2007.03152v1 [cs.AR] 7 Jul 2020

arxiv

The gem5 Simulator: Version 20.0+"

A new era for the open-source computer architecture simulator

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo
Andreozzi, Adria Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby
R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny,
Stephan Diestelhorst, Wendy Elsasser, Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi,
Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas
Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed
Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung,
Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli,
Christian Menard, Andrea Mondelli, Tiago Miick, Omar Naji, Krishnendra Nathella, Hoa Nguyen,
Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta,
Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong
Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, Eder F. Zulian T

ABSTRACT

The open-source and community-supported gem5 simulator is one
of the most popular tools for computer architecture research. This
simulation infrastructure allows researchers to model modern com-
puter hardware at the cycle level, and it has enough fidelity to boot
unmodified Linux-based operating systems and run full applica-
tions for multiple architectures including x86, Arm®, and RISC-V.
The gemb5 simulator has been under active development over the
last nine years since the original gem5 release. In this time, there
have been over 7500 commits to the codebase from over 250 unique
contributors which have improved the simulator by adding new
features, fixing bugs, and increasing the code quality. In this paper,
we give an overview of gem5’s usage and features, describe the cur-
rent state of the gem5 simulator, and enumerate the major changes
since the initial release of gem5. We also discuss how the gem5
simulator has transitioned to a formal governance model to enable
continued improvement and community support for the next 20
years of computer architecture research.

1 THE GEMS5 SIMULATOR

There is “a new golden age for computer architecture” [33, 34]
driven by changes in technology (e.g., the slowdown of Moore’s
Law and Dennard Scaling) and ever increasing computational needs.
One of the first steps in research and development of new hard-
ware architectures is software-based modeling and simulation. The
gemb5 simulator [19] is currently one of the most popular academic-
focused computer architecture simulation frameworks. Since its
publication in 2011, the gem5 paper has been cited over 3600 times',

“gemb is the result of the merger of the GEMS project started in 1999, and the m5
project started in 2003. Development of gem5 has been active for about 20 years, and
this version is being published in 2020. Thus, “gem5-20".

TEmail Jason Lowe-Power (jlowepower@ucdavis.edu) with all questions and
comments.

https://scholar.google.com/scholar?q=gem5

and every year many papers published in the top computer archi-
tecture venues use gemb5 as their main evaluation infrastructure.
Additionally, gemb5 is one of the tools used to design the Fugaku
supercomputer, one of the first exascale systems [43].

The gem5 simulator [19] is an open source community-supported
computer architecture simulator system. It consists of a simulator
core and parametrized models for a wide number of components
from out-of-order processors, to DRAM, to network devices. The
gem5 project consists of the gem5 simulator?, documentation®, and
common resources? that enable computer architecture research.

The gemb5 project is governed by a meritocratic, consensus-based
community governance document® with a goal to provide a tool to
further the state of the art in computer architecture. The gem5 sim-
ulator can be used for (but is not limited to) computer-architecture
research, advanced development, system-level performance anal-
ysis and design-space exploration, hardware-software co-design,
and low-level software performance analysis. Another goal of gem5
is to be a common framework for computer architecture research.
A common framework in the academic community makes it easier
for other researchers to share workloads and models as well as
compare and contrast their innovations with other architectural
techniques.

The gem5 community strives to balance the needs of its three
categories of users: academic researchers, industry researchers, and
students learning computer architecture. For instance, the gem5
community strives to balance adding new features (important to
researchers) and a stable code base (important for students). Specific
user needs important to the community are enumerated below:

o Effectively and efficiently emulate the behavior of modern
processors in a way that balances simulation performance
and accuracy

Zhttps://gem5.googlesource.com/public/gem5
Shttps://www.gem5.org/
*https://gem5.googlesource.com/public/gem5-resources
Shttps://www.gem5.org/governance/

https://scholar.google.com/scholar?q=gem5
https://gem5.googlesource.com/public/gem5
https://www.gem5.org/
https://gem5.googlesource.com/public/gem5-resources
https://www.gem5.org/governance/

e Serve as a malleable baseline infrastructure that can easily
be adapted to emulate the desired behaviors

e Provide a core set of APIs and features that remain relatively
stable

e Incorporate features that make it easy for companies and
research groups to stay up to date with new features and
bug fixes as well as continue contributing to the project

o Additionally, the gem5 community is committed to openness,
transparency, and inclusiveness.

In this paper, we discuss the current state of gem5. We first
discuss the past, present and future of the gem5 project and how to
become a member of the gem5 community for researchers, students,
and teachers in Section 1.1. Then, we give an overview of gem5’s
main features available today and describe how to use gem5 for
its main use case: computer architecture simulation 1.3. Finally,
Section 2 enumerates the major changes in gem5 in the past nine
years since the initial release.

It has taken a huge number of people to make gem5 what it is
today. One of the goals of this paper is to recognize the hard work
on this community infrastructure which is often overlooked. To
that end, we strive to include everyone who contributed to gem5
and document as many of the major changes as we can. Section 4
acknowledges those contributors who are not authors of this paper
and without whom gem5 would not be as successful.

1.1 The past, present, and future of gem5

The gem5 simulator was born when the m5 simulator [20] created
at University of Michigan merged with the GEMS simulator [50]
from University of Wisconsin. These were two academic-oriented
simulators, neither of which had an open development community
(both simulators had their source available for free®’, but did not
have a community-oriented development process). Both of these
simulators were quite popular on their own. The GEMS paper has
been cited over 1800 times and the m5 paper has been cited over
1000 times.

Since its initial release nine years ago the gem5 simulator has
been wildly successful. In this time, the use of gem5 has exploded.
Although not a perfect metric, as shown in Figure 1a the gem5
paper has received over 3600 citations according to Google Scholar.

At the same time, the contributor community has also grown.
Figure 1b shows the number of commits per year and Figure 1c
shows the number of unique contributors per year. These figures
show that since the initial release of gem5 in 2011, development
has been accelerating.

With this acceleration in use and development came growing
pains [48]. The gem5 community was going through a shift, from
a small project with most contributors from one or two academic
labs, to a project with worldwide-distribution of contributors. Ad-
ditionally, given the growing user base, we could no longer assume
that all gem5 users were also going to be main developers.

To solve the problems brought up by the expanding gem5 com-
munity, the gem5 project has made major changes in the past nine
years. We now have a formal governance structure, we have im-
proved our documentation (see Section 2.2), we have moved to a

®https://sourceforge.net/projects/m5sim/
"https://research.cs.wisc.edu/gems/home. html

Lowe-Power and the gem5 Community

600 q

500

4001

300 1

citations

2001

100 4

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(through May)

Years

(a) Number of citations

12004

commits

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(through May)
Years

(b) Number of commits

contributors
H
o
L

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(through May)

Years

(c) Number of contributors

Figure 1: Number of gem5 citations, commits and contribu-
tors from 2011 to May 2020.

better distributed development platform, and we have improved
our community outreach.

To institute a formal governance model, we followed the best
practices from other successful open source projects. We chose
to institute a meritocratic governance model where anyone with
an interest in the project can join the community, contribute to
the project design and participate in the decision-making process.

https://sourceforge.net/projects/m5sim/
https://research.cs.wisc.edu/gems/home.html

The gem5 Simulator: Version 20.0+

The governance structure also defines the roles and responsibili-
ties of members of the community including users, contributors,
and maintainers. We also formed a project management commit-
tee (PMC) with a mix of industry and academic members to help
ensure smooth running of the project.

To simplify the contribution process, we have instituted many
industry-standard development methodologies including providing
a CONTRIBUTING document in the gem5 source. In the past, gem5
code contributions were managed with a number of esoteric soft-
ware packages. Now, all gem5 code is stored in a git repository®,
code review is managed on gerrit?, we have continuous integration
support (see Section 2.20), our website is implemented with Jekyll
and markdown'?, and we have a Jira-based issue tracker!!.

After transitioning to these more well known tools and improv-
ing our development practices, we have seen a further rise in the
number of community contributors and using gem5 has become eas-
ier. Continuous integration enables us to test every single changeset
before it is committed. This allows us to catch bugs before they are
committed into the mainline repository which makes gem5 more
stable. Similarly, by implementing a bug tracking system, we can
track issues that affect gem5. For example, in the first six months
of using a bug tracker we have closed over 250 issues.

The future of gem5. The future of gemb5 is bright. We are continuing
to work with the community to define the roadmap for gem5 de-
velopment for the next version of gem5, version 20.1, and beyond.
In the short term, we are excited about improvements to the un-
derlying infrastructure of gem5 with better testing, refactoring of
aging code (some of gem5’s code is over 20 years old!), and adding
well-defined stable APIs. By defining stable APIs, we will make it
easier for the community to build off of gem5. For instance, the
inter-simulator interface is currently being defined so that gem5
can be used in conjunction with other simulators (e.g., SST [36, 60],
SystemC (Section 2.18), and many others). We are also working on
improving the interconnect model (Section 2.13), adding support
for non-volatile memory controllers (Section 2.9.5), and a graphical
user interface (GUI).

One of the most exciting features coming to gem5 is that we will
provide the community with a set of publicly validated models and
parameters which will model current architectural system compo-
nents including CPU cores, GPU compute units (CUs), caches, main
memory systems, and devices. Past research [4, 5, 14, 22, 28, 31, 40,
55, 70, 72] has shown that some gem5 models can be imprecise. We
strive for accuracy compared to real systems; however, since most
systems are proprietary and complex, accuracy for all workloads
will be difficult. Thus, we will broadly advertise the relative per-
formance, power, and other metrics when providing these models
so users can make an informed decision when choosing their base-
line configurations. This will reduce the researcher’s time spent on
configuring baselines and allow them to concentrate more effort
on analyzing and developing their novel research ideas. The first
step towards this goal of validated baselines is the gem5 resources
repository described in Section 2.1.

8https://gem5.googlesource.com/
https://gem5-review.googlesource.com/
Ohttps://gem5.googlesource.com/public/gem5-website
https://gems5.atlassian.net/

Finally, we are planning to publish an online Learning gem5
course based on an expanded version of the Learning gem5 mate-
rial 2.2'2. This course will cover how to get started using gems5,
how to develop new models to be used in gem5, and the details of
gemb5’s software architecture. In addition to the online version of
the course, we will continue to conduct tutorials and workshops at
computer architecture and computer systems conferences.

However, the broader gem5 community is the most important
part of gem5’s future. In the next section, we discuss how to become
part of the gem5 community.

1.2 Becoming part of the gem5 community

As a reader of this paper, you are already becoming part of the
gem5 community! Anyone who uses gem5 or contributes in any
way is part of the gem5 community. Contributing can be as simple
as sending a question on the gem5 mailing list'® or as complex as
adding a new model to the upstream codebase. Below, we discuss
some of the common ways to use gem5 and become part of the
community.

1.2.1 For researchers. Currently, the most common gemb5 use case
is computer architecture research. In this case, researchers down-
load the gemb5 sources, build the simulator, and then add their own
device models on top of the models included in upstream gemb5.
This use case requires deep knowledge of the core simulation frame-
works of gem5. However, we are working to make it easier to get
started developing and researching with gem5 through efforts like
the Learning gem5 materials and online course (Section 2.2).

After using gemb5 in their research, we encourage these users
to contribute their improvements and fixes to gem5 back to the
mainline codebase. Not only does this improve gem5 for others, but
it also makes reproducing research results easier. Rather than man-
aging many local changes and trying to keep up with new releases
of gem5, when code is contributed upstream it is the responsibility
of others in the community to ensure that the code stays up to date.
Additionally the gem5 project employs a permissive BSD license to
lower the barrier of contribution for both academic and industry
researchers.

1.2.2 For students and teachers. The gem5 simulator can be used as
a tool for teaching computer architecture as well. Historically, there
has been a very steep learning curve for using gem5 even for simple
experiments. However, we are improving the documentation for
new users.

We will be continuing to improve gem5 with the goal of making
it easier for both students and teachers to learn and teach computer
architectures concepts. For example, the new Learning gem5 ma-
terial created for the online course will include a set of example
exercises that we hope can be used in both undergraduate and grad-
uate computer architecture courses. Additionally, we are working to
develop a new graphical front-end for gem5 and to develop known-
good models that do not required deep knowledge of simulator
internals to configure and use.

gemb5 can be used in a computer architecture course by having
the students download and build gem5 themselves or by providing

2http://www.gem5.org/documentation/learning_gem5/
Bhttp://www.gem5.org/mailing_lists/

https://gem5.googlesource.com/
https://gem5-review.googlesource.com/
https://gem5.googlesource.com/public/gem5-website
https://gem5.atlassian.net/
http://www.gem5.org/documentation/learning_gem5/
http://www.gem5.org/mailing_lists/

them with a pre-built binary. Then, the students can create different
gemb configurations which vary hardware parameters (e.g., issue
width, cache associativity, etc.). Finally, the students can explore the
effects of these architectural changes on a wide array of common
benchmarks and realistic applications from the gem5-resources
repository (see Section 2.1).

1.3 gemb5’s main features

The gem5 simulator is mainly used to conduct computer architec-
ture research. In most cases, researchers have an application or
benchmark for which they want to measure some statistics under
different hardware configurations. For instance, they may be inter-
ested in the run time, the memory bandwidth, number of branch
predictor mis-speculations, etc. The gem5 simulator allows users
to run applications and simulate the timing of hardware structures.
It contains parameterized models for the processor core (CPU),
memory, and devices.

