
	2.3 USB Keystroke Injection Attacks

	3 Related Work
	4 Threat Model
	5 Overview of Architecture
	5.1 Data Collection
	5.2 Pre-processing
	5.3 Feature Extraction
	5.4 Classification

	6 Performance Evaluation
	6.1 Attack Implementation
	6.2 Testbed and Data Acquisition
	6.3 Feature Analysis
	6.4 Classification Algorithms
	6.5 Latency Analysis
	6.6 Comparative Analysis

	7 Discussion
	8 Conclusions and Future Work
	References

	Automated IoT Device Fingerprinting Through Encrypted Stream Classification
	1 Introduction
	2 Assumptions and Data Preliminaries
	3 Approach Overview
	3.1 Problem Definition
	3.2 Overview

	4 Feature Extraction
	4.1 Aggregate Features
	4.2 Intraflow Features
	4.3 Integration of Aggregate and Intraflow Features

	5 Characterizing TLS Usage in IoT
	5.1 TLS Client Features
	5.2 TLS Server Features
	5.3 Discriminative Power of TLS Features

	6 Evaluation
	6.1 Algorithms
	6.2 IoT vs Non-IoT
	6.3 IoT Device Fingerprinting
	6.4 Algorithm Performance

	7 Discussion and Future Work
	8 Related Work
	9 Conclusions
	References

	Catching Malware
	DeepCG: Classifying Metamorphic Malware Through Deep Learning of Call Graphs
	1 Introduction
	2 Related Work
	3 Call Graphs
	3.1 Defining Call Graphs
	3.2 Understanding Metamorphic Malware and Their Call Graphs

	4 Classifying Metamorphic Malware Using Call Graphs
	5 Enhancing Training Data for Metamorphism Diversity
	5.1 Data Normalization
	5.2 Data Augmentation

	6 Experimental Evaluation
	6.1 Malware Classification on PE Dataset
	6.2 Malware Classification on Disassembly Dataset
	6.3 Malware Classification with Data Enhancement

	7 Conclusion
	References

	ChaffyScript: Vulnerability-Agnostic Defense of JavaScript Exploits via Memory Perturbation
	1 Introduction
	2 Technical Background and Motivation
	2.1 JavaScript Exploits
	2.2 Memory Preparation
	2.3 Memory Perturbation Techniques
	2.4 Our Mitigation Solution

	3 Threat Model and Scope
	4 Design
	4.1 Memory Allocation/De-Allocation Candidate Discovery
	4.2 Lightweight Type Inference
	4.3 Chaff Code Generation

	5 Implementation
	6 Evaluation
	6.1 Security Analysis
	6.2 Effectiveness
	6.3 Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Obfusifier: Obfuscation-Resistant Android Malware Detection System
	1 Introduction
	2 Background on Code Obfuscation
	3 Effects of Obfuscation on Malware Detection
	4 Introducing Obfusifier
	4.1 Graph Generation
	4.2 Graph Simplification
	4.3 Sensitive API Path (SAP) Generation
	4.4 Feature Extraction
	4.5 Detection

	5 Empirical Evaluation
	5.1 Experimental Objects
	5.2 Experimental Methodology
	5.3 Detection Result
	5.4 Comparison with Related Approaches
	5.5 Runtime Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Closing the Gap with APTs Through Semantic Clusters and Automated Cybergames
	1 Introduction
	2 Background
	3 BSF Syntax
	4 Experimental Environment
	4.1 Semantic Cluster Generation

	5 Scoring Cybergames
	6 Experiments
	6.1 Setup
	6.2 Baseline
	6.3 Reducing False Negatives
	6.4 Reducing False Positives
	6.5 Summary of Improvements

	7 Summary and Future Work
	References

	Machine Learning
	Stochastic ADMM Based Distributed Machine Learning with Differential Privacy
	1 Introduction
	2 Problem Statement and Preliminaries
	2.1 Problem Statement
	2.2 Preliminaries
	2.3 Distributed Stochastic ADMM
	2.4 Privacy Concerns

	3 Distributed Stochastic ADMM with Differential Privacy
	4 Convergence Analysis
	5 Performance Analysis
	6 Conclusions
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Basic Lemmas
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4

	References

	Topology-Aware Hashing for Effective Control Flow Graph Similarity Analysis
	1 Introduction
	2 Related Work
	2.1 CFG Similarity Analysis
	2.2 Binary Similarity Analysis

	3 Approach Overview
	3.1 Basic Block Type Abstraction
	3.2 Blended n-gram Graphical Feature Extraction
	3.3 Graph Signature Generation and Comparison
	3.4 Fuzzy Hash Signature Generation and Comparison

