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Abstract

We study fair allocation of indivisible goods among agents. Prior research focuses on addi-
tive agent preferences, which leads to an impossibility when seeking truthfulness, fairness, and
efficiency. We show that when agents have binary additive preferences, a compelling rule —
maximum Nash welfare (MNW) — provides all three guarantees.

Specifically, we show that deterministic MNW with lexicographic tie-breaking is group
strategyproof in addition to being envy-free up to one good and Pareto optimal. We also prove
that fractional MNW — known to be group strategyproof, envy-free, and Pareto optimal — can
be implemented as a distribution over deterministic MNW allocations, which are envy-free up
to one good. Our work establishes maximum Nash welfare as the ultimate allocation rule in
the realm of binary additive preferences.

1 Introduction

Fair division [13; 28] is a sprawling field that cuts across scientific disciplines. Among its many
challenges, the division of indivisible goods — an ostensible oxymoron — is arguably the most
popular in recent years. The goods are “indivisible” in the sense that each must be allocated in
its entirety to a single agent (think of pieces of jewelry or tickets to different football games in a
season). Each agent has her own valuation function, which represents the benefit the agent derives
from bundles of goods.

A fully expressive model of valuation functions would have to account for combinatorial pref-
erences. Classic examples include a right shoe that is worthless without its matching left shoe
(complementarities), and two identical refrigerators (substitutes). However, rich preferences can
be difficult to elicit. It is often assumed, therefore, that the valuation functions are additive, that
is, that each agent’s value for a bundle of goods is the sum of her values for individual goods in
the bundle. Additive valuations strike a balance between expressiveness and ease of elicitation; in
particular, each agent need only report her value for each good separately.

Another advantage of additive valuations is that they admit a practical rule that is both (eco-
nomically) efficient and fair. Specifically, the Maximum Nash Welfare (MNW) solution — which
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maximizes the product of valuations and, therefore, is obviously Pareto optimal (PO) — is envy-
free up to one good (EF1): for any two agents i and j, it is always the case that i prefers her own
bundle to that of j, possibly after removing a single good from the latter bundle [16].

The MNW solution, however, is not strategyproof, that is, agents can benefit by misreporting
their preferences. In fact, under additive valuations, the only Pareto optimal and strategyproof
rule is serial dictatorship, which is patently unfair [24]. This profound clash between efficiency and
truthfulness holds true even when agents can only have three possible values for goods!

The only hope for reconciling efficiency, fairness and truthfulness, therefore, is to assume that
agents’ values for goods are binary. This assumption is not just a theoretical curiosity: while it ob-
viously comes at a significant cost to expressiveness, it leads to extremely simple elicitation. In this
sense, it arguably represents another natural point on the conceptual expressiveness-elicitation
Pareto frontier. The same bold tradeoff has long been considered sensible in the literature on vot-
ing, where binary values are implicitly represented as approval votes [12]; in fact, the assumption
underlying some of the recent work on approval-based multi-winner elections [17; 26] is nothing
but that of binary additive valuations. It is not surprising, therefore, that several papers in fair
division pay special attention to the case of binary additive valuations [1; 6; 11; 20; 22].

With this rather detailed justification for binary additive valuations in mind, our primary re-
search question is this: do binary additive valuations admit rules that are efficient, fair, and truthful?

1.1 Our Contribution

We provide a positive answer — and then some. Specifically, Theorem 1 asserts that, under bi-
nary additive valuations, a particular form of the MNW solution is Pareto optimal, EF1, group
strategyproof (even a coalition of agents cannot misreport its members’ preferences in a way that
benefits them all) and polynomial-time computable.

Furthermore, we show (Theorems 3 and 4) that by randomizing over MNW allocations, we
can achieve ex ante envy-freeness (each agent’s expected value for their random allocation is at
least as high as for any other agent’s), ex ante Pareto optimality, ex ante group strategyproofness,
and ex post EF1 simultaneously in polynomial time. In other words, randomization allows us to
circumvent the mild unfairness that is inherent in deterministic allocations of indivisible goods
without losing the other guarantees.

In our view, these results are essentially the final word on how to divide indivisible goods
under binary additive valuations.

1.2 Related Work

There is an extensive body of work on fair division, much too large to survey here. Instead, we
focus on the most closely related work on fair division with binary valuations.

The most closely related work is that of Babaioff et al. [5], who, independently and in paral-
lel to our work, also discovered some of the results that we present for the deterministic MNW
rule. Specifically, their prioritized egalitarian mechanism is identical to our deterministic MNWtie

mechanism presented in Section 3. They show that this rule is strategyproof, EFX,1 PO, Lorenz-

1There are two popular definitions of EFX (see [3]); this result holds for the stronger one: an allocation is EFX if the
envy that one agent has toward another can be eliminated by removing any good from the envied agent’s bundle.
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dominating, and polynomial-time computable. This is very similar to our Theorem 1. The differ-
ence is that we strengthen strategyproofness to group strategyproofness, but only establish EF1
(weaker than EFX) and do not establish Lorenz-dominance. We note that the EFX property is also
established by Amanatidis et al. [3]. We view these results as complementary to ours, and together,
they establish that MNWtie is group strategyproof, EFX, PO, Lorenz-dominating, and polynomial-
time computable, making it even more compelling. We note that Babaioff et al. [5] do not study
randomized allocation rules, which we focus on in Section 4.

Ortega [30] studies a slightly more general problem where there may be multiple copies of each
good, but each agent can receive at most one copy of any good. His egalitarian solution is identical
to our fractional MNW rule in terms of the probability of each good going to each agent, but
he does not discuss how to implement these fractional allocations as a distribution over integral
allocations with good properties. He shows that this rule is ex ante envy-free, ex ante PO, and ex
ante group strategyproof. However, he uses a weaker notion of strategyproofness, where agents
are only allowed to report a good that they like as one that they do not like, but not vice-versa. As
we note in Section 4, in our (standard) setting with a single copy of each good, these guarantees
(including the stronger strategyproofness notion, or even group strategyproofness) follow directly
from prior work [25]. Hence, our main focus in Section 4 is to prove an ex post EF1 guarantee,
which Ortega [30] does not provide.

Two central concepts in our work are those of maximum Nash welfare (MNW) and leximin
allocations. Aziz and Rey [4] show that under binary additive valuations, all leximin allocations
are also MNW allocations. As we observe in Section 3, this, together with known properties of the
two solutions, immediately implies that the sets of MNW and leximin allocations are identical.
Benabbou et al. [7] extend this equivalence to a more general valuation class.

On the computation front, our polynomial-time computability result for the deterministic
MNWtie rule builds upon on efficient algorithms by Darmann and Schauer [20] and Barman et
al. [6] for finding an MNW allocation under binary additive valuations; specifically, our algorithm
starts from an arbitrary MNW allocation computed by either of these algorithms, and then itera-
tively finds a special MNW allocation that MNWtie outputs. Benabbou et al. [7] also show that an
MNW allocation can be computed efficiently under their more general valuation class.