Although there are many computer architecture simulators, and
many of these are open source with features that overlap with gem5,
gemb5 is a unique simulation infrastructure.

e gemb5 is dynamically configurable through a robust Python-
based scripting interface. Most other simulators are config-
ured statically with flat text files (e.g., json) or at compilation
time. On the other hand, gem5 allows users to simulate com-
plex systems much more easily by using object-oriented
Python scripts to compose simpler systems into more com-
plex ones.

e gemb5 is extensible through a clean model APIL The gem5
simulator has over 300 parameterized models and adding
new models and parameters is straightforward and well
documented.

e gemb> is a full system simulator. Its high-fidelity models can
support booting unmodified operating systems and running
unmodified applications with cycle-level statistics.

e gemb is a community-driven and frequently updated project.
The gem5 community is thriving. Since its original release
nine years ago, there have been over 250 unique contributors
and over 7500 commits. Even in the last six months, gem5
has had over 850 commits and 50 unique contributors.

An overview of gem5’s usage is shown in Figure 2. First, the
user chooses a system to simulate (e.g., a two core system with two
levels of cache shown on the left of Figure 2). Then, the user writes
a Python script that describes the system under test by instantiating
model objects (SimObjects in gem5 terminology). Each object has
a number of parameters that the user can modify in their script
by setting member variables of the Python objects. This script is
also used to control the simulator and can start the simulation,
stop the simulation, save the simulation state, and complete other
simulator interactions. To execute the simulation, the user passes
this Python script to the gem5 binary, which acts as a Python
interpreter and executes the script. This instantiates the system
and runs the simulation as specified in the script. The output of
gemb5 is the output of the application (e.g., standard output or the
serial terminal in full system mode) and statistics for each of the
simulated model objects.

Lowe-Power and the gem5 Community

Many of gem5’s features are also useful for other computer
systems and programming languages research (e.g., as a platform
for developing JIT compilers [66]).

The gemb5 simulator is an “execute-in-execute” simulator. Each
operation (e.g., instruction, memory request, I/O operation) is func-
tionally completed at the point that the timing simulation specifies.
For instance, each instruction is executed when it is in the execute
stage of the pipeline. This is in contrast to trace-based and execute-
ahead simulators. The main benefit of execute-in-execute is when
running applications whose code path depends on the timing of
multiple threads or I/O. Trace-based or execute-ahead simulation
may hide potential behaviors and produce different timing results
than real hardware.

To enable modularity, gem5 separates the functional execution
from the timing in most of its models. For instance, each of gem5’s
CPU models can be used with any ISA as the ISA’s functional imple-
mentation is separate from the CPU timing model. This separation
allows gemb5 to create checkpoints during execution, fast-forward
to the region of interest using low fidelity models, and introspection
from the simulator into the simulated system at runtime.

The gem5 simulator can be used in two different modes: full
system simulation or system call emulation (syscall emul or SE-
mode). Figure 3 shows the hardware/software abstraction layers in
each of these cases. In full system mode, gem5 can boot a full Linux-
based operating system (e.g., Ubuntu 20.04). After booting the guest
OS, the researcher can run the application of interest to generate
statistics. In system call emulation mode, the gem5 simulator itself
emulates the operating system. The support for Linux system calls
has been greatly improved recently (see Section 2.19). SE-mode
ignores the timing of many system-level effects including system
calls, TLB misses, and device accesses. Thus, researchers should
use caution when running experiments in SE-mode and ensure
that ignoring system-level effects will not change the results of the
experiments.

1.3.1 gemb design. The gem5 simulator is a cycle-level computer
system simulation environment. At its core, gem5 contains an event-
driven simulation engine. On top of this simulation engine, gem5
implements a large number of models for system components in-
cluding CPU cores (out-of-order designs, in-order designs, and
others), a detailed DRAM model, on-chip interconnects, coherent
caches, I/O devices, and many others. All of these models are pa-
rameterized, and they can be customized for different systems (e.g.,
there are fully specified models for different DRAM devices includ-
ing DDR3/4, GDDR5, HBM, and HMC, users can change the width
of the out-of-order core, etc.). Many of these different models are
shown in Figure 4. The gem5 project also contains tests to help
find bugs, a complex and feature-rich statistics database, and a
Python scripting interface to describe systems under test and run
simulations.

The gem5 simulator has modular support for multiple ISAs (see
Figure 4 (D). The gem5 simulator currently supports Arm, GPU
ISAs, MIPS, Power, RISC-V, SPARC, and x86. These ISAs not only
include the details to execute each instruction, but also the system-
specific devices necessary for full system simulation. There is robust
full system support for Linux on Arm and x86. Additionally, many
other ISAs have some level of full system support.

The gem5 Simulator: Version 20.0+

system = System()

| Core | | Core | system.cpu.width =

—>» | system.1l.mem side

'hello.exe'
simulate ()

system.cpu = 000_CPU ()
system.1l1l = Cache()

\

system.12.cpu_side

system.workload = \

—>» > ./gem5 script.py

VA

hello world! 11l.misses 2836
11.hits 10374
cpu.ipc 1.3

Figure 2: How gem5 is used for computer architecture research. An example system is shown on the left, the sketch of a
simulation script is shown in the middle, and the results of the gem5 simulation are shown on the right.

App1l

App2

Sim. H/W [Mem] [CPU]

Operating Sytem

Appl App2
Process
Guest Operating Sytem
App1l App2
Sim. H/W

gem5

Sycall Emul| gem5

Host Operating Sytem

Hardware |[Mem || CPU |

Host Operating Sytem

"WI9ISAS paje|nwiis syl

"WISAS pale|nwis ayl

Hardware

(a) The common hardware/software ab-

Hardware

(c) The hardware/software abstraction

straction layers.

simulation mode.

(b) The hardware/software abstraction
layers when using gem5 in full system

layers when using gem5 in system call
emulation mode.

Figure 3: A comparison of gem5’s different modes of operation.

All of these ISAs can be used with any of gem5’s CPU models
as the CPU models are designed to be ISA-agnostic (Figure 4 (2)).
Four different CPU models are included which span the fidelity-
performance spectrum. The gem5 simulator contains “simple” CPU
models that can be used for memory system studies or other studies
that do not require high fidelity execution models. When using the
“simple” CPU model, gem5 simulates the system faster, but has less
fidelity when compared to real devices. Additionally, gem5 contains
a detailed in-order CPU model (the “minor” CPU) and an out-of-
order CPU model (the “O3” CPU). When using these high-fidelity
models, gem5 runs slower, but can provide more realistic results.

Finally, gem5 includes a CPU “model” that bypasses simulation
and allows the binaries running in gemb5 to use the underlying
host’s processor, if the host ISA is the same as the application
running in gemb>. In this mode, the performance of gem5 is nearly
the same as when running natively [63]. This CPU model is based
on the kernel virtual machine (KVM) API in Linux and leverages
the hardware virtualization support available in many modern
processors. Although the KVM CPU model can execute at native
speed, it does not model the timing of execution or memory requests.
The KVM-based CPU model can be used for sampled simulation and
fast-forwarding to the region of interest and checkpoint locations.

To connect the different compute, memory, and I/O device mod-
els gem5 provides a modular port interface which allows any com-
ponent that implements the port API to be connected to any other

component implementing the same API (Figure 4 (3)). This allows
models designed for one system to be easily used in other system
designs.

There are two different cache systems in gem5: Ruby (Figure 4
@), which models cache coherence protocols with high fidelity;
and the “classic” caches (Figure 4 (5)), which lack cache coherence
fidelity and flexibility. Ruby enables user-defined cache coherence
protocols and gem5 includes many different protocols out of the
box. Users can also choose to use a simple network model or the
detailed Garnet model [3] when using Ruby caches which offers
cycle-level detail for the on-chip network.

The classic caches have a single hard-coded hierarchical MOESI
coherence protocol. However, this cache model is easily composable
allowing users to construct hierarchical cache topologies without
worrying about the details of the coherence protocol. Both Ruby
and the classic caches can be used with any CPU model, any ISA,
and any memory controller model.

The gemS5 simulator also includes an event-driven DRAM model
(Figure 4 ®). This DRAM model is easily configurable with the
timing parameters for a variety of different DRAM controllers in-
cluding DDR3, DDR4, GDDR, HBM, HMC, LPDDR4, LPDDRS5, and
others. Although this is not a cycle-accurate DRAM model like
DRAMSIim [46, 62, 73] or Ramulator [42], it is nearly as accurate
while providing more flexibility and higher performance [32].

Lowe-Power and the gem5 Community

models

JMIPS [kvm
POWER "
|SIPARC [Simple
Riscy | In-order @
| x86 JOut-of-order Disk
| Arm CPU Models 1/0 Devices
ISA-specific | Decoder Interrupts | 1y DMA

> | =]

External APIs

Memor
ﬂu

| Inclusive
| Write back
Write through

Non-coherent
Three level
] Two level

Port Interface

)

| Wide-I0
_] HMC
"Classic" caches] GDDR5
| HBM
@] LPDDR5
| DDR4
RAM Models

®

Memor
£| >
GPU compute

model
HSAIL @
Memor
f | GPU ISA

Ruby Cache Models @

MSI

MESI Three LeveII
OESI Two Level

M

Garnet
Simple
Network

model |

Protocols

Figure 4: An overview of gem5’s architecture. Its modular components allow any of each model type to be used in system
configuration via Python scripts. Users can choose the fidelity of the memory system, CPU model, etc. while being able to select
any ISA, devices, etc. The port interface allows any memory component to be connected to any other memory component as
specified by the Python script. Details of each of these simulator components are discussed in Section 1.3

In addition to CPU models, gem5 also includes a cycle-level
compute-based GPU [30, 69] (Figure 4 (D). This GPU model does
not support graphics applications, but supports many compute ap-
plications based on the heterogeneous system architecture (HSA)
and ROCm runtime. The GPU model is based on AMD’s Graphics
Core Next (GCN) architecture [11, 12]. The GPU model has a mod-
ular ISA similar to the CPU model in gem5, and can be extended
to support other GPU ISAs in the future. Additionally, gem5 con-
tains support for a functional-only GPU model to enable simulating
applications that depend on graphics APIs but do not depend on
graphics performance [26].

An important component to full system simulation is supporting
I/O and other devices (Figure 4 (). Thus, gem5 supports many
system-agnostic devices such as disk controllers, PCI components,
Ethernet controllers, and many more. There are also many system-
specific device models such as the Arm GIC and SMMU, and x86
PC devices.

Finally, gem5 has been integrated with other computer archi-
tecture simulator systems to enable users with models in other

simulator systems to use gem5’s features (Figure 4 (9)). For in-
stance, gem5 has been integrated with the Structural Simulation
Toolkit (SST) [36, 60], which uses gem5’s detailed CPU models in
conjunction with SST’s multi-node modeling capabilities. DRAM-
Sim [46, 62, 73] which provides a cycle-accurate DRAM models has
also been integrated with gem5. Additionally, the IEEE standard
SystemC API [51] has been integrated to enable users with SystemC
models to use them as gem5 components (see Section 2.18 for more
details).

2 MAJOR CHANGES IN GEM5-20

In addition to the systematic changes in project management dis-
cussed in Section 1.1 there have also been many added features,
fixed bugs, and general improvements to the codebase. This section
contains descriptions of some of the major changes to gem5. There
were 7015 commits by at least 250 unique contributors between
when gem5 was released in 2011 and the release of gem5-20. This
section is a comprehensive, but not exhaustive, list of the major
changes in gem5. Along with the description of the changes in

The gem5 Simulator: Version 20.0+

gemb, we also recognize the individuals or groups who made signif-
icant contributions to each of these features with separate by-lines
for each subsection. However, there are many unlisted contributors
that were indispensable in getting gem5 where it is today.

Table 1 gives and overview of the major changes in gem5 with
pointers to subsections which contain more detail on each change.

2.1 gemb> resources'*

The gemS5 simulator permits the simulation of many different sys-
tems using a variety of benchmarks and tests. However, gathering
and compiling the resources to perform experiments with gem5
can be a laborious process. To provide a better user-experience we
have began maintaining gem5 resources, which we broadly define
as a set of artifacts that are not required to build or run gem5, but
that may be utilized to carry out experiments and simulations. For
example, Linux kernels, disk images, popular benchmark suites,
and commonly used tests binaries are frequently needed by users
of gem5 but are not distributed as part of the gem5 itself. As part of
our gem5-20 release, these resources, with source code and build
instructions for each, are gradually being centralized in a common
repository’®.

A key goal of this repository is to ensure reproducibility of gem5
experiments. The gem5 resources repository provides researchers
with a suite of disk images with pre-installed operating systems
and benchmarks as well as kernel binaries. Thus, all researchers
which use the resources are starting from a common point and can
more easily reproduce experiments. Additionally, all of the sources
and scripts to build each artifact are also included in the repository
which can be modified to create custom resources.

2.1.1 Testing gem5-20 with gem5 resources. Another important aim
of creating a common set of gem5 resources is to more regularly
test gem5 on a suite of common benchmarks, operating systems
Linux kernels. As part of gem5-20, we have tested the simulator’s
capability to run SPEC 2006 [35], SPEC 2017 [21], PARSEC [18],
the NAS Parallel Benchmarks (NPB) [15], and the GAP Benchmark
Suite (GAPBS) [16]. We have also shown gem5-20’s performance
when running five different long-term service (LTS) Linux kernel
releases on a set of different CPU and memory configurations. The
results from these investigations can be found on our website 1°.
We plan to use this information, and gem5 resources repository, to
better target problem areas in the gem5 project.

Furthermore, with a shared set of common resources and knowl-
edge of what configurations work best with gem5, we can provide
the community with a set of “known good” gem5 configurations
to facilitate computer architecture research. We intend for these
configurations to replicate the functionality and performance of
architectural components at a high level of fidelity.

2.2 Learning gem5'’

The gem5 simulator has a steep learning curve. Often, using gem5
in research means developing the simulator to modify or add new
models. Not only do new users have to navigate the hundreds of

4by Ayaz Akram, Bobby R. Bruce, Hoa Nguyen, and Mahyar Samani
Shttps://gems5.googlesource.com/public/gem5-resources

18 http://www.gem5.org/documentation/benchmark_status

7By Jason Lowe-Power

General usability improvements

Section 2.1: Added new resources repository with disk images,
kernel images, etc.