	4 Evaluation of CFG Similarity Analysis Algorithms
	4.1 Algorithm Evaluation Strategy
	4.2 Experiment Data Preparation
	4.3 Evaluation Results
	4.4 Overall Performance

	5 Evaluation of Binary Similarity Analysis Tools
	6 Limitation
	6.1 Feature and Signature Collision
	6.2 Obfuscation and Evasion Techniques

	7 Conclusion
	References

	Trojan Attack on Deep Generative Models in Autonomous Driving
	1 Introduction
	2 Related Work
	2.1 Deep Generative Models
	2.2 DGMs in Autonomous Driving
	2.3 Trojan Attacks on Non-DGMs
	2.4 Existing Attacks on DGMs

	3 Attack Methodology
	3.1 Attack Scenarios
	3.2 Attacked DGMs
	3.3 High Level Design
	3.4 Attack Approach Description

	4 Attack Effectiveness
	4.1 Convolution Based Generator with Adversarial Training
	4.2 Convolution Based Generator Without Adversarial Training
	4.3 Recurrence Based Generator Without Adversarial Training

	5 Concealing Strategy of Attacks
	6 Evaluation Against Defenses
	6.1 Fine-Pruning Approach
	6.2 Activation Output Clustering
	6.3 Discussion of Possible Defense

	7 Conclusion and Future Work
	References

	FuncNet: A Euclidean Embedding Approach for Lightweight Cross-platform Binary Recognition
	1 Introduction
	2 Related Work
	2.1 Dynamic Emulation
	2.2 Static Matching
	2.3 Euclidean Embedding

	3 Problem Definition and Solution
	3.1 Problem Definition
	3.2 Solution Overview
	3.3 Euclidean Embedding Generation
	3.4 Binary Search Strategy

	4 Evaluation
	4.1 Implementation and Datasets
	4.2 Hyper-parameters in DNN and ANN
	4.3 Accuracy
	4.4 Efficiency

	5 Conclusion
	References

	Everything Traffic Security
	Towards Forward Secure Internet Traffic
	1 Introduction
	1.1 Problem
	1.2 Contribution
	1.3 Scope

	2 Background
	2.1 Transport Layer Security (TLS)
	2.2 TLS Key-Exchange Algorithms
	2.3 Terminology

	3 Empirical Study
	3.1 Datasets
	3.2 Research Questions
	3.3 Methodology
	3.4 Results

	4 Towards Forward Secure Internet Traffic
	4.1 Deprecating Non-FS-Ciphersuites in TLS Clients
	4.2 Best Effort Forward Secrecy (BEFS)

	5 Related Work
	6 Conclusions
	References

	Traffic-Based Automatic Detection of Browser Fingerprinting
	1 Introduction
	2 Related Work
	2.1 Fingerprinting Prevention
	2.2 Fingerprinting Detection

	3 Design
	3.1 Design Overview and Rationale
	3.2 Preliminary Study
	3.3 Pool of Virtual Machine Images
	3.4 Executor Driver
	3.5 Trace Analyzer

	4 Implementation
	5 Evaluation
	5.1 Evaluation in Lab Settings
	5.2 Evaluation on Real-World Websites

	6 Discussion
	7 Conclusion
	References

	Measuring Tor Relay Popularity
	1 Introduction
	2 Background
	3 Experiment Setup
	3.1 Data Collection
	3.2 Data Analysis

	4 Experimental Results
	4.1 Dataset Overview
	4.2 Metrics Used
	4.3 Analysis of Middle Relays
	4.4 Analysis of Exit Relays
	4.5 Overall

	5 Related Work
	6 Conclusion
	References

	SoK: ATT&CK Techniques and Trends in Windows Malware
	1 Introduction
	2 Related Work
	3 The Mitre ATT&CK Framework
	4 Methodology
	5 ATT&CK Techniques in Windows Malware
	5.1 Execution
	5.2 Persistence
	5.3 Privilege Escalation
	5.4 Defense Evasion
	5.5 Credential Access
	5.6 Discovery
	5.7 Lateral Movement
	5.8 Collection
	5.9 Exfiltration
	5.10 Command and Control

	6 Adoption of Sophisticated Techniques
	7 Limitations of CTI from Automated Analysis
	8 Conclusion
	References

	Communicating Covertly
	Covert Channels in SDN: Leaking Out Information from Controllers to End Hosts
	1 Introduction
	2 Threat Model
	3 Covert Channel Attacks
	3.1 Covert Channels with SDN Proxy Mechanisms
	3.2 Covert Channels with SDN Rule Expiry Mechanisms
	3.3 Encoding and Decoding Covert Timing Messages
	3.4 Covert Channel Analysis