2 Preliminaries

For k ∈ N, let [k] = {1, . . . , k}. Let N = [n] denote a set of agents, and M denote a set of m
indivisible goods. Each agent i is endowed with a valuation function vi : 2M → R>0 such that
vi(∅) = 0. It is assumed that valuations are additive: ∀T ⊆ M, vi(T ) =

∑
g∈T vi({g}). To simplify

notation, we write vi(g) instead of vi({g}).
We focus on a subclass of additive valuations known as binary additive valuations, under

which vi(g) ∈ {0, 1} for all i ∈ N and g ∈ M. We say that agent i likes good g if vi(g) = 1.
Sometimes it is easier to think of the valuation function of agent i as the set of goods that agent
i likes, denoted Vi = {g ∈M : vi(g) = 1}. Note that vi(T ) = |Vi ∩ T | for all T ⊆ M. For a set of
agents S ⊆ N , let VS =

⋃
i∈S Vi be the set of goods that at least one agent in S likes. The vector of

agent valuations v = (v1, . . . , vn) is called the valuation profile. A problem instance is given by the
tuple (N ,M,v).
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For a set of goods T ⊆M and k ∈ N, let Πk(T ) denote the set of partitions of T into k bundles.
We say that A = (A1, . . . , An) is an allocation if A ∈ Πn(T ) for some T ⊆M. Here,Ai is the bundle
of goods allocated to agent i, and vi(Ai) is the utility to agent i. Let us denote AS =

⋃
i∈S Ai for

S ⊆ N . Let A =
⋃

T⊆MΠn(T ) denote the set of all allocations.
We say that good g is non-valued if vi(g) = 0 for all agents i; all the remaining goods are

called valued. Let Z denote the set of non-valued goods. We say that an allocation A is complete
if it allocates every valued good, i.e., if AN ⊇ M \ Z ; we say that it is minimally complete if it is
complete and does not allocate any non-valued goods, i.e., if AN =M\Z .

We are interested in fair allocations. One of the most prominent notions of fairness is envy-
freeness [21].

Definition 1 (Envy-freeness). An allocation A is called envy-free (EF) if, for all agents i, j ∈ N ,
vi(Ai) > vi(Aj).

Envy-freeness requires that no agent prefer another agent’s bundle over her own. This cannot
be guaranteed (imagine two agents liking a single good). Prior literature focuses on its relaxations,
such as envy-freeness up to one good [15; 27], which can be guaranteed.

Definition 2 (Envy-freeness up to one good). An allocation A is called envy-free up to one good
(EF1) if, for all agents i, j ∈ N such that Aj 6= ∅, there exists g ∈ Aj such that vi(Ai) > vi(Aj \ {g}).

EF1 requires that it should be possible to remove envy between any two agents by removing at
most one good from the envied agent’s bundle. We remark that there is a stronger fairness notion
called envy-freeness up to the least positively valued good (EFX) [16], which coincides with EF1
under binary additive valuations.2

Another classic desideratum in resource allocation is Pareto optimality, which is a notion of
economic efficiency.

Definition 3 (Pareto optimality). An allocation A is called Pareto optimal (PO) if there does not
exist an allocation A′ such that for all agents i ∈ N , vi(A′i) > vi(Ai), and at least one inequality is
strict.

It is easy to see that with binary additive valuations, Pareto optimality is equivalent to ensuring
that each valued good is allocated to one of the agents who likes it, i.e., that the utilitarian social
welfare (sum of utilities) is maximized and is equal to the number of valued goods.

3 Deterministic Setting

In this section, our main goal is to establish the existence of a deterministic allocation rule that is
fair, efficient, and truthful under binary additive valuations. Our rule builds upon the concept of
maximum Nash welfare allocations [16], which we define below.

2There are two popular definitions of EFX [3]. The original definition by Caragiannis et al. [16] asks that agent
i not envy agent j after removal of any good from agent j’s bundle that has positive value for agent i, whereas a
latter definition omits the requirement of “positive value”. Under binary additive valuations, the former definition is
equivalent to EF1 whereas the latter definition is stronger than EF1.
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Definition 4 (Maximum Nash welfare allocation). We say that A is a maximum Nash welfare (MNW)
allocation if, among the set of allocations A, it maximizes the number of agents receiving positive
utility and, subject to that, maximizes the product of positive utilities. Formally, let W (A) =

{i ∈ N : vi(Ai) > 0} and AM = argmaxA∈A |W (A)|. Then, argmaxA∈AM

∏
i∈W (A) vi(Ai) is the set

of MNW allocations.

Even under general additive valuations, all maximum Nash welfare allocations satisfy EF1
and PO [16]. Our work uses a connection between MNW allocations and the classic concept of
leximin allocations, that holds under binary additive valuations.

Definition 5 (Leximin comparison). For an allocation A, let its utility vector be (v1(A1), . . . , vn(An)),
and its utility profile be the utility vector sorted in a non-descending order. Given two utility pro-
files s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n), we say that s leximin-dominates s′, denoted s �lex s′,

if there exists k ∈ [n] such that uk > u′k and ur = u′r for all r < k. We say that s weakly leximin-
dominates s′, denoted s <lex s′, if s �lex s′ or s = s′. Note that this is a total order among utility
profiles. We extend these comparisons to utility vectors by applying them to the utility profiles
they induce, and call two utility vectors leximin-equivalent if they induce the same utility profile.

Definition 6 (Leximin allocations). We say that A is a leximin allocation if, among all allocations, it
lexicographically maximizes the utility profile, i.e., maximizes the minimum utility, subject to that
maximizes the second minimum, and so on. Thus, leximin allocations are those whose utility pro-
file is the greatest element of the total order�lex. We also extend the notions of leximin-dominance
and weak leximin-dominance to allocations by comparing their utility vectors.

Leximin is a refinement of the traditional Rawlsian fairness, which requires maximization of
the minimum utility. Plaut and Roughgarden [31] and Freeman et al. [22] study leximin allocations
(and variants of this definition), and show that they have related fairness properties as well.

Important to our work is the observation that for binary additive valuations, the sets of leximin
and MNW allocations coincide. This is established under a more general valuation class by the
contemporary work of Benabbou et al. [7], but for binary additive valuations, this can also be
inferred easily from the following observations, which we will use in our work.

Lemma 1. All leximin allocations have the same utility profile. Further, any allocation with this utility
profile is a leximin allocation.

Proof. This is because lexicographic comparison is a total order among utility profiles, and leximin
allocations, by definition, are those whose utility profile is its greatest element.

Lemma 2 (Lemma 21 of Freeman et al. [22]). Under binary additive valuations, all maximum Nash wel-
fare allocations have the same utility profile. Further, any allocation with this utility profile is a maximum
Nash welfare allocation.

Under binary additive valuations, given the observations above, the sets of MNW and leximin
allocations can be either identical or disjoint. Aziz and Rey [4] shows that all leximin allocations
are also MNW allocations, which implies that the two sets are identical.

Lemma 3. Under binary additive valuations, the set of maximum Nash welfare allocations coincides with
the set of leximin allocations.
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Henceforth, we will use the terms “MNW allocation” and “leximin allocation” interchange-
ably. Before we define our deterministic rule, let us define this concept formally. Fix the set of
agents N and the set of goodsM. A deterministic rule f takes a valuation profile v as input and
returns an allocation A. Note that f is not allowed to return ties. We say that f is EF1 (resp. PO)
if it always outputs an allocation that is EF1 (resp. PO). The game-theoretic literature offers the
following strong desideratum to prevent strategic manipulations by agents.

Definition 7 (Group strategyproofness). A deterministic rule f is called group strategyproof (GSP)
if there do not exist valuation profiles v and v′, and a group of agents C ⊆ N , such that v′k = vk
for all k ∈ N \ C and vj(A′j) > vj(Aj) for all j ∈ C, where A = f(v) and A′ = f(v′).

A weaker requirement, which only imposes the above property for group C of size 1 (i.e.
prevents manipulations by a single agent) is commonly known as strategyproofness (SP). We are
now ready to define our rule, which chooses a special MNW allocation.