Section 2.2: Learning gem5 book and class. Provides a way to
get started using and developing with gemb5.

ISA improvements

Section 2.3: RISC-V ISA added. User mode fully supported.
Some support for full system.

Section 2.4: ARMISA improvements. Added support for Armvs,
SVE instructions, and trusted firmware.

Section 2.5: x86 ISA improvements. Better support for out-of-
order CPU models, many instructions added, and support for
TSO memory consistency.

Execution model improvements

Section 2.6: New branch predictors including L-TAGE.
Section 2.7: New CPU model based on KVM added. Uses host
hardware to accelerate simulator.

Section 2.8: Elastic trace execution added. Trace capture and
playback with dynamic dependencies for fast flexible simulation.

Memory system improvements

Section 2.9: Configurable DRAM controller. Added support for
many DRAM devices, low-power DRAM, quality of service, and
power models.

Section 2.10: Classic cache improvements. Added non-coherent
caches, write streaming optimizations, cache maintenance oper-
ations, and snoop filtering.

Section 2.11: General replacement policy framework and cache
compressions support added.

Section 2.12: Ruby model improvements. Many general im-
provements, GPU coherence protocols, and support for ARM
ISA.

Section 2.13: Garnet network improved to version 2.0 with
more detailed router and network models.

New models

Section 2.14: GPU compute model added. Models AMD’s GCN
architecture in SE-mode with support for shared memory sys-
tems. Tests for GPU-like coherence protocols also added.
Section 2.15: Runtime power modeling and DVFS support
added.

Section 2.16: Support for timing-agnostic device models added.
VirtIO enables more flexible guest-simulator interaction and
the NoMali GPU model allows graphic-based applications to
execute more realistically.

Section 2.17: Support for modeling multiple distributed sys-
tems added.

Section 2.18: SystemC model integration. Added a bridge from
SystemC TLM models to gem5 models, and added an implemen-
tation of SystemC for tight gem5-SystemC integration.

General infrastructure improvements

Section 2.19: SE-mode improvements. Support for dynamically-
linked binaries, more system calls, multi-threaded applications,
and a virtual file system.

Section 2.20: Testing improvements. New unit test framework
and continuous integration support.

Section 2.21: General infrastructure improvements. Added sup-
port for HD5F output for statistics, Python 3 support, and asyn-
chronous modeling.

Section 2.22: Updated guest«>simulator APIs.

Table 1: Overview of major change in gemb5.

https://gem5.googlesource.com/public/gem5-resources
http://www.gem5.org/documentation/benchmark_status

different models, but they also have to understand the core of the
simulation framework. We found that this steep learning curve was
one of the biggest impediments to productively using gem5. There
was anecdotal evidence that it would take new users years to learn
to use gemb effectively [48]. Additionally, due to a lack of formal
documentation, the only way to learn parts of gem5 was to work
with a senior graduate student or to intern at a company and pick
up the knowledge “on the job”.

Learning gem5 reduces the knowledge gap between new users
and experienced gem5 developers. Learning gem5 takes a bottom-
up approach to teaching new users the internals of gem5. There are
currently three parts of Learning gem5, “Getting Started”, “Modify-
ing and Extending”, and “Modeling Cache Coherence with Ruby”.
Each part walks the reader through a step-by-step coding example
starting from the simplest possible design up to a more realistic
example. By explaining the thought process behind each step, the
reader gets a similar experience to working alongside an experi-
enced gem5 developer. Learning gem5 includes documentation on
the gem5 website!® and source code in the gem5 repository for
these simple ground-up models.

Looking forward, we will be significantly expanding the areas
of the simulator covered by Learning gem5 and creating a gem5
“summer school” initially offered summer of 2020. This “summer
school” will mainly be an online class (e.g., Coursera) with all videos
available on the gem5 YouTube channel'®, but we hope to have
in-person versions of the class as well. These classes will also be
the basis of gem5 Tutorials held with major computer architecture
and other related conferences.

2.3 RISC-V ISA Support

RISC-V is a new ISA which has quickly gained popularity since its
creation in 2010, only one year before the initial gem5 release [74].
In this time, the number of RISC-V users has grown significantly,
especially in the computer architecture research community. Thus,
the addition of RISC-V as a supported ISA for gemb5 is one of the
main new features in the past nine years.

2.3.1 General RISC-V ISA Implementation®® [61, 68]. The motiva-
tion for implementing the RISC-V ISA into gem5 stemmed from
needing a way to explore architectural parameters for RISC-V de-
signs. At the time of implementation, the only means of simulating
RISC-V was using Spike (its simplified, single-cycle RTL simulator),
QEMU, full RTL simulation, or emulation on an FPGA. Spike and
QEMU are not detailed enough and RTL simulation is too time con-
suming for these methods to be feasible for architectural parameter
exploration. With FPGA emulation, it is difficult to retrieve perfor-
mance information without modifying both the RTL design and
the system software. The gem5 simulator provides an easy means
of performing architectural analysis through its detailed hardware
models.

The implementation follows the divisions of the instruction set
into its base ISA and extensions, beginning with the 32-bit integer
base set, RV32I. This implementation was modeled off of the existing
gemb5 code for MIPS and Alpha ISAs, which are also RISC instruction

Bhttp://www.gem5.org/documentation/learning_gem5/introduction/
Yhttps://www.youtube.com/channel/UCCpCGEj_835W YmbB0g961Zw
20By Alec Roelke

Lowe-Power and the gem5 Community

sets that share many of the same operations as RISC-V. Including
support for 64-bit addresses and data (RV64) and for the multiply
(M) extension mainly involved adding the new instructions and
changing some parameters to expand register and data path widths.

The next two extensions, atomic (A) and floating point (F and
D for single- and double-precision, respectively), were more compli-
cated. The A extension includes both load-reserved/store-conditional
(LR/SC) sequence of instructions for performing complex atomic
operations on memory and a set of read-modify-write instructions
for performing simple ones. These instructions were implemented
as a pair of micro-ops that acted like an LR/SC pair with one of the
pair additionally performing the specified operation. Floating-point
instructions required many special cases to ensure correct error
handling and reporting, and we were not able to implement one of
the five possible rounding modes (round away from zero) RISC-V
specifies for inexact calculations due to the fact that C++ does not
support it. Finally, support for the non-standard compressed (C)
extension, which adds 16-bit versions of high-usage instructions,
was added when it was discovered that this extension was included
by default in many RISC-V software toolchains (e.g., GCC). The
compressed instruction implementation required creating a state
machine in the instruction decoder to keep track of whether the
current instruction is compressed, to increment the PC by the cor-
rect amount based on the size of the instruction, and to handle cases
where a full-length instruction crosses a 32-bit word boundary.

With this implementation, most RISC-V Linux programs are
supported in system call emulation mode. Continued work has
improved the implementation of atomic instructions, including
actual atomic read-modify-write accesses in a single instruction
and steps toward support for full system simulation. Additionally,
gem5’s version of the RISC-V test-suite?! has been updated to the
latest version and several corner cases in gem5 have been fixed, so
that now most of the tests are working correctly.

2.3.2 RISC-V Full System Support*?. To simulate complete oper-
ating systems the RISC-V ISA has been extended to support full
system simulation. More specifically, we added support for Sv39
paging according to the privileged ISA 1.11?% with a 39-bit virtual
address space, a page-table walker performing a three-level trans-
lation, and a translation lookaside buffer (TLB). The page-table
walker code is based on the existing gem5 code for x86 due to the
structural similarities. While a few steps are still missing to run
Linux, general support to run a complete RISC-V operating system
on gemb> is available now.

2.4 Arm Improvements

2.4.1 Armv8 Support’*. The Armv8-A architecture introduced two
different architectural states: AArch32, supporting the A32 and T32
instruction sets (backward-compatible with Armv7-A and Thumb
instruction sets, respectively), and AArch64, a new state offering
support for 64-bit addressing via the A64 instruction set. Currently,
gemb5 supports all of the above instruction sets and the interworking
between them. On top of the user-level features, several important

Hhittps://github.com/riscv/riscv-tests

22By Nils Asmussen
Bhttps://riscv.org/specifications/privileged-isa/

24by Giacomo Gabrielli, Javier Setoain, and Giacomo Travaglini

http://www.gem5.org/documentation/learning_gem5/introduction/
https://www.youtube.com/channel/UCCpCGEj_835WYmbB0g96lZw
https://github.com/riscv/riscv-tests
https://riscv.org/specifications/privileged-isa/

The gem5 Simulator: Version 20.0+

system-level extensions, e.g. the security (aka TrustZone® [10])
and virtualization extensions [13], have been contributed opening
up new avenues for architectural and microarchitectural research.

While Armv8-A was a major iteration of the architecture, there
have been several smaller iterations introduced by Arm with a
yearly cadence, and various contributors have implemented some
of the main features from those extensions, up to Armv8.3-A.

2.4.2 Support for the Arm Scalable Vector Extension (SVE)*. In
2016, Arm introduced their Scalable Vector Extension (SVE) [13], a
novel approach to vector instruction sets. Instead of having fixed-
size vector registers, SVE operates on registers that can be anywhere
between 128 to 2048 bit long (in 128-bit increments). SVE code is
arranged in a way that is agnostic to the underlying vector length
(Vector Length Agnostic Programming), and a single SVE instruc-
tion will perform its operation on as many elements as the vector
register can fit, depending on its length. On top of the 32 variable-
length vector registers, SVE also adds 16 variable length predicate
registers for predicated execution. These registers store one bit per
byte (the minimum element size) in the vector register, and can be
used to select specific elements in the vector for operation [57].

To support SVE, gem5 implements register storage and regis-
ter access as two separated classes, a container and an interface,
decoupling one from the other. The vector registers can be of any
arbitrary size and be accessed as vectors of elements of any particu-
lar type, depending on the operand types of each instruction. This
not only facilitates handling variable size registers, it also abstracts
the nuances of handling predicate registers, where the stored values
have to be grouped and interpreted differently depending on the
operand type.

This design provides enough flexibility to support any vector
instruction sets with arbitrarily large vector registers.

2.4.3 Trusted Firmware Support?®. Trusted Firmware (TF-A) is
Arm’s reference implementation of Secure World software for A-
profile architectures. It enables Secure Boot flow models, and pro-
vides implementations for the Secure Monitor executing at Excep-
tion Level 3 (EL3) as well as for several Arm low-level software
interface standards, including System Control and Management
Interface (SCMI) driver for accessing System Control Processors
(SCP), Power State Coordination Interface (PSCI) library support
for power management, and Secure Monitor Call (SMC) handling.
TF-A is supported on multiple Arm Development Platforms
(APDs), each of them characterized by its set of hardware compo-
nents and their location in the memory map (e.g., Juno ADP and the
Fixed Virtual Platforms (FVP) ADP family). However, the Arm refer-
ence platforms in gemb5 are part of the VExpress_GEM5_Base family.
These are loosely based on a Versatile™Express RS1 platform with a
slightly modified memory map. TF-A implementations are provided
for both Juno and FVPs, however not for VExpress_GEM5_Base.
Towards unifying Arm’s platform landscape, we now provide a

on UEFI implementations (U-boot, EDK II), and brings us a step
closer to Windows support in gem5.

2.5 X86 ISA Improvements?”’

The x86 or x86-64 ISA is one of the most popular ISAs for desktop,
server, and high-performance compute systems. Thus, there has
been significant effort to improve gem5’s modeling of this ISA. This
section presents a subset of the changes to improve the x86 ISA.
There are many other improvements large and small that generally
have improved the fidelity of x86 modeling.

In out-of-order CPUs (e.g., gem5’s O3CPU), instructions whose
dependencies have been satisfied are allowed to execute even if
there are instructions earlier in the stream waiting for their operands.
The flag register used in the x86 ISA complicates this out-of-order
execution as almost every instruction both reads and writes this
register making them all dependent on one another. Maintaining
a single flag register can introduce dependencies that need not
exist. We now maintain multiple flag registers for holding subsets
of flag bits to reduce the dependencies. This prevents unnecessary
serialization, unlocking a significant amount of instruction-level
parallelism.

Memory consistency models decide the amount of parallelism
available in a memory system, while correctly executing a program.
The x86 architecture is based on the Total Store Order (TSO) mem-
ory model [52]. We added support for TSO to gem5 for the x86
architecture. This meant ensuring that a later load from a thread
can bypass earlier loads and stores, but stores from the same thread
are always executed in order. The out-of-order CPU model in gem5
has been improved to implement both TSO and more relaxed con-
sistency models (e.g., those in the RISC-V and Arm architectures
discussed in Sections 2.3 and 2.4, respectively).

2.6 Branch Predictor Improvements”

In gem5, multiple branch prediction models are available, many of
which were added since the initial release of gem5. Currently, gem5
supports five different branch prediction techniques including the
well-known TAGE predictor as well as standard predictors such as
bi-mode, tournament, etc. This list can easily be expanded to cover
different variants of these well-known branch predictors. Besides,
the support for loop predictor and indirect branch predictor is also
available.

Furthermore, the modularity of the implementation of different
branch predictors allows ease of inclusion of secondary or side pre-
dictors into the prediction mechanism of primary predictors. For
example, TAGE can be seamlessly augmented with a loop predictor
to predict loops with constant iteration numbers. Indirect branch
predictor can be made to use complex TAGE-like scheme instead
of simple history-based predictors with only a few hours of devel-
opment effort. In addition to this, these different predictors can be
configured with different sizes of history registers and table-like

VExpress_GEM5_Foundation platform as part of gem5’s VExpress_GEM5_Bg§@tures. For example, TAGE predictor can be configured to run

family. This is based on and compatible with FVP Foundation, mean-
ing all Foundation software may run unmodified in gem5, including
but not limited to TF-A. This allows for simulating boot flows based

Zsby Giacomo Gabrielli, Javier Setoain, and Giacomo Travaglini
20hy Adrian Herrera

with different sizes of the history register and consequently a dif-
ferent number of predictor tables, allowing users to investigate the
effects of different predictor sizes in various performance metrics.

by Nilay Vaish
28by Dibakar Gope

Future development is planned to include the support of neu-
ral branch predictors (e.g., perceptron branch predictor, etc.) and
different variants of TAGE and perceptron predictors that have
demonstrated significant improvement in branch misses in recent
years.