	4 Information Leakage on SDN Controllers
	4.1 Collection Channels
	4.2 Collected SDN Information

	5 Evaluation of Covert Channels
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Possible Countermeasures
	7 Related Work
	7.1 Covert Channels in SDN
	7.2 Information Reconnaissance in SDN

	8 Conclusion
	References

	Victim-Aware Adaptive Covert Channels
	1 Introduction
	2 Chameleon
	2.1 Threat Model
	2.2 System Overview
	2.3 Adaptive Traffic Generation
	2.4 Traffic Integration

	3 Experimental Evaluation
	3.1 Dataset
	3.2 Results

	4 Honey Traffic
	4.1 System Overview
	4.2 Example of Honey Traffic
	4.3 Generating Honey Tokens
	4.4 Evaluation of Honey Traffic
	4.5 Evasion of Honey Traffic

	5 Conclusions
	References

	Random Allocation Seed-DSSS Broadcast Communication Against Jamming Attacks
	1 Introduction
	2 Background of DSSS
	3 Random Allocation Seed-DSSS
	3.1 Basic Scheme of Delayed Seed Disclosure-DSSS
	3.2 RAS-DSSS

	4 Simulation Results
	4.1 Analysis
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	References

	A Loss-Tolerant Mechanism of Message Segmentation and Reconstruction in Multi-path Communication of Anti-tracking Network
	1 Introduction
	1.1 Background and Motivatioin
	1.2 Limitation of Prior Art
	1.3 Proposed Approach
	1.4 Contributions and Roadmap

	2 The Overview of FMC
	3 Loss-Tolerant Mechanism
	3.1 Message Encoding
	3.2 Multi-path Communication
	3.3 Loss-Tolerant Reconstruction of Message

	4 Experiment and Analysis
	4.1 Evaluation of FMC
	4.2 Analysis of Data Expansion Rate

	5 Conclusion
	References

	Let’s Talk Privacy
	Ticket Transparency: Accountable Single Sign-On with Privacy-Preserving Public Logs
	1 Introduction
	2 Background and Related Work
	2.1 Security of SSO Services
	2.2 CA Security Incidents and Certificate Transparency
	2.3 Accountability of Third-Party Services

	3 Accountable Single Sign-On with Privacy-Preserving Public Logs
	3.1 Threat Model and Security Goals
	3.2 Cryptographic Building Blocks
	3.3 The Ticket Transparency Framework by Steps
	3.4 Ticket Transparency in Full View

	4 Security Analysis and Discussion
	4.1 Correctness
	4.2 Privacy
	4.3 Discussion

	5 Performance Evaluation
	6 Conclusion and Future Work
	References

	Decentralized Privacy-Preserving Reputation Management for Mobile Crowdsensing
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Blockchain
	3.2 Paillier Cryptosystem

	4 System Model
	5 The Decentralized Privacy-Preserving Reputation Management Scheme
	5.1 Completing the Sensing Tasks
	5.2 Updating Reputation Values
	5.3 Security Analysis

	6 Experimental Results
	6.1 Choices of and
	6.2 Running Time Analysis
	6.3 The Effectiveness to Defend Against Malicious Participants

	7 Conclusion
	References

	Location Privacy Issues in the OpenSky Network Crowdsourcing Platform
	1 Introduction
	2 Background and Related Work
	2.1 ADS-B and OpenSky Network
	2.2 Related Work

	3 System and Adversary Models
	3.1 System Model and Assumptions
	3.2 Adversary Model

	4 Estimating the Location of ADS-B Receivers
	4.1 The Least-Squares Estimator
	4.2 Details of the Location Estimation Technique

	5 Performance Assessment
	5.1 Simulation Analysis
	5.2 Experimental Performance Evaluation

	6 Conclusions
	References

	Privacy-Preserving Genomic Data Publishing via Differentially-Private Suffix Tree
	1 Introduction
	1.1 Contributions

	2 Problem Overview
	3 Proposed Solution
	3.1 Differentially-Private Genomic Data Publishing
	3.2 Partitioning Tree Generation
	3.3 Bottom-Up Normalization
	3.4 Suffix Tree Generation

	4 Algorithm Analysis
	4.1 Privacy Analysis
	4.2 Complexity Analysis

	5 Performance Evaluation
	5.1 Implementation Setup and Dataset
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

	Author Index