Definition 8 (MNWtie). The deterministic rule MNWtie returns an allocation A such that:

1. A is an MNW allocation with lexicographically greatest utility vector among all MNW al-
locations (i.e., among all MNW allocations, it maximizes v1(A1), subject to that maximizes
v2(A2), and so on);3 and

2. A is minimally complete (i.e. AN =M\Z).

If there are several allocations satisfying both conditions, MNWtie arbitrarily picks one.

First, observe that MNWtie is well-defined, i.e., that the set of allocations satisfying both con-
ditions is non-empty. Indeed, the set of allocations satisfying the first condition is trivially non-
empty. And for any allocation in this set, there is a corresponding minimally complete alloca-
tion — obtained by throwing away all non-valued goods — which has the same utility vector, and
therefore still satisfies the first condition.

The following result establishes the compelling properties of MNWtie. We defer the proof of
polynomial-time computability to the appendix, but the key idea is as follows. Darmann and
Schauer [20] and Barman et al. [6] show that under binary additive valuations, an MNW allocation
can be computed efficiently. Starting from this MNW allocation, we keep moving to lexicographi-
cally better MNW allocations, as in the definition of MNWtie. The algorithm is formally presented
as Algorithm 1 in the appendix.

Theorem 1. Under binary additive valuations, MNWtie is envy-free up to one good, Pareto optimal, group
strategyproof, and polynomial-time computable.

Before diving into the proof, we need another concept that we will use repeatedly. The graph
of an allocation A is a directed graph G(A) = (V,E), where V contains a vertex for each agent, and
there is a directed edge (i, j) ∈ E if and only if there is a good in agent j’s bundle that agent i likes
(i.e., Aj ∩ Vi 6= ∅). Given a path P = (u1, . . . , uk) in G(A), let P (A) denote an allocation obtained
by transferring a good g ∈ Au`+1

∩ Vu`
from agent u`+1 to agent u` for each ` ∈ [k − 1]; we refer to

this operation as passing back along P . We characterize MNW allocations in terms of non-existence
of a special path in their graph.

3We note that tie-breaking by agent index is without loss of generality. One can break ties according to any given
ordering of the agents, and the corresponding rule will still satisfy all the desiderata.
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Lemma 4. Let A be a Pareto optimal allocation, P be a path from agent i to agent j in G(A), and A′ =

P (A) be obtained by passing back along P . Then vj(A
′
j) = vj(Aj) − 1, vi(A′i) = vi(Ai) + 1, and

vk(A′k) = vk(Ak) for all k ∈ N \ {i, j}.

Proof. Note that if good g is being passed from agent u`+1 to agent u` on path P , then by definition
u` must like g. Hence, g is a valued good. Thus, by PO, u`+1 must like g as well. Thus, each agent
on P except i and j loses a good she likes and receives a good she likes, agent j only loses a good
she likes, and agent i only receives a good she likes.

Lemma 5. A Pareto optimal allocation A is an MNW allocation if and only if there is no directed path
from an agent i to an agent j in G(A) such that vj(Aj) > vi(Ai) + 1.

Proof. Lemma 3 of Barman et al. [6] establishes that A is an MNW allocation if and only if there is
no directed path P such that passing back along P strictly increases Nash welfare.4 Given that A
is PO, Lemma 4 implies that this is equivalent to (vj(Aj)− 1) · (vi(Ai) + 1) > vj(Aj) · vi(Ai), which
is equivalent to vj(Aj) > vi(Ai) + 1.

We are now ready to prove Theorem 1.

Proof. Caragiannis et al. [16] already establish that all MNW allocations are EF1 and PO, even for
general additive valuations. Hence, MNWtie is also trivially EF1 and PO. The proof of polynomial-
time computability is in the appendix. We now establish that it is GSP. Note that this holds re-
gardless of how ties are broken among allocations satisfying the two conditions in the definition
of MNWtie.

First, notice that if A = MNWtie(v), then A is minimally complete and PO. Hence, if agent i
receives good g, she must like it. In other words, Ai ⊆ Vi, and thus, vi(Ai) = |Ai| for each agent
i ∈ N . Consequently, AU ⊆ VU for every subset of agents U ⊆ N . We will use this observation
repeatedly.

Next, for an allocation A and agent i ∈ N , define Li
A = {j ∈ N | vj(Aj) < vi(Ai)} to be the set

of agents who have strictly less utility than agent i, and define Si
A to be the set of agents reachable

from Li
A ∪ {i} in G(A). The following lemma shows that agents in Si

A must collectively receive
all the goods that they like.

Lemma 6. If A = MNWtie(v), then for each agent i ∈ N , we have ASi
A

= VSi
A

.

Proof. We have already established that ASi
A
⊆ VSi

A
. Suppose for contradiction that there exists

a good g ∈ VSi
A
\ ASi

A
. Then, by the construction of G(A), there would have been an edge from

an agent in Si
A who likes g to an agent outside of Si

A who is allocated g under A (note that g is
valued, so it must be allocated under A). However, the definition of Si

A implies that it cannot
have any outgoing edges, otherwise the set of agents reachable from Li

A ∪ {i} could be expanded.
Hence, we have ASi

A
= VSi

A
.

Next, we show that even though Si
A contains all agents reachable from Li

A ∪ {i}, an agent in
Si
A cannot have much higher utility than agent i does.

4Technically, either more agents receive positive utility, or the product of positive utilities increases.
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Lemma 7. If A = MNWtie(v), then for each agent i ∈ N and each agent j ∈ Si
A, we have that vj(Aj) ≤

vi(Ai) + 1, and if j > i, then vj(Aj) ≤ vi(Ai).

Proof. This is trivial for j = i, so assume j 6= i, and suppose for contradiction that the statement
is false. Hence, there exist agents i ∈ N and j ∈ Si

A such that either vj(Aj) > vi(Ai) + 2, or
vj(Aj) = vi(Ai) + 1 and j > i.

Since j ∈ Si
A, there exists a path from an agent k ∈ Li

A ∪ {i} to agent j. Further, k ∈ Li
A ∪ {i}

implies that vk(Ak) ≤ vi(Ai) by definition.
Now, in the former case, we would have that there exists a path from agent k to agent j and

vj(Aj) > vi(Ai) + 2 > vk(Ak) + 2. However, this contradicts Lemma 5.
In the latter case, we consider two sub-cases. If k 6= i, then k ∈ Li

A. Hence, vk(Ak) < vi(Ai).
This implies vj(Aj) = vi(Ai) + 1 > vk(Ak) + 2, which leads to a contradiction as pointed out
above. If k = i, then we have a path from agent i to agent j > i with vj(Aj) = vi(Ai) + 1. Once
again, passing back along this path would result in an allocation A′ under which vt(A′t) = vt(At)

for all t 6= i, j, vi(A′i) = vi(Ai) + 1 = vj(Aj), and vj(A
′
j) = vj(Aj) − 1 = vi(Ai). Since A′ has the

same utility profile as A, by Lemma 2, A′ is also a maximum Nash welfare allocation. Further,
since a lower-indexed agent receives higher utility, A′ is lexicographically better than A, which
contradicts the fact that A was returned by MNWtie.

We are now ready to show that MNWtie is GSP. Suppose for contradiction that there exist
valuation profiles v and v′, and a set of agents C ⊆ N such that vt = v′t for all t /∈ C and
vj(A

lie
j ) > vj(A

truth
j ) for each j ∈ C, where Atruth = MNWtie(v) and Alie = MNWtie(v′).