2.7 Virtualized Fast Forwarding?’

Support for hardware virtualization (e.g., AMD-V, Intel VT-x, and
ARM virtualization extensions) is a very useful feature for bring up,
model development, testing, and novel simulation research [53, 54,
63]. Work on the original implementation of hardware virtualization
support started in the summer 2012 in Arm Research and targeted
the Arm Cortex A15 chip. Some of the most challenging parts of
the development were the lack of a stable kernel API for KVM on
Arm and the limited availability of production silicon. However,
despite these challenges, we had a working prototype that booted
Linux in autumn. This prototype was refined and merged into gem5
in April 2013, just one month after qemu gained support for Arm
KVM. Support for x86 followed later that year. A good overview of
the KVM implementation can be found in the technical report by
Sandberg et. al [63]. The original full-system implementation was
later extended to support syscall emulation mode on x86 [27].
Support for hardware virtualization in gem5 enabled research
into novel ways of accelerating simulation. The original intention
was to use KVM to generate checkpoints and later simulate those
checkpoints in parallel with different system parameters (e.g., to do
design space exploration). However, we quickly realized that the
checkpointing step could be eliminated by cloning the simulator
state at runtime. This led to the introduction of the fork call in
gem5’s Python APL Under the hood, this call drains the simulator
to make sure everything is in a consistent state, it then uses the
UNIX fork call to create a copy of the simulator. A typical use case
uses a main process that generates samples that are simulated in
parallel. More advanced use cases use fork semantics to simulate
multiple outcomes of a sample to quantify the cache warming errors
introduced by using KVM to fast-forward between samples [63].

2.8 Elastic Traces>’

Detailed execution-driven CPU models, like gem5’s out-of-order
model, offer high accuracy, but at the cost of simulation speed.
Therefore, trace-driven simulations are widely adopted to alleviate
this problem, especially for studies focusing on memory-system
exploration. However, traces with fixed time stamps always in-
clude the implicit behavior of the simulated memory system with
which they were recorded. If the memory system is changed during
exploration this can lead to wrong simulation results, since an out-
of-order core would react differently on the new memory system.
Ideally, trace-driven core models will mimic out-of-order processors
executing full-system workloads by respecting true dependencies
and ignoring false dependencies to enable computer architects to
evaluate modern systems.

by Andreas Sandberg
30by Radhika Jagtap, Matthias Jung, Stephan Diestelhorst, Andreas Hansson, Thomas
Grass, and Norbert Wehn

Lowe-Power and the gem5 Community

We implemented the concept of elastic traces in which we ac-
curately capture data and memory order dependencies by instru-
menting a detailed out-of-order processor model [37]. In contrast
to existing work, we do not rely on offline analysis of timestamps,
and instead use accurate dependency information tracked inside
the processor pipeline. We thereby account for the effects of specu-
lation and branch misprediction resulting in a more accurate trace
playback compared to fixed time traces. We integrated a trace player
in gemb5 that honors the dependencies and thus adapts its execu-
tion time to memory-system changes, as would the actual CPU.
Compared to the detailed out-of-order CPU model, our trace player
achieves a speed-up of 6-8 times while maintaining a high simula-
tion accuracy (83-93%), achieving fast and accurate system perfor-
mance exploration.

2.9 Off-Chip Memory System Models®'

The gem5 simulator can model a large number of configurations
in the off-chip memory system. Its memory controller handles
requests from the on-chip memory system and issues read and
write commands to the actual memory device, modeling the timing
behavior of the latter. Over the years a number of contributions have
added features that allow modeling emerging new technologies and
features as documented below.

2.9.1 New memory controller features®?. The gem5 DRAM con-
troller provides the interface to external memory, which is tradi-
tionally DRAM. It consists of two main components: the memory
controller itself and the DRAM interface. The DRAM interface
contains media specific information, defining the architecture and
timing parameters of the DRAM as well as the functions that man-
age the media specific operations like activation, precharge, refresh
and low power modes [32]. These models are easily modified by
extending a Python class and updating the timing parameters for a
new DRAM device.

2.9.2 Low-power DDR*3. LPDDRS is currently in mass production
for use in multiple markets including mobile, automotive, Al, and
5G. This technology is expected to become the mainstream Flagship
Low-Power DRAM by 2021 with anticipated longevity due to pro-
posed speed grade extensions. The specification defines a flexible
architecture and multiple options to optimize across different use
cases, trading off power, performance, reliability and complexity.
To evaluate these tradeoffs, we have updated the memory controller
to support the new features and added LPDDR5 configurations.
While these changes have been incorporated for LPDDR5, some
of them could be applicable to other memory technologies as well.
The gem5 changes incorporate new timing parameters, support for
multi-cycle commands, and support for interleaved bursts. These
features require new checks and optimizations in gem5 to ensure
the model integrity when comparing to real hardware. For exam-
ple, support for multi-cycle commands along with the changes to
LPDDR5 clocking motivated a new check in gem5 to verify com-
mand bandwidth. Previously, the DRAM controller did not verify
contention on the command bus and assumed adequate command

31by Nikos Nikoleris
32by Wendy Elsasser
33by Wendy Elsasser

The gem5 Simulator: Version 20.0+

bandwidth, but with the evolution of new technologies this assump-
tion is not always valid.

2.9.3 Quality of Service Extensions>*. The coexistence of hetero-
geneous tasks/workloads on a single computer system is common
practice in modern systems, from the automotive to the high-
performance computing use-case. Quality of Service (QoS) is the
ability of a system to provide differential treatment to its clients, in
a quantifiable and predictable way.

We now include a QoS-aware memory controller in gem5, and
the definition of basic (example) policies modeling the prioritization
algorithm of the memory controller. We include models for a fixed
priority policy (every requestor in the system has a fixed priority
assigned) and the proportional fair policy (where the priority of a
requestor is dynamically adjusted at runtime based on utilization).

The default timing-based DRAM controller described above has
been rewritten to include the QoS changes. These changes sepa-
rate out the QoS policy from the DRAM timing model. With the
framework in place a user can write its own policy and seamlessly
plug it into a real memory controller model to unlock system wide
explorations under its own arbitration algorithm.

2.9.4 DRAMPower and DRAM Power-Down Modes®. Across ap-
plications, DRAM is a significant contributor to the overall system
power. For example, the DRAM access energy per bit is up to three
orders of magnitude higher compared to an on-chip memory access.
Therefore, an accurate and fast power estimation is crucial for an
efficient design space exploration. DRAMPower [23] is an open
source tool for fast and accurate power and energy estimation for
several DRAM memories based on JEDEC standards. It supports
unique features like power-down, bank-wise power estimation, per
bank refresh, partial array self-refresh, and many more. In contrast
to Micron’s DRAM Power estimation spread sheet>®, which esti-
mates the power from device manufacturer’s data sheet and work-
load specifications (e.g. Rowbuffer-Hit-Rate or Read-Write-Ratio),
DRAMPower uses the actual timings from the memory transac-
tions, which leads to a much higher accuracy in power estimation.
Furthermore, the DRAMPower tool performs DRAM command
trace analysis based on memory state transitions and hence avoids
cycle-by-cycle evaluation, thus speeding up simulations.

For the efficient integration of DRAMPower into gem5, we changed
the tool from a standalone simulator to a library that could be
used in discrete event-based simulators for calculating the power
consumption online during the simulation. Furthermore, we inte-
grate the power-down modes into the DRAM controller model of
gemb5 [38] in order to provide the research community a tool for
power-down analysis for a breadth of use cases. We further evalu-
ated the model with real HPC workloads, illustrating the value of
integrating low power functionality into a full system simulator.

2.9.5 Future Improvements to Off Chip Memory Models®’. We are
currently working to refactor the DRAM interface to be extensible
and enable modeling of other memory devices. For instance, with

34by Matteo Andreozzi

35by Matthias Jung, Wendy Elsasser, Radhika Jagtap, Subash Kannoth, Omar Naji, Eder
F. Zulian, Andreas Hansson, Christian Weis, and Norbert Wehn
36https://www.micron.com/support/tools-and-utilities/power-calc

37by Wendy Elsasser

the advent of SCM (storage class memory), emerging NVM (Non-
Volatile Memory) could also exist on a memory interface, potentially
alongside DRAM. To enable support of NVM and future memory
interfaces, we use a systematic approach to refactor the DRAM
controller. We pull the DRAM interface out of the controller and
moved to a separate DRAM interface object. In parallel, we create an
NVM interface to model an agnostic interface to emerging memory.

The DRAM interface and the NVM interface have configurable
address ranges allowing flexible heterogeneous memory configura-
tions. For example, a single memory controller can have a DRAM
interface, an NVM interface, or both interfaces defined. Other con-
figurations are feasible, providing a flexible framework to study
new memory topologies and evaluate the placement of emerging
NVM in the memory sub-system.

2.10 Classic Caches Improvements*

The classic memory system implements a snooping MOESI-like
coherence protocol that allows for flexible, configurable cache hier-
archies. The coherence protocol is primarily implemented in the
Cache and the CoherentXBar classes and the SnoopFilter object
implements a common optimization to reduce unnecessary coher-
ence traffic.

Over the years, the components of the classic memory system
have received significant contributions with a primary focus of
adding support for future technologies and enhancing its accuracy.

2.10.1 Non-Coherent Cache. The cache model in gem5 implements
the full coherence protocol and as a result can be used in any level
of the coherent memory subsystem (e.g., as an L1 data cache or
instruction cache, last-level cache, etc.). The non-coherent cache
is a stripped down version of the cache model designed to be used
below the point-of-coherence (closer to memory). Below the point-
of-coherence, the non-coherent cache receives only requests for
fetches and writebacks and itself send requests for fetches and
writebacks to memory below. As opposed to the regular cache,
the non-coherent cache will not send any snoops to invalidate or
fetch data from caches above. As such the non-coherent cache is
a greatly simplified version in terms of handling the coherence
protocol compared to the regular cache while otherwise supporting
the same flexibility (e.g., configurable tags, replacement policies,
inclusive or exclusive, etc.).

The non-coherent cache can be used to model system-level
caches, which are often larger in size and can be used by CPUs and
other devices in the system.

2.10.2 Write Streaming Optimizations. Write streaming is a com-
mon access pattern which is typically encountered when software
initializes or copies large memory buffers (e.g., memset, memcpy).
When executed, the core issues a large number of write requests to
the data cache. The data cache receives these write requests and
issues requests for exclusive copies of the corresponding cache lines.
To get an exclusive copy, it has to invalidate copies of that line and
fetch a copy of the data (e.g., from off-chip memory). As soon as
it receives data, it performs all writes for that line and often will
overwrite it completely. As a result, the data cache unnecessarily

38by Nikos Nikoleris

https://www.micron.com/support/tools-and-utilities/power-calc

fetches data only to overwrite it shortly after. Often these write
buffers are large in size and also trash the data cache.

Common optimizations [41] coalesce writes to form full cache
line writes, avoid unnecessary data fetches and achieve significant
reduction in memory bandwidth. In addition, when the written
memory buffer is large, we can also avoid thrashing the data cache
by bypassing allocation.

We have implemented a simple mechanism to detect write stream-
ing access patterns and enable coalescing and bypassing. The mech-
anism attaches to the data cache and analyses incoming write
requests. When the number of sequential writes reaches a first
threshold, it enables write coalescing and when a second thresh-
old is reached, in addition, the cache will bypass allocation for the
writes in the stream.

2.10.3 Cache Maintenance Operations. Typically, the contents of
the cache are handled by the coherence protocol. For most user-
level code, caches are invisible. This greatly simplifies programming
and ensures software portability. However, when interfacing with
devices or persistent memory, the effect of caching becomes visible
to the programmer. In such cases, a user might have to trigger
a writeback which propagates all the way to the device or the
persistent memory. In other cases, a cache invalidation will ensure
that a subsequent load will fetch the newest version of the data
from a buffer of the main memory.

Cache maintenance operations (CMOs) are now supported in
gemb in a way that can deal with arbitrary cache hierarchies. An
operation can either clean and/or invalidate a cache line. A clean
operation will find the dirty copy and trigger a writeback and an
invalidate operation will find all copies of the cache line and invali-
date them and the combined operation will perform both actions.
The effects of CMOs are defined with reference to a configurable
point in the system. For example, a clean and invalidate sent to
the point-of-coherence will find all copies of the block above the
point-of-coherence, invalidate them, and if any of them is dirty also
trigger a writeback to the memory below the point-of-coherence.

2.10.4 Snooping Support and Snoop Filtering. In large systems,
broadcasting snoop messages is slow, they cost energy and time,
and they can cause significant scalability bottlenecks. Therefore,
snoop filters (also called directories) are used to keep track of which
caches or nodes are keeping a copy of a particular cached line. We
added a snoop filter to gem5 which is a distributed component that
keeps track of the coherence state of all lines cached “above” it,
similar to the AMD Probe Filter [25]. For example, if the snoop filter
sits next to the L3 cache and is accessed before the L3, it knows
about all lines in the L2 and L1 caches that are connected to that
L3 cache.