Let i = min
[
argmint∈C vt(A

truth
t )

]
be the agent in C who has the lowest index among all agents

in C having the minimum utility under honest reporting. For simplicity, let us denote S = Si
Atruth .

We have that for every j ∈ C, |Vj ∩Atruth
j | < |Vj ∩Alie

j |. Further, since Atruth
j ⊆ Vj , this simplifies to

|Atruth
j | < |Vj ∩Alie

j |. When j ∈ S ∩ C, we get |Atruth
j | < |Vj ∩Alie

j | ≤ |VS ∩Alie
j | because Vj ⊆ VS .

Let R ⊆ S be the set of agents in S from which some agent in C is reachable in G(Alie). We
now establish that some non-manipulating agent inRmust receive strictly fewer goods under Alie

than under Atruth.

Lemma 8. There exists j∗ ∈ R \ C with |Alie
j | < |Atruth

j |.

Proof. Suppose for a contradiction that for all j ∈ R \ C, |Alie
j | > |Atruth

j |. Take a j ∈ R \ C. Since
j /∈ C, she reports v′j = vj . Hence, we have Alie

j ⊆ V ′j = Vj . Further, since j ∈ R ⊆ S, we have Vj ⊆
VS by definition. We conclude that for each j ∈ R \ C, Alie

j ⊆ VS , so |Alie
j ∩ VS | = |Alie

j | > |Atruth
j |.

Additionally, for each j ∈ R ∩ C ⊆ C, we have that |Alie
j ∩ VS | > |Alie

j ∩ Vj | > |Atruth
j |. Since

bundles of an allocation are disjoint, we can add these inequalities over all j ∈ (R\C)∪(R∩C) = R

to get |Alie
R ∩ VS | > |Atruth

R |. The inequality is strict because R ∩ C 6= ∅ as i ∈ R ∩ C by definition.
Now, recall that by Lemma 6, Atruth

S = VS . Hence, this becomes |Alie
R ∩Atruth

S | > |Atruth
R |.

This implies that there must exist a good g that is in both Alie
R and Atruth

S but not in Atruth
R .

Therefore, there exist agents t ∈ R and k ∈ S \ R such that g ∈ Alie
t and g ∈ Atruth

k . The latter
implies vk(g) = 1 due to Pareto optimality of Atruth.

Since k /∈ R, by definition k does not have a path to an agent in C under G(Alie). This trivially
implies k /∈ C since every vertex is reachable from itself. Since only members of C changed their
reported valuations, v′k(g) = vk(g) = 1. It follows that there must be an edge from agent k to agent
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t in G(Alie). Thus, all vertices reachable from t are also reachable from k. But then, t ∈ R implies
k ∈ R, which is a contradiction.

Consider an agent j∗ ∈ R \ C as per Lemma 8. Since j∗ ∈ R, there must exist a path P from
j∗ to some agent k ∈ C. Let A′ denote the allocation obtained by passing back along path P . We
show that A′ must be preferred to Alie by MNWtie given valuation profile v′, contradicting the fact
that MNWtie(v′) = Alie.

Note that since Alie is PO under valuation profile v′, when constructing A′ from Alie, we get
v′t(A

′
t) = v′t(A

lie
t ) for all t 6= j∗, k, v′k(A′k) = v′k(Alie

k )−1, and vj∗(A′j∗) = vj∗(A
lie
j∗)+1 due to Lemma 4;

recall that j∗ /∈ C, so vj∗ = v′j∗ . Further, the set of goods allocated does not change. Hence, A′

remains minimally complete.
If vj∗(Alie

j∗) + 2 ≤ v′k(Alie
k ), then it can be checked that Alie violates the Pigou-Dalton princi-

ple due to the existence of A′, which, given Lemma 3, contradicts the fact that Alie is an MNW
allocation. Hence, we must have

vj∗(A
lie
j∗) + 1 > v′k(Alie

k ) = |Alie
k | > vk(Alie

k ) > vk(Atruth
k ) + 1 > vi(A

truth
i ) + 1, (1)

where the second transition is because Alie is minimally complete and PO under valuation profile
v′, the fourth transition is because k ∈ C, and the last transition is due to the choice of i. On the
other hand, we also have

vj∗(A
lie
j∗) + 1 ≤ vj∗(Atruth

j∗ ) ≤ vi(Atruth
i ) + 1, (2)

where the first transition holds because, due to Lemma 8, vj∗(Alie
j∗) ≤ |Alie

j∗ | < |Atruth
j∗ | = vj∗(A

truth
j∗ ),

and the second transition holds due to Lemma 7 and the fact that j∗ ∈ R ⊆ S.
Putting Equations (1) and (2) together, we have

vj∗(A
lie
j∗) + 1 = vj∗(A

truth
j∗ ) = vi(A

truth
i ) + 1 = vk(Atruth

k ) + 1 = v′k(Alie
k ).

By the second equality and Lemma 7, we must have j∗ < i. By the third equality, the fact that k
and i have the same utility under Atruth, and the definition of i, we have that k > i. Therefore, k >
j∗. Then, as argued in the proof of Lemma 7, under the valuation profile v′, A′ has the same utility
profile as Alie, and thus, by Lemma 2, it is an MNW allocation. Further, it is lexicographically better
than Alie under v′, which contradicts the fact that Alie = MNWtie(v′).

4 Randomized Setting

In the previous section, we established the existence of a deterministic rule which is EF1, PO, and
GSP. For deterministic rules, it is necessary to relax EF to EF1. For example, in case of a single good
that is liked by two agents, giving it to either agent would be EF1 but not EF. However, if one is
willing to randomize, the natural solution of assigning the good to an agent chosen at random
would be “ex ante EF” in addition to being “ex post EF1”. This is because each deterministic
allocation in the support is EF1, but in expectation, no agent envies the other. This leads to a
natural question. Can randomness help achieve ex ante EF and ex post EF1, in addition to PO and GSP?
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In this section, we answer this question affirmatively for binary additive valuations. In parallel
to our work, Freeman et al. [23] show that ex ante EF and ex post EF1 can be achieved simultane-
ously even under general additive valuations, but they show an impossibility when ex ante PO is
added to the combination. Our positive result circumvents this impossibility for binary additive
valuations. Additionally, it satisfies GSP, which Freeman et al. do not consider. Let us first formally
extend our framework to include randomness.

Definition 9 (Fractional and randomized allocations). A fractional allocation A = (A1, . . . , An) is
such that Ai(g) ∈ [0, 1] denotes the fraction of good g allocated to agent i and

∑
i∈N Ai(g) ≤ 1 for

each good g. A randomized allocation A is a probability distribution over deterministic allocations.

There is a natural fractional allocation A associated with each randomized allocation A, where
Ai(g) is the probability of good g being allocated to agent i under A. In this case, we say that
randomized allocation A implements fractional allocation A. There may be several randomized
allocations implementing a given fractional allocation.

We refer to the expected utility of agent i under a randomized allocation A as simply the
utility of agent i under A. Note that this is equal to the utility of agent i from the corresponding
fractional allocation A, defined as vi(Ai) =

∑
g∈MAi(g) · vi(g). With this notation, the definitions

of envy-freeness and Pareto optimality extend naturally to fractional allocations.5 We say that a
randomized allocation A is ex ante envy-free (resp. ex ante Pareto optimal) if the corresponding
fractional allocation A is envy-free (resp. Pareto optimal).