Using the snoop filter, we can reduce the amount of messages
from O(N?) to O(N) with N concurrent requestors in the system.
Modeling the snoop filter separately from the cache allows us to
use different organizations for the filter and the cache, and dis-
tributing area between shared caches vs coherence tracking filters.
We also model the effect of limited filter capacity through back-
invalidations that remove cache entries if the filter becomes full for
more realistic cache performance metrics.]s Finally, the more cen-
tralized coherence tracking in the filter allows for better checking

Lowe-Power and the gem5 Community

of correct functionality of the distributed coherence protocol in the
classic memory system.

2.11 Cache Replacement Policies and New
Compression Support’’

In general, hardware components frequently contain tables whose
contents are managed by replacement policies. In gem5, multiple
replacement policies are available, which can be paired with any
table-like structure, allowing users to carry out research on the
effects of different replacement algorithms in various hardware
units. Currently, gem5 supports 13 different replacement policies
including several standard policies such as LRU, FIFO, and Pseudo-
LRU, and various RRIPs [39]. These policies can be used with both
the classic caches and Ruby caches. This list is easily expandable to
cover schemes with greater complexity as well.

The simulator also supports cache compression by providing
several state-of-the-art compression algorithms [64] and a default
compression-oriented cache organization. This basic organization
scheme is derived from accepted approaches in the literature: adja-
cent blocks share a tag entry, yet they can only be co-allocated in a
data entry if each block compresses to at least a specific percentage
of the cache line size. Currently, only BDI [56], C-Pack [24], and
FPCD [6] are implemented, but the modularity of the compressors
allows for simple implementation of other dictionary-based and
pattern-based compression algorithms.

These replacement policies are a great example of gem5’s modu-
larity and how code developed for one purpose can be reused in
many other parts of the simulator. Current and future development
is planned to increase the use of these flexible replacement poli-
cies. For instance, we are planning to extend the TLB and other
cache structures beyond the data caches to take advantage of the
same replacement policies. Although the aforementioned cache
compression policies have only been applied to the classic caches,
we are planning to use the same modular code to enable cache
compression for the Ruby caches as well.

2.12 Ruby Cache Model Improvements

The Ruby cache model, originally from the GEMS simulator [50], is
one of the key differentiating features of gem5. The domain-specific
language SLICC allows users to define new coherence protocols
with high fidelity. In mainline gemS5, there are now 12 unique pro-
tocols including GPU-specific protocols, region-coherence proto-
cols [58], research protocols like token coherence [49], and teaching
protocols [52].

When gem5 was first released, Ruby had just been integrated
into the project. In the nine years since, Ruby and the SLICC proto-
cols have become much more deeply integrated into the general
gem5 memory system. Today, Ruby shares the same replacement
protocols (Section 2.11), the same port system to send requests into
and out of the cache system, and the same flexible DRAM controller
models (Section 2.9).

Looking forward, we will be further unifying the Ruby and classic
cache models. Our goal is to one day have a unified cache model
which has the composability and speed of the classic caches and
the flexibility and fidelity of SLICC protocols.

39By Daniel Rodrigues Carvalho

The gem5 Simulator: Version 20.0+

2.12.1 General Improvements*’. Ruby now supports state check-
pointing and restoration with warm cache. This enables running
simulations from regions of interest, rather than having to start
fresh every time. To enable checkpoints, we support accessing the
memory system functionally i.e. without any notion of time or
events. The absence of timed events allows much higher simulation
speeds.

We are also working to include support for recent work on router-
less NoCs [7, 47].

2.14 GPU Compute Model*

GPUs have become an important part of the system design for
high-performance computing, machine learning, and many other
workloads. Thus, we have integrated a compute-based GPU model

Additionally, a new three level coherence protocol (MESI_Three_Level)into gem5 [30].

has been added to gem5. For simplicity, this protocol was built on
top of a prior two level protocol by adding an “zero level” (L0) cache
at the CPU cores. At the L0, the protocol has separate caches for
instructions and data. The L1 and the L2 caches are unified and
do not distinguish between instructions and data. The L0 and L1
caches are private to each CPU core while the L2 is shared across
either all cores or a subset.

2.12.2 Arm Support in Ruby Coherence Protocols*. Until recently,
configurations combining Ruby and multicore Arm systems were

not properly supported. We have revamped the MOESI_CMP_directory

protocol and made it the default when building gem5 for Arm. Sev-
eral issues that resulted in protocol deadlocks (especially when
scaling up to many-core configurations) were fixed. Other fixes
include support for functional accesses, DMA bugs, and improved
modeling of cache and directory latencies. Additionally, support
for load-locked/store-conditional (LL/SC) operations was added to
the MESI_Three_Level protocol, which enables it to be used with
Arm as well.

2.13 Garnet Network Model*?

The interconnection system within gem5 is modeled in various
levels of detail and provides extensive flexibility to model a variety
of modern systems. The interconnect models are present within the
cache-coherent Ruby memory system of gem5 (currently, Garnet
cannot be used with the classic caches). It provides the ability to
create arbitrary network topologies including both homogeneous
and heterogeneous systems.

There are two major variants of network models available within
the Ruby memory system today: simple and Garnet. The simple net-
work models the routers, links, and the latencies involved with low
fidelity. This is appropriate for simulations that can sacrifice detailed
interconnection network modeling for faster simulation. The Gar-
net model adds detailed router microarchitecture with cycle-level
buffering, resource contention, and flow control mechanisms [3].
This model is suitable for studies that focus on interconnection
units and data flow patterns.

Currently, gem5 implements an upgraded Garnet 2.0 model
which provides custom routing algorithms, routers and links that
support heterogeneous latencies, and standalone network simu-
lation support. These features allow detailed studies of on-chip
networks as well as support for highly flexible topologies. Garnet
is moving to version 3.0 with the release of HeteroGarnet. HeteroG-
arnet will improve Garnet by supporting modern heterogeneous
systems such as 2.5D integration systems, MCM based architectures,
and futuristic interconnect designs such as optical networks [17].

4Oby Nilay Vaish
41by Tiago Miick
42By Srikant Bharadwaj and Tushar Krishna

2.14.1 Autonomous Data-Race-Free GPU Tester**. The Ruby co-
herence protocol tester is designed for CPU-like memory systems
that implement relatively strong memory consistency models (e.g.,
TSO) and hardware-based coherence protocols (e.g., MESI). In such
systems, once a processor sends a request to memory, the request
appears globally to the rest of the system. Without knowing im-
plementation details of target memory systems, the tester can rely
on the issuing order of reads and writes to determine the current
state of shared memory. However, existing GPU memory systems
are often based on weaker consistency models (e.g., sequential
consistency for data-race-free programs) and implement software-
directed cache coherence protocols (e.g., the VIPER Ruby protocol
which requires explicit cache flushes and invalidations from soft-
ware to maintain cache coherence). The order in which reads and
writes appear globally can be different from the order they are
issued from GPU cores. Therefore, the previous CPU-centric Ruby
tester is not applicable to testing GPU memory systems.

The gem5 simulator currently supports an autonomous random
data-race-free testing framework to validate GPU memory systems.
The tester works by randomly generating and injecting sequences
of data-race-free reads and writes that are synchronized by proper
atomic operations and memory fences to a target a specific memory
system. By maintaining the data-race freedom of all generated
sequences, the tester is able to validate responses from the system
under test. The tester is also able to periodically check for forward
progress of the system and report possible deadlock and livelock.
Once encountering a failure, the tester generates an event log that
captures only memory transactions related to the failure, which
significantly eases the debugging process. Ta et al. show how the
tester effectively detected bugs in the implementation of VIPER
protocol in gem5 [69].

2.15 Runtime Power Modeling and DVFS
Support®

Virtually all processing today needs to consider not just aspects of
performance, but also that of energy and power consumption. Many
systems are constrained by power or thermal conditions (mobile
devices, boosting of desktop systems) or need to operate as energy
efficiently as possible (in HPC and data centers). We have added
support to gem5 to model power-relevant silicon structures: voltage
and frequency domains. We have also added a model for enabling
DVFS (dynamic voltage and frequency scaling) and support devices
that allow for DVFS control by operating system governors and
autonomous control. Finally, we added an activity-based power
modeling framework that measures key microarchitectural events,

“3by Anthony Gutierrez
44y Tuan Ta
45by Stephan Diestelhorst

voltage, and frequency and allows detailed aggregation of power
consumed over time similar to McPAT [44, 45]. Spiliopoulos et
al. show that gem5’s DVFS support can be integrated into both
Linux and Android operating systems to provide end-to-end power
and energy modeling [67]. Additionally, these model have been
extended to include power consumption caused by the activity of
the SVE vector units.

2.16 Timing-agnostic models: VirtIO and
NoMali*

With the introduction of KVM support, it quickly became apparent
that some of gem5’s device models, such as the IDE disk interface
and the UART, were not efficient in a virtualized environment. We
also realized that these devices do not provide any relevant timing
information in most experimental setups. In fact, they are not even
representative of the devices found in modern computer systems.
Similarly, when simulating mobile workload, such as Android, the
GPU has a large impact on system behavior. While it is possible
to simulate an Android system without a GPU (the system resorts
to software rendering), such simulations are wildly inaccurate for
many CPU-side metrics [26].

These problems lead to the development of a new class of device
timing-agnostic models in gem5. For block devices, pass through
file systems, and serial ports, we developed a set of VirtlO-based
device models. These models only provide limited memory system
interactions and no timing. To solve the software rendering issue,
we introduced a NoMali stub GPU model [26] that exposes the
same register interface as an Arm Mali T-series and early G-series
of GPUs. This makes it possible to use a full production GPU driver
stack in a simulated system without simulating the actual GPU.

2.17 dist-gemb5: Support for Distributed System
Modeling*’

Designing distributed systems requires careful analysis of the com-
plex interplay between processor microarchitecture, memory sub-
system, inter-node network, and software layers. However, simulat-
ing a multi-node computer system using one gem5 process is very
time consuming. Responding to the need for efficient simulation of
multi-node computer systems, dist-gem5 enables parallel and dis-
tributed simulation of a hierarchical compute cluster using multiple
gemb5 processes. The dist-gem5 configuration script spawns several
gemb5 processes, in which each of them can simulate one or several
computer systems (i.e., compute node) or a scale-out network topol-
ogy (i.e., network node). Then, dist-gem5 automatically launches
these gem5 processes, forwards simulated packets between them
through TCP connections, and performs quantum-based synchro-
nization to ensure correct and deterministic simulation [8, 9].

More specifically, dist-gem5 consists of the following three main
components:

Packet forwarding: dist-gem5 establishes a TCP socket connec-
tion between each compute node and a corresponding port of the
network node to (i) forward simulated packets between compute
nodes through the simulated network topology and (ii) exchange
synchronization messages. Within each gem5 process, dist-gem5

4By Andreas Sandberg
47by Mohammad Alian

Lowe-Power and the gem5 Community

launches a receiver thread that runs in parallel with the main sim-
ulation thread to free the main simulation thread from polling on
the TCP connections.

Synchronization: In addition to network topology simulation,
the network node implements a synchronization barrier for per-
forming quantum-based synchronization. The dist-gem5 frame-
work schedules a global sync event every quantum in each gem5
process that sends out a “sync request” message through the TCP
connection to the network node and waits for the reception of a
“sync ack” to start the next quantum simulation.

Distributed checkpointing: dist-gem5 supports distributed
checkpointing by capturing the external inter-gem5 process states
including the in-flight packets inside the network node. To ensure
that no in-flight message exists between gem5 processes when the
distributed checkpoint is taken, dist-gemb5 only initiates checkpoints
at a periodic global sync event.

2.18 SystemC Integration

While the open and configurable architecture of gem5 is of partic-
ular interest in academia, one of industry’s main tools for virtual
prototyping is SystemC Transaction Level Modeling (TLM) [1].
Many hardware vendors provide SystemC TLM models of their IP
and there are tools, such as Synopsys Platform Architect*?, that
assist in building a virtual system and analyzing it. Also, many
research projects use SystemC TLM, as they benefit from the rich
ecosystem of accurate off-the-shelf models of real hardware com-
ponents. However, there is a lack of accurate and modifiable CPU
models in SystemC since the model providers want to protect their
IP. Thus, we have taken steps to make gem5 and SystemC models
compatible so that researchers can construct systems using models
from both frameworks at the same time.

2.18.1 gems5 to SystemC Bridge*. SystemC TLM and gem5 were
developed around the same time and are based on similar underly-
ing ideas. As a consequence, the hardware model used by TLM is
surprisingly close to the model of gemS5. In both approaches, the
system is organized as a set of components that communicate by
exchanging data packets via a well defined protocol. The protocol
abstracts over the physical connection wires that would be used in
a register transfer level (RTL) simulation and thereby significantly
increases simulation speed. In gem5, components use requestor and
responder ports to communicate to other components, whereas in
SystemC TLM, connections are established via initiator and target
sockets. Also, the three protocols atomic, timing and functional pro-
vided by gemb5 find their equivalent in the blocking, non-blocking
and debug protocols of TLM. The major difference in both protocols
is the treatment of backpressure, which is implemented by a retry
phase in gem5 and with the exclusion rule of TLM.

The similarity of the two approaches enabled us to create a
light-weight compatibility layer. In our approach, co-simulation
is achieved by hosting the gem5 simulation on top of a SystemC
simulation. For this, we replaced the gem5 discrete event kernel
with a SystemC process that is managed by the SystemC kernel.
A set of transactors further enables communication between the

Bhttps://www.synopsys.com/verification/virtual-prototyping/platform-
architect.html
4By Christian Menard, Matthias Jung, Abdul Mutaal Ahmad, and Jeronimo Castrillon

https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html

The gem5 Simulator: Version 20.0+

External
Requestor

® Interconnect g

(c) Both directions

(a) gem5 to Sys-(b) SystemC to
temC gem>5

Figure 5: Possible scenarios for binding gem5 and SystemC.

two simulation domains by translating between the two protocols
as is shown in Figure 5. Menard et al. documented our approach
and showed that the transaction between gem5 and TLM only
introduces a low overhead of about 8% [51]. The source code as
well as basic usage examples can be found in util/t1lm of the gem5
repository.

2.18.2 SystemC in gem5°°. Alternatively, gem5 also has its own
built in SystemC kernel and TLM implementation, and can run
models natively as long as they are recompiled with gem5’s Sys-
temC header files. These models can then use gem5’s configuration
mechanism and be controlled from Python, and, by using modified
versions of the bridges developed to run gem5 within a SystemC
simulation, TLM sockets can be connected to gem5’s native ports.

This approach integrates models into gem5 more cleanly and
fully since they are now first class gem5 models with access to all
of gem5’s APIs. Existing models and c_main implementations can
generally be used as-is without any source level modifications; they
just need to be recompiled against gem5’s SystemC headers and
linked into a gem5 binary.

While some parts of gem5’s SystemC implementation are taken
from the open source reference implementation (most of the data
structure library and TLM), the core implementation is new and
based off of the SystemC standard. This means that code which
depends on nonstandard features, behaviors, and implementation
specific details of the reference implementation may not compile
or work properly within gem5. That said, gem5’s SystemC kernel
passes almost all of the reference implementation’s test suite. The
few exceptions are tests that are broken, tests that explicitly check
for implementation specific behavior, or tests for deprecated and
undocumented features.

2.19 System Call Emulation Mode
Improvements®'

System call emulation mode (SE-mode) allows gemb5 to execute user-

mode binaries without executing the kernel-mode system calls of

a real operating system. Basic functionality existed in the original
gemb release [19], but major improvements have been made in the

9By Gabriel Black
51by Brandon Potter

past few years. Recent additions improve the usability and increase
the variety of workloads which may run in S- mode.

2.19.1 Dynamic Executables. For many years, gem5 supported only
statically linked executables. This limitation prevented evaluation
of workloads which require dynamic linking and loading. To sup-
port these workloads, the SE-mode infrastructure was modified to
support dynamic executables using the standard Executable and
Linking Format (ELF).

At a high level, the internal ELF loader was altered to detect the
need for an interpreter—the tool responsible for handling dynamic
loaded libraries. When an interpreter is required, the ELF loader will
load both the interpreter and the workload into the process address
space within the simulator (the guest memory in the simulator,
see Figure 3c). The ELF loader will also initialize stack variables
to help the interpreter and the workload find each other. With the
interpreter in the address space, the workload will delegate lookups
(function bindings) to the interpreter which will fixup function call
invocation points on behalf of the workload.

This dynamic executable support can be combined with the
virtual file system described below in Section 2.19.3 to enable cross-
platform compatibility. With this support, users can run dynami-
cally linked SE-mode binaries compiled for any ISA on any host
ISA as long as the dynamic linker, loader, and libraries are present
on the host machine.

2.19.2 Threading Library Support. With dynamic executable sup-
port, users encounter issues with libraries which depend on pthreads.
Many common libraries have a dependency on the pthread library.
To meet the dependency, we decided to directly support usage of
native threading libraries. To use the native threading libraries, we
leverage the dynamic executable support to make standard system
libraries like pthreads available to the workload. To use this fea-
ture, the user must ensure that enough thread contexts have been
allocated in their configuration script to support all threads.

The threading library support required changes to the SE-mode
infrastructure. Specifically, the clone system call required support
for many new options and the futex system call required significant
work.

2.19.3 Virtual File System. In SE-mode, many system call imple-
mentations rely on functionality provided by the host machine. For
example, a workload’s invocation of the “open” system call will
cause the gem5 CPU model to hand control over to the simula-
tor. The SE-mode “open” implementation will then call the glibc
open function on the host machine (which in-turn uses the host
machine’s open system call). Effectively, the system call is passed
from the simulated process space down to the host machine. In
Figure 3c, the “Syscall Emul” layer is implemented as a passthrough
to the host operating system in many cases.

There are several reasons to employ passthrough. (1) It avoids
reimplementing complicated operating system features. (2) It pro-
motes code reuse by not specializing the system call implementation
for each ISA. (3) It allows the host resources to be utilized directly
from the simulated process.

However, there are several drawbacks stemming from passthrough
as well. (1) It creates API mismatches for system calls which rely on
glibc library implementations. Specifically, a system call’s options

may differ for simulated ISA and the host ISA. (2) It creates ABI
mismatches for system calls which directly call into the host system
call without interpreting system call parameters. (3) It creates issues
when utilizing some host resources.

The virtual file system provides a solution for the third draw-
back, specifically, for filesystem handling. When files are touched
by the simulated process, the results of the accesses or modifica-
tions passthrough to the host filesystem. For some cases, this causes
problems. For example, reading the contents of “/proc/cpuinfo” will
report back results which differ from the simulated system’s con-
figuration. In another example, the workload might try to open
“/dev/thing” for device access which should be handled by the sim-
ulated device, not passed to the host device.

To obviate these problem, the virtual file system provides a level
of indirection to catch filesystem path evaluations and modify them
before the passthrough occurs. Any path on the simulator can be
redirected to any location on the host similar to mounting volumes
in docker. The key:value strings for path redirection can be set
via the Python configuration files.

2.194 AMD ROCm v1.6. At the time of publication, a specific
version of the ROCm software stack can be used with x86 ISA
builds and the GPU compute model 2.14. The ROCm v1.6 libraries
can be loaded and used on both RHEL6 and Ubuntu 16.04 operating
systems. We distribute a set of docker containers and dockerfiles
to help users get started using this specific version of ROCm with
gemb.

2.20 Testing in gem5°*

In order to ensure the quality of gem5, we have continued to im-
prove testing. Testing ensures errors during development are caught
and rectified early, prior to release. A good testing infrastructure is
essential for open-source projects such as gem5, due frequent con-
tributions, from many individuals, with varying levels of expertise
and familiarity with the project. Testing gives assurances that these
regular contributions are not breaking key pieces of functionality,
thus allowing for a relatively high throughput of changes.

Furthermore, due to gem5’s age and size, tests give developers
a degree of confidence when undertaking engineering on seldom
touched component, thereby improving the productivity of all de-
velopers. Good tests and regular testing are thereby critical in en-
suring the smooth running of the project both presently and into
the future.

2.20.1 The TestLib Framework. The majority of gem5 tests are
run via TestLib, our python-based testing framework. TestLib runs
compiled instances of gem5 on specific computer architecture simu-
lations, and verifies that they run as intended. It has been designed
with extendibility in-mind, allowing for tests to be easily added
as they are required. While powerful, it is important to note that
TestLib runs system-level tests, and is therefore not well-suited to
testing individual gem5 components.

2.20.2 Unit Tests. In order to test at a finer granularity, unit tests
have been developed and incorporated into our testing processes.
Unlike our TestLib tests, these unit tests ensure the functionality of

52y Bobby R. Bruce

Lowe-Power and the gem5 Community

gemb classes and functions. Thus, if broken, the source of the bugs
can more quickly be determined. Unit Test coverage is improving
over time, and will play a greater role in improving stability in
future releases of gem5.

2.20.3 Continuous Integration. Via our Gerrit code-review system,
we run tests for each submitted patch prior to merging into the gem5
code base. These tests compile gem5 against key ISA targets and
run a suite of tests designed to cover all major gem5 components
(in practice, all unit tests and a subset of the TestLib tests). This
procedure supplements our code review system, thereby reducing
the possibility of new contributions introducing bugs.

In addition to the tests run prior to submission, a larger set
of tests are available for more “in-depth” testing. These can take
several hours to complete execution, and test functionality such as
full-system booting. We run these tests regularly to ensure gem5
meets our standards. While these are currently triggered manually,
we hope to automatically run these tests nightly and automatically
send error reports to the developers.

2.21 Internal gem5 Improvements and Features

It is important to recognize not only all of the ground-breaking
additions to the models in gem5, but also general improvements
to the simulation infrastructure. Although these improvements do
not always result in new research findings, they are a key enabling
factor for the research conducted using gem5.

The simulator core of gem5 provides support for event-driven
execution, statistics, and many other important functions. These
parts of the simulator are some of the most stable components, and,
as part of the gem5-20 release and in the subsequent releases, we
will be defining stable APIs for these interfaces. By making these
interfaces stable APIs, it will facilitate long-term support for inte-
grating other simulators (e.g., SystemC as discussed in Section 2.18
and SST) and projects that build off of gem5 (e.g., gem5-gpu [59],
gemb5-aladdin [65], gem5-graphics [29], and many others.)

2.21.1 HDF5 Support. A major change in the latest gem5 release
is the new statistics API. While the driver for this API was to im-
prove support for hierarchical statistics formats like HDF5 [71],
there are other more tangible benefits as well. Unlike the old API
where all statistics live in the same namespace, the new API in-
troduces a notion of statistics groups. In most typical use cases,
statistics are bound to the current SimObject’s group, which is then
bound to its parent by the runtime. This ensures that there is a
tree of statistics groups that match the SimObject graph. However,
groups are not limited to SimObject. Behind the scenes, this reduces
the amount of boiler plate code when defining statistics and makes
the code far less error prone. The new API also brings benefits to
simulation scripts. A feature many users have requested in the past
has been the ability to dump statistics for a subset of the object
graph. This is now possible by passing a SimObject to the stat dump
call, which limits the statistics dump to that subtree of the graph.
With the new statistics API in place, it became possible to sup-
port hierarchical data formats like HDF5. Unlike gem5’s traditional
text-based statistics files, HDF5 stores data in a binary file format
that resembles a file system. Unlike the traditional text files, HDF5

33by Andreas Sandberg

The gem5 Simulator: Version 20.0+

has a rich ecosystem of tools and official bindings for many popular
languages, including Python and R. In addition to making analy-
sis easier, the HDF5 backend is optimized for storing time series
data. HDF5 files internally store data as N-dimensional matrices.
In gem5’s implementation, we use one dimension for time and the
remaining dimensions for the statistic we want to represent. For
example, a scalar statistic is represented as a 1-dimensional vector.
When analyzing such series using Python, the HDF5 backend im-
ports such data sets as a standard NumPy array that can be used in
common data analysis and visualization flows. The additional data
needed to support filesystem-like structures inside the stat files
introduces some storage overheads. However, these are quickly
amortized when sampling statistics since the incremental storage
needed for every sample is orders of magnitude smaller than the
traditional text-based statistics format.

2.21.2 Python 3*. One of the main features which separates gem5
from other architectural simulators is its robust support for script-
ing. The main interface to configuring and running gem5 simu-
lations is Python scripts. While the fundamental design has not
changed, there have been many changes to the underlying im-
plementation over the past years. The original implementation
frequently suffered from bugs in the code generated by SWIG and
usability was hampered by poor adherence to modern standards in
SWIG’s C++ parser. The move to PyBind11 [2] greatly improved the
reliability of the bindings by removing the need for a separate C++
parser, and made it easier to expose new functionality to Python in
a reliable and type-safe manner.

The migration from SWIG to PyBind11 also provided a good start-
ing point for the more ambitious project of making gem5 Python
3 compatible, which is now complete. This has not had a direct
impact on the gemb5 feature set yet, but it ensures that the simulator
will continue to run on Linux distributions that are released in 2020
and onwards. However, it does enable exciting improvements under
the hood. A couple of good examples are type annotations that can
be used to enable better static code analysis and greatly improved
string formatting. Our ambition is to completely phase out Python
2 support in the near future to benefit from these new features.

2.21.3 Asynchronous Modeling in gem5>. The difficulties of writ-
ing a complex device/hw model within gemS5 is that your model
needs to be able to work and be representative of the simulated
hardware in both atomic and timing mode.

For simple devices which only respond to requests, this is usually
not a concern. The situation gets worse when the device can send
requests and responses or has DMA capabilities. A method gener-
ating and forwarding a read packet needs to differentiate between
atomic and timing behavior by handling the first with a blocking
operation (the read returns the value as soon as the forwarding
method returns) and the second with a non-blocking call: the value
will be returned later in time. The situation becomes dramatic in
timing mode if multiple sequential DMAs are stacked so that any
read operation depends on previous ones; this is the case for page
table walks for example.

54y Andreas Sandberg and Giacomo Travaglini
by Giacomo Travaglini

This software design problem has been elegantly solved using
coroutines. Coroutines allow you to execute your task, checkpoint
it, and resume it later from where you stopped. To be more specific
to our use case, you can tag your DMA packets with the coroutine
itself, and you could resume the coroutine once the device receives
the read response.

While waiting for coroutines to be fully supported in C++20,
we’ve implemented a coroutine library within gem5 that allows
developers to use coroutines to generate asynchronous models.
The coroutine class is built on top of a “Fiber” class, which was a
pre-existing symmetric coroutine implementation, and it provides
boost-like APIs to the user.

At the moment coroutines are used by the SMMUv3 model de-
veloped and the GICv3 ITS model (Interrupt Translation Service).
There are many other use cases for this API in other gem5 models,
and we are planning on updating those models in the future.

2.22 Updating Guest—Simulator APIs*°

It is sometimes helpful or necessary for gem5 to interact with the
software running inside the simulation in some non-architectural
way. In Figure 3b, the application under test may want to call a
function in the gem5 simulator or vice versa. For instance, gem5
might want to intervene and adjust the guest’s behavior to skip
over some uninteresting function, like one that sets all of physical
memory to zeroes, or which uses a loop to measure CPU speed or
implement a delay. It might also want to monitor guest behavior to
know when something important like a kernel panic has happened.
Guest software might also want to purposefully request some be-
havior from gem5 such as requesting that gem5 exit, recording the
current value of the simulation statistics, taking a checkpoint, and
reading or writing a file on the host, etc.