With a fixed set of agents N and a fixed set of goodsM, a randomized rule f takes a valuation
profile v as input and returns a randomized allocation A. We say that f is ex ante envy-free (resp.
ex ante Pareto optimal) if it always returns a randomized allocation that is ex ante envy free (resp.
ex ante Pareto optimal). We say that f is ex ante group strategyproof if no group of agents can
misreport their preferences so that each agent in the group receives strictly greater expected utility.
Note that these ex ante guarantees depend only on the fractional allocation corresponding to the
randomized allocation returned by f . Hence, when talking about ex ante guarantees, we will
think of the randomized rule f as directly returning a fractional allocation. However, when talking
about ex post guarantees, we would need to specify which randomized allocation f returns.

Definition 10 (Ex post EF1). We say that a randomized allocation A is ex post envy-free up to one
good if each deterministic allocation in its support is EF1. A randomized rule is ex post EF1 if it
always returns a randomized allocation that is ex post EF1.

Fractional leximin allocations, like their deterministic counterpart, lexicographically maximize
the utility profile among all fractional allocations. The same can be said about fractional MNW
allocations; however, we can skip the first step of maximizing the number of agents who receive
positive utility because in the fractional case we can simultaneously give positive utility to every
agent who likes at least one good (and thus can possibly get positive utility).

Definition 11 (Fractional MNW allocations). We say that a fractional allocation is a fractional
maximum Nash welfare allocation if it maximizes the product of utilities of agents who do not
have zero value for every good.

5In case of Pareto optimality of a fractional allocation, we require that no other fractional allocation Pareto-dominate
it.
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Bogomolnaia and Moulin [9], Bogomolnaia et al. [10], and Kurokawa et al. [25] study fractional
leximin allocations under an assignment setting, and establish several desirable properties. In
addition, fractional MNW allocations, also known as competitive equilibria with equal incomes
(CEEI), are widely studied in fair division with additive valuations [18; 19; 29; 32]. Our first result
shows that under binary additive valuations, these two fundamental concepts coincide. The proof
is deferred to the appendix.

Theorem 2. Under binary additive valuations, the set of fractional leximin allocations coincides with the
set of fractional maximum Nash welfare allocations. All such allocations have identical utility vectors.

Note that the identical utility vector guarantee in Theorem 2 is much stronger than the identical
utility profile guarantee in the deterministic case (Lemmas 1 and 2).

Even under general additive valuations, it is known that every fractional MNW allocation is
ex ante EF and ex ante PO [32], and one such allocation can be computed in strongly polynomial
time [29; 33]. Hence, these properties carry over to our binary additive valuations domain, and
due to Theorem 2, also apply to fractional leximin allocations.

For ex ante GSP, we build on the literature on fractional leximin allocations. Kurokawa et al.
[25] show that returning a fractional leximin allocation satisfies ex ante EF, ex ante PO, and ex
ante GSP whenever four key requirements are satisfied. We describe them in the appendix, and
show that they are easily satisfied under binary additive valuations, if we return a minimally
complete leximin allocation. Hence, we define our fractional leximin/MNW rule to always return
a minimally complete fractional leximin/MNW allocation (like our deterministic rule MNWtie).
The proof of the next result is straightforward, but deferred to the appendix.

Definition 12 (Fractional maximum Nash welfare rule). The fractional maximum Nash welfare
rule returns a minimally complete fractional maximum Nash welfare allocation.

Theorem 3. Under binary additive valuations, every fractional maximum Nash welfare (equivalently,
leximin) allocation is ex ante envy-free and ex ante Pareto optimal. Further, the fractional maximum Nash
welfare rule is ex ante group strategyproof.

The only missing property at this point is ex post EF1. Therefore, the main question we seek
to answer in this section is the following: Can every fractional MNW allocation be implemented as a
distribution over deterministic EF1 allocations? We go one step further and show that it can in fact
be implemented as a distribution over deterministic MNW allocations, which are in turn EF1.
Our main tool is the bihierarchy framework introduced by Budish et al. [14], which is a gener-
alization of the classic Birkhoff-von Neumann theorem [8; 34]. At a high level, the framework
allows implementing any fractional allocation A using deterministic allocations which satisfy a
set of constraints, as long as the set of constraints forms a bihierarchy structure and the fractional
allocation itself satisfies those constraints.

In our case, we start with a minimally complete fractional MNW allocation A∗. Let u∗i denote
the utility to agent i under this allocation. We want to implement this as a randomized allocation.
We impose the following constraints on a deterministic allocation A in the support, where A is
represented as a matrix in which Ai(g) ∈ {0, 1} indicates whether good g is allocated to agent i.

H1 :
∑

i∈N Ai(g) =
∑

i∈N A
∗
i (g), ∀g ∈M,

H2 :bu∗i c ≤
∑

g∈MAi(g) · vi(g) ≤ du∗i e, ∀i ∈ N .
(3)
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The first family of constraints ensures that under each deterministic allocation A, the set of
goods allocated matches that under A∗. Since A∗ is minimally complete, this implies that A must
be minimally complete as well. Crucially, the second family of constraints ensures that each agent
has utility that is either the floor or the ceiling of her utility under A∗. That is, A is not allowed to
stray far from A∗.

It can be checked that these constraints form a bihierarchy (each of H1 and H2 is a hierarchy);
for a formal definition of a hierarchy, we refer the reader to the work of Budish et al. [14]. Im-
portantly, they also provide a polynomial-time algorithm that computes a random allocation such
that (a) it implements the fractional allocation A∗, and (b) each deterministic allocation A in its
support satisfies the constraints in Equation (3). We show that in this case, every deterministic al-
location in the support must be a deterministic MNW allocation, yielding the desired result. The
proof is deferred to the appendix.

Theorem 4. Under binary additive valuations, given any fractional maximum Nash welfare allocation, one
can compute, in polynomial time, a randomized allocation which implements it and has only deterministic
maximum Nash welfare allocations in its support.

Proof. Let A∗ be a given fractional MNW allocation with utility vector u∗. Let Ā be the randomized
allocation implementing A∗ that is returned by the polynomial-time algorithm of Budish et al. [14]
with the bihierarchy constraints in Equation (3). Let A denote the set of deterministic allocations
in the support of Ā. Our goal is to show that every allocation in A is an MNW allocation.

First, let us partition the set of agents N into sets S1, . . . , St such that any two agents i and j

are in the same set if and only if bu∗i c = bu∗jc. For k ∈ [t], let Lk denote the common floor of utilities
of agents in Sk under A∗, and Uk = Lk + 1. Hence, for k ∈ [t] and each agent i ∈ Sk, u∗i ∈ [Lk, Uk).
Further, order the sets so that Uk ≤ Lk+1 for each k ∈ [t − 1]. This ensures that if i ∈ Sr, j ∈ Sr′ ,
and r′ > r, then u∗j > u∗i .

We argue that for each k ∈ [t], the agents in ∪r∈[k]Sr must be fully allocated all of the goods
that they like (i.e. all the goods in V∪r∈[k]Sr ) under A∗, resulting in

∑
r∈[k]

∑
i∈Sr

u∗i = |V∪r∈[k]Sr |. If
this is not true, then a positive fraction of some good g ∈ V∪r∈[k]Sr must be allocated to an agent
j ∈ Sr′ for r′ > k. Let i ∈ ∪r∈[k]Sr be an agent such that g ∈ Vi. Let r ∈ [k] be such that i ∈ Sr.
Then, by the above argument, we know that u∗j > u∗i . However, then, transferring a sufficiently
small fraction of g from agent j to agent i in A∗ will improve the Nash welfare, which contradicts
the fact that A∗ is a fractional MNW allocation.