One way the simulator can react to guest behavior is by executing
a callback when the guest executes a certain program counter (PC).
The PC would generally come from the table of symbols loaded
with, for instance, an OS kernel, and would let gem5 detect when
certain kernel functions were about to execute. This mechanism
has been improved to make it easier for different types of CPU
models to implement. These include the CPU models which use
KVM and the ARM Fast Model based CPUs.

The gem5«<guest interaction might also be triggered by the
application running on the guest itself. One common way to use
these mechanisms from within the guest is to use the “m5” utility
which parses command line arguments and then triggers whatever
gemb5 behavior was requested. This utility is in the process of being
revamped so that support is consistent across ISAs, along with
many other improvements including supporting all the back end
mechanisms described above.

Because it is not possible to universally predict what PCs corre-
spond to requests from the guest, a different signaling mechanism is
necessary. Traditional gem5 CPU models redefined unused opcodes
from the target ISA for that purpose. However, this mechanism is
not universal. For instance, when using the KVM-based CPU model
instructions behave like they would on real hardware since they
are running on real hardware. In these special cases, we require
other APIs.

5¢By Gabriel Black

int
foo(char bar, float baz)
{

}

return (baz < 0) ? bar bar + 1;

(a) Example guest—function.

invokeSimcall <Aapcs32 >(tc, foo);

(b) Example gem5 code.

Figure 6: Example use of new Guest—Simulator APIs

Finally, the gem5 simulator code must be able to decipher the
calling convention of guest code. Historically this was done in sev-
eral different ways. These were somewhat redundant, inconsistent,
incomplete, and difficult to maintain.

We have implemented a new system of templates to pull apart a
function’s signature and marshal arguments from within the guest
automatically. Those arguments are then used to call an arbitrary
function in gem5. Once the function finishes, it can optionally
return a value into the guest if it wants to override or just observe
guest behavior.

For instance, suppose we had the function shown in Figure 6a. If
we wanted to call it from within the guest using calling convention
AAPCS32, once gem5 had detected the call (as described above),
it could call foo() with arguments from the guest as shown in
Figure 6b.

3 CONCLUSION

Over the past nine years, the gem5 simulator has become an in-
creasingly important tool in the computer architecture research
community. This paper describes the significant strides taken to im-
prove this community-developed infrastructure. Looking forward,
with the continued support of the broader computer architecture
research community, the gem5 simulator will continue to mature
and its use will continue to grow. The community will continue to
add new features, add new models, and increase the stability of the
simulator.

The overarching goal of the future development of the gem5
simulator is to increase its user base by expanding its use both
within the computer architecture community and in other com-
puter systems research fields. To accomplish this goal, we will be
providing “known-good” configurations and other tools to enable re-
producible computer system simulation. We will also provide more
user support to broaden the gem5 community through improved
documentation and learning materials. Through these efforts, we
look forward to continue to grow and improve the gem5 simula-
tion infrastructure through the next 20 years of computer system
development.

4 ACKNOWLEDGEMENTS

The development of gem5 is community-driven and distributed. The
contributions to the gem5 community go beyond just the source

Lowe-Power and the gem5 Community

code, and many people who have contributed to the broader gem5
community are not acknowledged here.

We would like to specially acknowledge the late Nathan Binkert.
Nate was a driving force behind the creation of gem5 and with-
out his vision and his dedication to code quality this open-source
community infrastructure would not be the success that it is today.

The gem5 project management committee consists of Bradford
Beckmann, Gabriel Black, Anthony Gutierrez, Jason Lowe-Power
(chair), Steven Reinhardt, Ali Saidi, Andreas Sandberg, Matthew
Sinclair, Giacomo Travaglini, and David Wood. Previous members
include Nathan Binkert, and Andreas Hansson. The project man-
agement committee manages the administration of the project and
ensures that the gem5 community runs smoothly.

This work is supported in part by the National Science Founda-
tion (CNS-1925724, CNS-1925485, CNS-1850566, and many others)
and Brookhaven National Laboratory. Google has donated resources
to host gem5’s codes, code review, continuous integration, and other
web-based resources.

This work was partially completed with funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme
under project Mont-Blanc 2020, grant agreement 779877.

We would also like to thank all of the other contributors to gem5
including Chris Adeniyi-Jones, Chris Adeniyi-Jones, Michael Adler,
Neha Agarwal, John Alsop, Lluc Alvarez, Ricardo Alves, Matteo An-
dreozzi, Ruben Ayrapetyan, Erfan Azarkhish, Akash Bagdia, Jairo
Balart, Marco Balboni, Marc Mari Barcelo, Andrew Bardsley, Isaac
Sanchez Barrera, Maurice Becker, Brad Beckmann, Rizwana Begum,
Glenn Bergmans, Umesh Bhaskar, Nathan Binkert, Sascha Bischoff,
Geoffrey Blake, Maximilien Breughe, Kevin Brodsky, Ruslan Bukin,
Pau Cabre, Javier Cano-Cano, Emilio Castillo, Jiajie Chen, James
Clarkson, Stan Czerniawski, Stanislaw Czerniawski, Sandipan Das,
Nayan Deshmukh, Cagdas Dirik, Xiangyu Dong, Gabor Dozsa, Ron
Dreslinski, Curtis Dunham, Alexandru Dutu, Yasuko Eckert, Sherif
Elhabbal, Hussein Elnawawy, Marco Elver, Chris Emmons, Fer-
nando Endo, Peter Enns, Matt Evans, Mbou Eyole, Matteo M. Fusi,
Giacomo Gabrielli, Santi Galan, Victor Garcia, Mrinmoy Ghosh,
Pritha Ghoshal, Riken Gohil, Rekai Gonzalez-Alberquilla, Brian
Grayson, Samuel Grayson, Edmund Grimley-Evans, Thomas Gro-
cutt, Joe Gross, David Guillen-Fandos, Deyaun Guo, Tony Gutier-
rez, Anders Handler, David Hashe, Mitch Hayenga, Blake Hecht-
man, Javier Bueno Hedo, Eric Van Hensbergen, Joel Hestness, Mark
Hildebrand, Matthias Hille, Rune Holm, Chun-Chen Hsu, Lisa Hsu,
Hsuan Hsu, Stian Hvatum, Tom Jablin, Nuwan Jayasena, Min Kyu
Jeong, Ola Jeppsson, Jakub Jermar, Sudhanshu Jha, Ian Jiang, Dy-
lan Johnson, Daniel Johnson, Rene de Jong, John Kalamatianos,
Khalique, Dogukan Korkmaztiirk, Georg Kotheimer, Djordje Ko-
vacevic, Robert Kovacsics, Rohit Kurup, Anouk Van Laer, Jan-Peter
Larsson, Michael LeBeane, Jui-min Lee, Michael Levenhagen, Weip-
ing Liao, Pin-Yen Lin, Nicholas Lindsay, Yifei Liu, Gabe Loh, An-
drew Lukefahr, Palle Lyckegaard, Jiuyue Ma, Xiaoyu Ma, Andriani
Mappoura, Jose Marinho, Bertrand Marquis, Maxime Martinasso,
Sean McGoogan, Mingyuan, Monir Mozumder, Malek Musleh, Earl
Ou, Xin Ouyang, Rutuja Oza, Andrea Pellegrini, Arthur Perais,
Adrien Pesle, Polydoros Petrakis, Anis Peysieux, Christoph Pfister,
Sujay Phadke, Ivan Pizarro, Matthew Poremba, Brandon Potter,
Siddhesh Poyarekar, Nathanael Premillieu, Sooraj Puthoor, Jing Qu,

The gem5 Simulator: Version 20.0+

Prakash Ramrakhyani, Steve Reinhardt, Isaac Richter, Paul Rosen-
feld, Shawn Rosti, Ali Saidi, Karthik Sangaiah, Ciro Santilli, Robert
Scheffel, Sophiane Senni, Korey Sewell, Faissal Sleiman, Maximilian
Stein, Po-Hao Su, Chander Sudanthi, Kanishk Sugand, Dam Sunwoo,
Koan-Sin Tan, Michiel Van Tol, Erik Tomusk, Christopher Torng,
Ashkan Tousi, Sergei Trofimov, Avishai Tvila, Ani Udipi, Jordi Va-
quero, Lluis Vilanova, Wade Walker, Yu-hsin Wang, Bradley Wang,
William Wang, Moyang Wang, Zicong Wang, Vince Weaver, Uri
Wiener, Sean Wilson, Severin Wischmann, Willy Wolff, Yuan Yao,
Jieming Yin, Bjoern A. Zeeb, Dongxue Zhang, Tao Zhang, Xianwei
Zhang, Zhang Zheng, Chuan Zhu, Chen Zou.

REFERENCES

(1]

=

[10]

[11

[12]

[13

[14]

[15]

[16]

[17

[18]

[19

2012. IEEE Standard for Standard SystemC Language Reference Manual. IEEE
Std 1666-2011 (Revision of IEEE Std 1666-2005) (Jan 2012). https://doi.org/10.1109/
IEEESTD.2012.6134619

2020. pybind11. https://pypi.org/project/pybind11/.

Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. 2009. GARNET:
A detailed on-chip network model inside a full-system simulator. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium
on. IEEE, 33-42.

Ayaz Akram and Lina Sawalha. 2016. x86 Computer Architecture Simulators: A
Comparative Study. In IEEE 34th International Conference on Computer Design
(ICCD). IEEE, 638-645.

Ayaz Akram and Lina Sawalha. 2019. Validation of the gem5 Simulator for
x86 Architectures. In 2019 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). IEEE, 53-58.

Alaa R Alameldeen and Rajat Agarwal. 2018. Opportunistic compression for
direct-mapped DRAM caches. In Proceedings of the International Symposium on
Memory Systems. ACM, 129-136.

Fawaz Alazemi, Arash AziziMazreah, Bella Bose, and Lizhong Chen. 2018. Router-
less Network-on-Chip. In IEEE International Symposium on High Performance
Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE
Computer Society, 492-503. https://doi.org/10.1109/HPCA.2018.00049

M. Alian, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and N. S. Kim. 2017.
dist-gem5: Distributed Simulation of Computer Clusters. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 153-162.
https://doi.org/10.1109/ISPASS.2017.7975287

M. Alian, D. Kim, and N. Sung Kim. 2016. pd-gem5: Simulation Infrastructure for
Parallel/Distributed Computer Systems. IEEE Computer Architecture Letters 01
(jan 2016), 41-44. https://doi.org/10.1109/LCA.2015.2438295

Tiago Alves and Don Felton. 2004. TrustZone: Integrated Hardware and Software
Security. Information Quarterly (2004), 18-24.

AMD. 2012. AMD Graphics Core Next (GCN) Architecture. https://www.
techpowerup.com/gpu-specs/docs/amd-gen1-architecture.pdf.

AMD. 2016. Graphics Core Next Architecture, Generation 3. http:
//developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_
Architecture_rev1.1.pdf.

Arm Ltd. 2020. ArmAG6 Architecture Reference Manual: Armvs, for ArmvS-A
architecture profile (b ed.). Arm Ltd. https://developer.arm.com/docs/ddi0487/fb/
arm-architecture-reference- manual-armv8-for-armv8-a-architecture-profile
Mochamad Asri, Ardavan Pedram, Lizy K John, and Andreas Gerstlauer. 2016.
Simulator Calibration for Accelerator-Rich Architecture Studies. In International
Conference on Embedded Computer Systems: Architectures, Modeling and Simula-
tion (SAMOS),. IEEE, 88-95.

David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. 1991. The NAS parallel benchmarks. The International Journal of
Supercomputing Applications 5, 3 (1991), 63-73.

Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna. 2020. Kite: A Family of Het-
erogeneous Interposer Topologies Enabled via Accurate Interconnect Modeling.
In 2020 57th ACM/IEEE Design Automation Conference (DAC).

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72-81.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 14AS7. https://doi.org/10.1145/2024716.2024718

[20] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi,

and Steven K. Reinhardt. 2006. The M5 Simulator: Modeling Networked Systems.
IEEE Micro 26, 4 (2006), 52-60. https://doi.org/10.1109/MM.2006.82

[21] James Bucek, Klaus-Dieter Lange, and JAsakim von Kistowski. 2018. SPEC

CPU2017: Next-Generation Compute Benchmark. ICPE ’18: Companion of the
2018 ACM/SPEC International Conference on Performance Engineering, 41-42.
https://doi.org/10.1145/3185768.3185771

Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. 2012. Accu-
racy Evaluation of GEM5 Simulator System. In IEEE 7th International Workshop
on Reconfigurable Communication-centric Systems-on-Chip. York, UK, 1-7.
Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson, Omar Naji,
Matthias Jung, Norbert Wehn, and Kees Goossens. 2014. DRAMPower: Open-
source DRAM power & energy estimation tool. http://www.drampower.info.
Xi Chen, Lei Yang, Robert P Dick, Li Shang, and Haris Lekatsas. 2010. C-pack:
A high-performance microprocessor cache compression algorithm. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on 18, 8 (2010), 1196-1208.
Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill
Hughes. 2010. Cache Hierarchy and Memory Subsystem of the AMD Opteron
Processor. IEEE Micro 30, 2 (2010), 16-29. https://doi.org/10.1109/MM.2010.31
R. de Jong and A. Sandberg. 2016. NoMali: Simulating a realistic graphics driver
stack using a stub GPU. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 255-262.

Alexandru Dutu and John Slice. 2015. KVM CPU Model in Syscall Emulation
Mode. In Second gem5 User Workshop.

Fernando A Endo, Damien Couroussé, and Henri-Pierre Charles. 2014. Micro-
architectural Simulation of In-Order and Out-of-Order ARM Microprocessors
with gem5. In Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS XIV), 2014 International Conference on. IEEE, 266-273.

Ayub A. Gubran and Tor M. Aamodt. 2019. Emerald: Graphics Modeling for SoC
Systems. In Proceedings of the 46th International Symposium on Computer Archi-
tecture (Phoenix, Arizona) (ISCA aAZ19). Association for Computing Machinery,
New York, NY, USA, 169aAS182. https://doi.org/10.1145/3307650.3322221
Anthony Gutierrez, Bradford M. Beckmann, Alexandru Dutu, Joseph Gross,
Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew Poremba, Brandon
Potter, Sooraj Puthoor, Matthew D. Sinclair, Michael Wyse, Jieming Yin, Xianwei
Zhang, Akshay Jain, and Timothy Rogers. 2018. Lost in Abstraction: Pitfalls of
Analyzing GPUs at the Intermediate Language Level. In Proceedings of 24th IEEE
International Symposium on High Performance Computer Architecture (HPCA).
608-619. https://doi.org/10.1109/HPCA.2018.00058

Anthony Gutierrez, Joseph Pusdesris, Ronald G Dreslinski, Trevor Mudge, Chan-
der Sudanthi, Christopher D Emmons, Mitchell Hayenga, and Nigel Paver. 2014.
Sources of Error in Full-System Simulation. In IEEE International Symposium on
Performance Analysis of Systems and Software. Monterey, CA, 13-22.

A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi. 2014. Simulating
DRAM controllers for future system architecture exploration. In IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS).
201-210.

John Hennessy and David Patterson. 2018. A New Golden Age for Computer
Architecture: Domain Specific Hardware/Software Co-Design, Enhanced Security,
Open Instruction Sets, and Agile Chip Development. Turing Award Lecture.
John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (Jan. 2019), 484A$60. https://doi.org/10.1145/
3282307

John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1-17.

Mingyu Hsieh, Kevin Pedretti, Jie Meng, Ayse Coskun, Michael Levenhagen,
and Arun Rodrigues. 2012. SST + gem5 = a Scalable Simulation Infrastructure
for High Performance Computing. In Proceedings of the 5th International ICST
Conference on Simulation Tools and Techniques (Desenzano del Garda, Italy) (SIMU-
TOOLS aAZ12). ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Brussels, BEL, 1964A5201.

Radhika Jagtap, Stephan Diestelhorst, Andreas Hansson, Matthias Jung, and
Norbert Wehn. 2016. Exploring System Performance using Elastic Traces: Fast,
Accurate and Portable. In IEEE International Conference on Embedded Computer
Systems Architectures Modeling and Simulation (SAMOS), July, 2016, Samos Island,
Greece.

Radhika Jagtap, Matthias Jung, Wendy Elsasser, Christian Weis, Andreas Hansson,
and Norbert Wehn. 2017. Integrating DRAM Power-Down Modes in gem5
and Quantifying their Impact. In International Symposium on Memory Systems
(MEMSYS17).

Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010. High Per-
formance Cache Replacement Using Re-Reference Interval Prediction (RRIP). In
Proceedings of the 37th Annual International Symposium on Computer Architecture
(Saint-Malo, France) (ISCA aAZ10). Association for Computing Machinery, New
York, NY, USA, 605AS71. https://doi.org/10.1145/1815961.1815971

Jae-Eon Jo, Gyu-Hyeon Lee, Hanhwi Jang, Jaewon Lee, Mohammadamin Ajdari,
and Jangwoo Kim. 2018. DiagSim: Systematically Diagnosing Simulators for

https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://pypi.org/project/pybind11/
https://doi.org/10.1109/HPCA.2018.00049
https://doi.org/10.1109/ISPASS.2017.7975287
https://doi.org/10.1109/LCA.2015.2438295
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
https://developer.arm.com/docs/ddi0487/fb/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/fb/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1145/3185768.3185771
 http://www.drampower.info
https://doi.org/10.1109/MM.2010.31
https://doi.org/10.1145/3307650.3322221
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1145/1815961.1815971

[41]

[42]

[43]

[44]

[45

[46]

[47]

[50]

[51]

[52]

(54

[55]

[56

[57]

Healthy Simulations. ACM Transactions on Architecture and Code Optimization
(TACO) 15, 1 (2018), 4.

Norman P. Jouppi. 1993. Cache Write Policies and Performance. SIGARCH
Comput. Archit. News 21, 2 (May 1993), 1914A$201. https://doi.org/10.1145/
173682.165154

Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Comput. Archit. Lett. 15, 1 (Jan. 2016), 454A549.
https://doi.org/10.1109/LCA.2015.2414456

Yuetsu Kodama, Tetsuya Odajima, Akira Asato, and Mitsuhisa Sato. 2019. Eval-
uation of the RIKEN Post-K Processor Simulator. CoRR abs/1904.06451 (2019).
arXiv:1904.06451 http://arxiv.org/abs/1904.06451

Sheng Li, Jung-Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 469-480.
Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2013. The McPAT Framework for Multicore and Many-
core Architectures: Simultaneously Modeling Power, Area, and Timing. ACM
Transactions on Architecture & Code Optimization 10, 1, Article 5 (April 2013),
29 pages. https://doi.org/10.1145/2445572.2445577

S.Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob. 2020. DRAMsim3: a Cycle-
accurate, Thermal-Capable DRAM Simulator. IEEE Computer Architecture Letters
(2020), 1-1.

Ting-Ru Lin, Drew Penney, Massoud Pedram, and Lizhong Chen. 2020. A Deep
Reinforcement Learning Framework for Architectural Exploration: A Routerless
NoC Case Study. In IEEE International Symposium on High Performance Computer
Architecture, HPCA 2020, San Diego, CA, USA, February 22-26, 2020. IEEE, 99-110.
https://doi.org/10.1109/HPCA47549.2020.00018

Jason Lowe-Power. 2015. gem5 Horrors and what we can do about it. In Second
gem5 User Workshop with ISCA 2015.

Milo M. K. Martin, Mark D. Hill, and David A. Wood. 2003. Token Coherence:
Decoupling Performance and Correctness. In Proceedings of the 30th Annual
International Symposium on Computer Architecture (San Diego, California) (ISCA
4AZ03). Association for Computing Machinery, New York, NY, USA, 182aA$193.
https://doi.org/10.1145/859618.859640

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
2005. Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset. SSIGARCH Computer Architecture News 33, 4 (2005), 92-99. https://doi.
org/10.1145/1105734.1105747

Christian Menard, Jeronimo Castrillon, Matthias Jung, and Norbert Wehn. 2017.
System Simulation with gem5 and SystemC: The Keystone for Full Interoperabil-
ity. In 2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS). 62-69.

Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2020. A
Primer on Memory Consistency and Cache Coherence. Synthesis Lectures on
Computer Architecture 15, 1 (February 2020), 1-294. https://doi.org/10.2200/
S00962ED2V01Y201910CAC049

Nikos Nikoleris, Lieven Eeckhout, Erik Hagersten, and Trevor E. Carlson. 2019.
Directed Statistical Warming through Time Traveling. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019. ACM, 1037-1049. https://doi.org/10.
1145/3352460.3358264

Nikos Nikoleris, Andreas Sandberg, Erik Hagersten, and Trevor E. Carlson. 2016.
CoolSim: Statistical techniques to replace cache warming with efficient, vir-
tualized profiling. In International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, SAMOS 2016, Agios Konstantinos, Samos
Island, Greece, July 17-21, 2016, Walid A. Najjar and Andreas Gerstlauer (Eds.).
IEEE, 106-115. https://doi.org/10.1109/SAMOS.2016.7818337

Tony Nowatzki, Jaikrishnan Menon, Chen-Han Ho, and Karthikeyan Sankar-
alingam. 2015. Architectural simulators considered harmful. IEEE Micro 35, 6
(2015), 4-12.

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons, Michael A
Kozuch, and Todd C Mowry. 2012. Base-delta-immediate compression: practical
data compression for on-chip caches. In Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM, 377-388.
Francesco Petrogalli. 2020. A sneak peek into SVE and VLA programming. Techni-
cal Report. Arm Ltd.

[58] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beck-

[59]

mann, Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2013. Het-
erogeneous System Coherence for Integrated CPU-GPU Systems. In Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (Davis, California) (MICRO-46). ACM, New York, NY, USA, 457-467.
https://doi.org/10.1145/2540708.2540747

Jason Power, Joel Hestness, Marc S. Orr, Mark D. Hill, and David A. Wood. 2015.
gem5-gpu: A Heterogeneous CPU-GPU Simulator. IEEE Comput. Archit. Lett. 14,
1(2015), 34-36. https://doi.org/10.1109/LCA.2014.2299539

[60

[64

[65

=
2

[67

[68

[69

[71

[72

[73

[74]

Lowe-Power and the gem5 Community

A.F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,
R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. The Structural
Simulation Toolkit. SIGMETRICS Perform. Eval. Rev. 38, 4 (March 2011), 37aA$42.
https://doi.org/10.1145/1964218.1964225

Alec Roelke and Mircea R. Stan. 2017. RISC5: Implementing the RISC-V ISA in
gemb5. In Proceedings of Computer Architecture Research with RISC-V.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate
Memory System Simulator. IEEE Computer Architecture Letters 10,1 (2011), 16-19.
A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and D. Black-
Schaffer. 2015. Full Speed Ahead: Detailed Architectural Simulation at Near-
Native Speed. In 2015 IEEE International Symposium on Workload Characterization.
183-192.

Somayeh Sardashti, Angelos Arelakis, Per Stenstrom, and David A Wood. 2015. A
primer on compression in the memory hierarchy. Synthesis Lectures on Computer
Architecture 10, 5 (2015), 1-86.

Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and
David M. Brooks. 2016. Co-designing accelerators and SoC interfaces using gem5-
Aladdin. In 49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Computer Society, 48:1—
48:12. https://doi.org/10.1109/MICRO.2016.7783751

Boris Shingarov. 2015. Live Introspection of Target-Agnostic JIT in Simulation.
In Proceedings of the International Workshop on Smalltalk Technologies (IWST).
5:1-5:9. https://doi.org/10.1145/2811237.2811295

Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, Peter Aldworth, and Ste-
fanos Kaxiras. 2013. Introducing DVFS-Management in a Full-System Simulator.
In 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation
of Computer and Telecommunication Systems, San Francisco, CA, USA, August
14-16, 2013. IEEE Computer Society, 535-545. https://doi.org/10.1109/MASCOTS.
2013.75

Tuan Ta, Lin Cheng, and Christopher Batten. 2018. Simulating Multi-Core RISC-V
Systems in gemb. In Proceedings of Computer Architecture Research with RISC-V.
Tuan Ta, Xianwei Zhang, Anthony Gutierrez, and Bradford M. Beckmann. 2019.
Autonomous Data-Race-Free GPU Testing. In IEEE International Symposium on
Workload Characterization, ISWC 2019, Orlando, FL, USA, November 3-5, 2019.
IEEE, 81-92. https://doi.org/10.1109/IISWC47752.2019.9042019

Teruo Tanimoto, Takatsugu Ono, and Koji Inoue. 2017. Dependence Graph
Model for Accurate Critical Path Analysis on Out-of-Order Processors. Journal
of Information Processing 25 (2017), 983-992.

The HDF Group. 2020. The HDF5 Library & File Format. https://www.hdfgroup.
org/solutions/hdf5/.

Matthew Walker, Sascha Bischoff, Stephan Diestelhorst, Geoff Merrett, and Bashir
Al-Hashimi. 2018. Hardware-Validated CPU Performance and Energy Modelling.
In Performance Analysis of Systems and Software (ISPASS), 2018 IEEE International
Symposium on. IEEE, 44-53.

David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. 2005. DRAMsim: A Memory System Simulator. SGARCH
Comput. Archit. News 33, 4 (Nov. 2005), 1004A$107. https://doi.org/10.1145/
1105734.1105748

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste AsanoviAG. 2011.
The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA. Technical
Report UCB/EECS-2011-62. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html

https://doi.org/10.1145/173682.165154
https://doi.org/10.1145/173682.165154
https://doi.org/10.1109/LCA.2015.2414456
https://arxiv.org/abs/1904.06451
http://arxiv.org/abs/1904.06451
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1109/HPCA47549.2020.00018
https://doi.org/10.1145/859618.859640
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.2200/S00962ED2V01Y201910CAC049
https://doi.org/10.2200/S00962ED2V01Y201910CAC049
https://doi.org/10.1145/3352460.3358264
https://doi.org/10.1145/3352460.3358264
https://doi.org/10.1109/SAMOS.2016.7818337
https://doi.org/10.1145/2540708.2540747
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1145/2811237.2811295
https://doi.org/10.1109/MASCOTS.2013.75
https://doi.org/10.1109/MASCOTS.2013.75
https://doi.org/10.1109/IISWC47752.2019.9042019
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1145/1105734.1105748
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html

	Abstract
	1 The gem5 Simulator
	1.1 The past, present, and future of gem5
	1.2 Becoming part of the gem5 community
	1.3 gem5's main features

	2 Major changes in gem5-20
	2.1 gem5 resources
	2.2 Learning gem5
	2.3 RISC-V ISA Support
	2.4 Arm Improvements
	2.5 X86 ISA Improvements
	2.6 Branch Predictor Improvements
	2.7 Virtualized Fast Forwarding
	2.8 Elastic Traces
	2.9 Off-Chip Memory System Models
	2.10 Classic Caches Improvements
	2.11 Cache Replacement Policies and New Compression Support
	2.12 Ruby Cache Model Improvements
	2.13 Garnet Network Model
	2.14 GPU Compute Model
	2.15 Runtime Power Modeling and DVFS Support
	2.16 Timing-agnostic models: VirtIO and NoMali
	2.17 dist-gem5: Support for Distributed System Modeling
	2.18 SystemC Integration
	2.19 System Call Emulation Mode Improvements
	2.20 Testing in gem5
	2.21 Internal gem5 Improvements and Features
	2.22 Updating Guest<->Simulator APIs

	3 Conclusion
	4 Acknowledgements
	References