Note that in any deterministic allocation A, |V∪r∈[k]Sr | is the highest utility that agents in
∪r∈[k]Sr can collectively have; hence, in any feasible utility vector u,∑

r∈[k]
∑

i∈Sr
ui ≤

∑
r∈[k]

∑
i∈Sr

u∗i , ∀k ∈ [t]. (4)

Because a convex combination of allocations in A yields the allocation A∗, and utilities are addi-
tive, a convex combination of their utility vectors yields the utility vector u∗. Hence, for the utility
vector u of any allocation inA, Equation (4) must hold with equality. Further, by subtracting each
equation from the next, we get that it must further satisfy the following. Here, H2 is from the
bihierarchy constraints (Equation (3)).

H2 : bu∗i c ≤ ui ≤ du∗i e, ∀i ∈ N ,
H3 :

∑
i∈Sk

ui =
∑

i∈Sk
u∗i , ∀k ∈ [t].

(5)
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We say that a utility vector is a rounded if it satisfies the constraints in Equation (5), and say that
a deterministic allocation is rounded if it has a rounded utility vector. We have already established
that every allocation in A is a rounded allocation. The following lemma completes the proof.

Lemma 9. The set of rounded allocations coincides with the set of maximum Nash welfare allocations.

Proof. Because leximin and MNW are equivalent concepts for deterministic allocations (Lemma 3),
we will refer to MNW allocations as leximin allocations in this proof. To establish the desired
result, it is sufficient to show that given a rounded allocation Around and an arbitrary allocation
A, Around weakly leximin-dominates A, and if A is not rounded, then Around strictly leximin-
dominates A. Let uround and u be the utility vectors of Around and A, respectively.

First, assume that A is rounded. Then, both uround and u satisfy Equation (5). However, it is
easy to see that any two utility vectors satisfying Equation (5) induce the same utility profile, and
thus uround trivially weakly leximin-dominates u. To see this, note that for each k ∈ [t], the sum
of utilities of agents in Sk is fixed due to H3. And further, for each agent i ∈ Sk, H2 implies that
either ui = u∗i = Lk if u∗i = Lk, or ui ∈ {Lk, Lk + 1} if u∗i ∈ (Lk, Lk + 1). Thus, together, H2 and
H3 fix the number of agents in Sk that have utility Lk and those that have utility Lk + 1. Thus, any
two utility vectors satisfying Equation (5) induce identical utility vectors.

Next, assume that A is not rounded, i.e., u violates either H2 or H3. Let k ∈ [t] be the smallest
index such that either H2 is violated for some agent i ∈ Sk, or H3 is violated for Sk. Then, by the
above argument, the partial utility vectors (uroundi )i∈∪r<kSr and (ui)i∈∪r<kSr induce identical utility
profiles, and therefore, are leximin-equivalent.

Suppose H3 is violated for Sk. Then, because u satisfies Equation (4), and u and uround match
on the total utility of agents in Sr for r < k, we have

∑
i∈Sk

ui <
∑

i∈Sk
u∗i =

∑
i∈Sk

uroundi . Because
(uroundi )i∈Sk

has a higher sum than (ui)i∈Sk
, and because it distributes that higher sum as equally

as possible, (uroundi )i∈Sk
strictly leximin-dominates (ui)i∈Sk

. Hence, (uroundi )i∈∪r≤kSr also strictly
leximin-dominates (ui)i∈∪r≤kSr . To argue that uround strictly leximin-dominates u, we need to
argue that adding the remaining utilities does not change the comparison. To that end, note that
for any r′ > k, r ≤ k, i′ ∈ Sr′ and i ∈ Sr, we have uroundi′ > Lr′ > Ur > uroundi . Thus, because
we are only adding utilities to uround that are at least as high as the ones already added, the strict
leximin-dominance continues to hold.

Next, H2 is violated for some agent i ∈ Sk. Then, ui /∈ {bu∗i c, du∗i e}. By the above argument,
(uroundi )i∈∪r<kSr and (ui)i∈∪r<kSr induce the same utility profile. If ui < bu∗i c, then u has strictly
more agents with utility less than Lk, which implies that it is strictly leximin-dominated by uround.
If ui > du∗i e, then u has either an agent j ∈ Sk with uj < bu∗jc = Lk or more agents with utility Lk

than uround does. In either case, it is again easy to see that uround strictly leximin-dominates u.

This completes the proof of Theorem 4.

Let us amend the definition of the fractional MNW rule so that it uses Theorem 4 to implement
a minimally complete fractional MNW allocation. Then, we have the following.

Corollary 1. Under binary additive valuations, the fractional maximum Nash welfare rule is ex ante envy-
free, ex ante Pareto optimal, ex ante group strategyproof, ex post envy-free up to one good, and polynomial-
time computable.
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5 Discussion

To recap, we showed that under binary additive valuations a deterministic variant of the maxi-
mum Nash welfare rule is envy-free up to one good (EF1), Pareto optimal (PO), and group strat-
egyproof (GSP). We also demonstrated that its randomized variant is ex ante EF, ex ante PO, ex
ante GSP, and ex post EF1. All our rules are polynomial-time computable.

Amanatidis et al. [2] show that under general additive valuations, there is no deterministic rule
that is envy-free up to one good (EF1) and strategyproof, even with two agents and m > 5 goods.
At first glance, Theorem 1, which establishes MNWtie as both GSP and EF1, seems to show that
this impossibility result does not hold for the special case of binary additive valuations. However,
the impossibility result of Amanatidis et al. [2] only applies to rules that allocate all the goods; by
contrast, MNWtie does not allocate non-valued goods. This begs the following question: Under
binary additive valuations, is there a deterministic rule that allocates all the goods and achieves EF1, PO,
and GSP? In the appendix, we show that this cannot be achieved by any variant of MNW.

Another open question is whether the ex ante GSP guarantee of Corollary 1 can be strength-
ened to ex post GSP, which would require the randomized rule to be implementable as a proba-
bility distribution over deterministic GSP rules.

Modulo these minor caveats, though, our results are the strongest one could possibly hope for
in the domain of binary additive valuations.
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Appendix

A Example Illustrating MNWtie

The following examples illustrate how our deterministic rule MNWtie works.

Example 1. Let us denote a valuation profile by a matrix, where n rows represent agents 1, . . . , n,
m columns represent goods g1, . . . , gm, and the entry in row i and column j is vi(gj). Consider the
valuation profile

v =

(
1 0

1 0

)
.
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In this case, the unique allocation A that MNWtie can return is given by A1 = {g1} and A2 = ∅.
This is because g2 cannot be allocated as it is non-valued, and MNWtie must prefer the allocation
which gives g1 to agent 1 over the one which gives it to agent 2.

Generally, however, there could be multiple allocations that MNWtie can arbitrarily choose
from. For example, consider the valuation profile

v =

(
1 1 1

1 1 1

)
.

MNWtie may return any allocation which gives two goods to agent 1 and one good to agent 2.

B Missing Proofs: Deterministic Setting

Continued proof of Theorem 1. We show that MNWtie can be computed in polynomial time. Fix an
instance (N ,M,v). Without loss of generality, suppose there are no non-valued goods. This is
because if there are any non-valued goods, we can simply remove them, and run the algorithm
below on the remaining instance.

Let utie be the utility vector that is lexicographically greatest among the utility vectors of all
MNW allocations. Our goal is to compute an allocation that achieves this utility vector. Our
algorithm relies on the following important lemma.

Lemma 10. Suppose A is an MNW allocation with utility vector u = (u1, . . . , un) 6= utie. Let i be
smallest index such that ui 6= utiei . Then, utiei = ui + 1, and there exists j > i such that there is a path from
i to j in G(A) and uj = ui + 1.

Proof. Given two allocations A and B, we define the transformation graph G(A,B) similarly to
Freeman et al. [22]. It has a vertex corresponding to each agent, and for each good g, there is
a directed edge (i, j) if g ∈ Ai, g ∈ Bj , and i 6= j; note that this may be a multi-graph. This
edge signifies that g must be passed from agent i to agent j in order to transform A to B. Let
E+ = {i ∈ N : |Ai| > |Bi|} and E− = {i ∈ N : |Bi| > |Ai|}.

Corollary 3 by Freeman et al. [22] establishes that edges in G(A,B) can be decomposed into a
set of cycles C and a set of paths P such that each path begins at an agent in E+ and ends at an
agent in E−. Although they do not mention this in the statement of their corollary, they in fact
prove something stronger: for every agent i ∈ E+ (resp. E−), there is a path P ∈ P beginning
(resp. ending) at i.

Next, we notice that the transformation graph G(A,B) is closely related to graphs G(A) and
G(B). Specifically, if A and B are both PO, and there is an edge (i, j) in G(A,B), then there must
be an edge (j, i) in G(A) and an edge (i, j) in G(B). To see this, note that if (i, j) is an edge in
G(A,B), then there is a good g ∈ Bj ∩ Ai. Since both allocations are PO, both i and j must like g
(i.e. g ∈ Vj ∩ Vi). Now, g ∈ Ai ∩ Vj implies that edge (j, i) exists in G(A), and g ∈ Bj ∩ Vi implies
that edge (i, j) exists in G(B). Extending this argument, we get that a path from i to j in G(A,B)

implies a path from j to i in G(A) and a path from i to j in G(B).
We let Atie be some MNW allocation with utility vector utie, and consider G(A,Atie). Since

both A and Atie are PO, and there are no non-valued goods, we have that vj(Aj) = |Aj | and
vj(A

tie
j ) = |Atie

j | for all agents j.
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Consider agent i defined in the lemma statement. First, note that ui > utiei would violate
lexicographic maximality of utie. Hence, we must have ui < utiei , i.e., i ∈ E−. Therefore, there must
exist a path P from some agent j ∈ E+ to agent i in G(A,Atie). Note that this means there is a
path from j to i in G(Atie), and, crucially, a path from i to j in G(A). However, for all j < i, we
have uj = utiej , i.e., |Aj | = |Atie

j |, i.e., j belongs to neither E+ nor E−. Hence, we must have j > i.
Since both A and Atie are MNW allocations, and there is a path from i to j in G(A) and a path

from j to i in G(Atie), by Lemma 5, we have that

|Aj | ≤ |Ai|+ 1 and |Atie
i | ≤ |Atie

j |+ 1. (6)

In addition, we have i ∈ E− and j ∈ E+. Hence,

|Ai| < |Atie
i | and |Atie

j | < |Aj |. (7)

Combining Equations (6) and (7), we have

|Ai| < Atie
i ≤ Atie

j + 1 < |Aj |+ 1. (8)

Since all values are integers, we have |Ai| + 2 ≤ |Aj | + 1, i.e., |Ai| + 1 ≤ |Aj |. Given Equation (6),
this implies |Aj | = |Ai|+ 1. Substituting this equality in Equation (8), we also get |Atie

i | = |Ai|+ 1,
as desired.

Suppose A is an MNW allocation with u 6= utie. Hence, Lemma 10 holds. Consider the agents
i, j and path P identified in the lemma. Let A′ = P (A) have utility vector u′. Then, by Lemma 4,
we have that u′j = uj − 1 = ui and u′i = ui + 1 = uj = utiei . Hence, it can be checked that A′ is
an MNW allocation, and its utility vector u′ has a strictly longer prefix matching utie than u does.
Consequently, if A is in fact an MNW allocation with u = utie, then no such path can exist.

We are now ready to describe our algorithm. It starts by computing any MNW allocation A.
Barman et al. [6]; Darmann and Schauer [20] provide efficient algorithms for computing an MNW
allocation under binary additive preferences, which can be used. Then, our algorithm iteratively
finds the smallest index i that has a path to some j > i with |Aj | = |Ai|+ 1 and passes back along
such a path. By the above arguments, this must terminate in at most n iterations at an MNW
allocation with lexicographically greatest utility vector, which the algorithm returns. A somewhat
simpler but equivalent description of the algorithm is given as Algorithm 1.

To formally argue correctness, we use induction on i and show that Ai is an MNW allocation
with vk(Ai

k) = utiek for k ∈ [i] (that is, its utility vector matches utie in the first i components). The
base case with i = 0 is trivial as A0 is an MNW allocation. Suppose the induction hypothesis
holds for i− 1.

Now, if there is a path P from i to some j > i in G(Ai−1) as identified in Lemma 10, then we
know that vi(Ai−1

i ) + 1 = utiei . However, as argued above, passing back along this path results in
an MNW allocation Ai under which vi(Ai

i) = vi(A
i−1
i ) + 1 = utiei . Further, it does not change the

utilities to any agent k < i. Hence, Ai is an MNW allocation whose utility vector matches utie in the
first i components, as desired. On the other hand, if there is no such path, then by Lemma 10 and
the induction hypothesis, it must be the case that vi(Ai−1

i ) = utiei , so setting Ai ← Ai−1 achieves
the desired goal.
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Algorithm 1 A polynomial-time algorithm to compute MNWtie for binary additive valuations

1: Compute an MNW allocation A0

2: for i = 1, . . . , n do
3: if there is a path P in G(Ai−1) from agent i to some agent j > i with |Ai−1

j | = |Ai−1
i | + 1

then
4: Ai ← P (Ai−1)

5: else
6: Ai ← Ai−1

7: end if
8: end for
9: return An

To see that the running time is polynomial, first note that we can compute an arbitrary MNW
allocation in polynomial time for binary additive utilities. In each iteration of the for loop, con-
structing G(Ai−1) and searching for a desired path in this graph can also be done in polynomial
time. Finally, computing an allocation by passing back along a path can be done in polynomial
time. Since the for loop runs for n iterations, the overall running time is polynomial.

C Missing Proofs: Randomized Setting

Proof of Theorem 2. We begin by showing that there exists a utility vector ulex (resp. umnw) such
that the set of fractional leximin allocations (resp. fractional MNW allocations) is exactly the set
of all fractional allocations with utility vector ulex (resp. umnw). In fact, this step holds even under
general additive valuations. Then, for binary additive valuations, we will show that ulex = umnw,
implying the desired result.

Let A be a fractional leximin allocation with utility vector u. Trivially, every fractional alloca-
tion with utility vector u is also a fractional leximin allocation. We want to show that there is no
fractional leximin allocation A′ with utility vector u′ 6= u. Suppose for contradiction that there is
one. Consider the fractional allocation A′′ = 1/2 ·A+ 1/2 ·A′, i.e., A

′′
i (g) = 1/2 ·Ai(g) + 1/2 ·A′i(g) for

each agent i and good g. Because valuations are additive, its utility vector is u′′ = 1/2 · u + 1/2 · u′.
The key step to observe is that if u and u′ are utility vectors of two fractional leximin alloca-

tions, and u 6= u′, then u′′ is strictly better than both u and u′ according to leximin comparison,
which yields the desired contradiction. To see why this is true, note that because both A and A′

are fractional leximin allocations, their utility profiles must be identical; call it s∗. Then, for any
k ∈ [n], the sum of the k lowest utilities under A′′ is the average of the sum of utilities of the cor-
responding k agents under A and A′. Since each sum is at least the sum of the first k components
of s∗, it follows that the sum of the k lowest utilities under u′′ is at least as much as the sum of the
k lowest utilities under u or u′, i.e., u′′ is at least as good as u and u′ under leximin comparison.
To see why it is strictly better, recall that u 6= u′. Let agent i be such that ui 6= u′i, and among such
agents, one with the lowest u′′i . Without loss of generality, assume ui < u′i. Then, ui < u′′i < u′i. Let
N =

{
j ∈ N : u′′j < u′′i

}
and k = |N |. By the definition ofN , for each j ∈ N , we have uj = u′j = u′′j .

Hence, the k smallest values in u′′ also appear in u and the k + 1st smallest value in u′′ (which is
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u′′i ) is strictly higher than the k + 1st smallest value in u (which is less than u′′i ), which shows that
u′′ is strictly better than u under leximin comparison. The comparison to u′ follows since u and u′

have identical sorted order, and thus are equivalent under leximin comparison.
Thus, we have established that there exists a utility vector, say ulex, such that the set of frac-

tional leximin allocations is the set of allocations with utility vector ulex. It is easy to see that the
above argument holds for fractional MNW allocations as well. Crucially, the key step in the para-
graph above holds because the MNW objective function (product of utilities of agents who like at
least one good) is a strictly concave function. Hence, if u 6= u′ have equal objective value, then
u′′ has a strictly better objective value than both of them. Let umnw denote the utility vector for
fractional MNW allocations.

Finally, we need to show that ulex = umnw. Fix arbitrary fractional leximin and fractional MNW
allocations Alex and Amnw. Suppose this is not true. Let wlex and wmnw be the utility profiles
corresponding to ulex and umnw, respectively. Let k be the smallest index such that wlex

k 6= wmnw
k .

Because wlex is the leximin-optimal utility profile, we must have wlex
k > wmnw

k . Because fractional
leximin and fractional MNW allocations are PO, they have identical sum of utilities. Hence, there
exists t such that wlex

t < wmnw
t . Choose the smallest such t. Then, we have that for each k < t,

wlex
k > wmnw

k , and for at least one k < t, wlex
k > wmnw

k . Thus,
∑t−1

k=1w
lex
k >

∑t−1
k=1w

mnw
k . It is also

worth noting that wmnw
t−1 ≤ wlex

t−1 ≤ wlex
t < wmnw

t .
Let N denote the set of agents with the t − 1 lowest utilities under umnw. Since the collective

utility these agents receive is at the minimum the sum of the first t− 1 values of wlex, they receive
strictly higher total utility under ulex than under umnw. Thus, there must exist an agent i ∈ N and
a good g ∈ Vi such that a positive fraction of g is allocated to an agent j /∈ N under Amnw. Since
umnw
j > wmnw

t > wmnw
t−1 > umnw

i , it follows that transferring a small enough fraction of good g from
agent j to agent i in Amnw strictly improves the Nash welfare, which is a contradiction. Hence,
ulex = umnw. Consequently, the set of fractional leximin and fractional MNW allocations coincide,
and these allocations have identical utility vectors.

Proof of Theorem 3. We show that binary additive valuations satisfy the four requirements laid out
by Kurokawa et al. [25] in Section 3.2 of their paper. Using their notation, A denotes the set of
feasible allocations, P denotes the set of possible preferences (i.e. weak order over A) that agents
may have, and U denotes the set of valuation functions that the agents may have. In our setting,
A is the set of all fractional allocations, and each preference in P has a unique valuation function
in U consistent with it, just the natural one which assigns value 1 to each good g for which the
agent strictly prefers the allocation {g} to ∅, and 0 to every other good. We now specify the four
requirements laid out by Kurokawa et al. [25] and argue why they are satisfied in our domain.

1. Convexity. Given two feasible allocations A,A′ ∈ A and λ ∈ [0, 1], we need to show there
exists an allocation A′′ ∈ A such that ui(A′′i ) = λui(Ai) + (1 − λ)ui(A

′
i) for each agent i. We

can simply let A′′ to be the fractional allocation induced by the randomized allocation that
selects A with probability λ and A′ with probability 1− λ.

2. Equality. Kurokawa et al. [25] only use this property to achieve a guarantee known as pro-
portionality. While in our domain envy-freeness implies proportionality under a complete
allocation, their result requires the equality requirement to guarantee proportionality even
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in domains where it is not implied by envy-freeness. Hence, we do not need to show this
requirement in our domain.

3. Shifting Allocations. Given an allocation A ∈ A and agents i, j ∈ N , we need to show there
exists an allocation A′ ∈ A such that vk(A′k) = vk(Ak) for all agents k ∈ N \ {i, j} and
vi(A

′
i) > vi(Aj). For this, we can choose A′ such that A′k = Ak for all k ∈ N \ {i, j},

A′i = Ai ∪Aj , and A′j = ∅.

4. Optimal Utilization. This requires that if A ∈ A is returned by the fractional MNW rule in a
given instance, then for any valuation function v ∈ U , vi(Ai) > v(Ai). Crucially, because our
rule outputs a minimally complete fractional MNW allocation, agent i must like each good
that she is assigned a positive fraction of. Hence, vi(Ai) =

∑
g∈MAi(g) · 1 > v(Ai) for any

binary additive valuation function v.

Hence, it follows from the result of Kurokawa et al. [25] that fractional MNW rule is ex ante
envy-free, ex ante Pareto optimal, and ex ante group strategyproof.

D Allocating Non-valued Goods

Theorem 5. No deterministic rule can always output an MNW allocation, always allocate all goods, and
be SP for two agents and six goods.

Proof. Suppose there are two agents N = {1, 2} and six goodsM = {g1, g2, g3, g4, g5, g6} Suppose
for a contradiction there existed such a rule F . Consider the valuation profile v1:(

1 1 0 0 0 0

1 1 0 0 0 0

)
The only possible MNW allocations are those where one agent gets good 1 and the other gets good
2. Once this condition is met, any allocation of the non-valued goods is an MNW allocation. Since
there are four such goods, there must be an agent that recieves at least two of them. Without loss
of generality, agent 1 receives goods 3 and 4 along with one of items 1 and 2, say item 1. That is,
F (v1) = A1 such that {g1, g3, g4} ⊆ A1

1 (it is possible they received more of the nonvalued ones).
Now consider another valuation profile v2:(

1 1 1 1 0 0

1 1 0 0 0 0

)
The only possible MNW allocations are those where agent 1 receives goods 3 and 4 and agent
2 receives goods 1 and 2. Therefore, regardless of the allocation chosen, the utility to agent 1 is
exactly 2, that is if F (v2) = A2, then v21(A2

1) = 2. However, if agent 1 misreports to match v1
1,

then their utility v21(A1
1) > 3, as agent 1 likes all three of g1, g3, and g4. Therefore, F is not SP, a

contradiction.

We wrote an integer linear program (ILP) to check whether there exists a full allocation for
every possible binary additive valuation profile with two agents and six goods such that the re-
sulting rule is EF1, PO, and SP. We solved the ILP using CPLEX, and determined that there indeed
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exists such a rule. Our program does not terminate in reasonable time when run on two agents
and seven goods, so whether there exists a deterministic rule that allocates all goods and is EF1,
PO, and SP is an open question for n = 2 and m > 7.
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