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Abstract
The change-point detection problem seeks to iden-
tify distributional changes in streams of data. In-
creasingly, tools for change-point detection are
applied in settings where data may be highly sen-
sitive and formal privacy guarantees are required,
such as identifying disease outbreaks based on
hospital records, or IoT devices detecting activity
within a home. Differential privacy has emerged
as a powerful technique for enabling data analysis
while preventing information leakage about indi-
viduals. Much of the prior work on change-point
detection—including the only private algorithms
for this problem—requires complete knowledge
of the pre-change and post-change distributions,
which is an unrealistic assumption for many prac-
tical applications of interest. This work develops
differentially private algorithms for solving the
change-point detection problem when the data
distributions are unknown. Additionally, the data
may be sampled from distributions that change
smoothly over time, rather than fixed pre-change
and post-change distributions. We apply our al-
gorithms to detect changes in the linear trends
of such data streams. Finally, we also provide
experimental results to empirically validate the
performance of our algorithms.

1. Introduction
The change-point detection problem seeks to identify distri-
butional changes in streams of data. It models data points
as initially being sampled from a pre-change distribution
P0 and then switching to being sampled from a post-change
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distribution P1 at an unknown change-point time k∗. The
task is to quickly and accurately identify the change-point
time k∗. The change-point problem has been widely stud-
ied in theoretical statistics (Shewhart, 1931; Page, 1954;
Shiryaev, 1963; Pollak, 1987; Mei, 2008) as well as prac-
tical applications including climatology (Lund & Reeves,
2002), econometrics (Bai & Perron, 2003), and DNA analy-
sis (Zhang & Siegmund, 2012).

Much of the previous work on change-point detection fo-
cused on the parametric setting, where the distributions P0

and P1 are perfectly known to the analyst. In this structured
setting, the analyst could use algorithms tailored to details
of these distributions, such as computing the maximum log-
likehood estimator (MLE) of the change-point time. In this
work, we consider the nonparametric setting, where these
distributions are unknown to the analyst. This setting is
closer to practice, as it removes the unrealistic assumption
of perfect distributional knowledge. In practice, an analyst
may only have sample access to the current (pre-change)
distribution, and may wish to detect a change to any distri-
bution that is sufficiently far away, without making specific
parametric assumptions on the future (post-change) distri-
bution. The nonparametric setting requires different test
statistics, as common approaches like computing the MLE
do not work without full knowledge of P0 and P1.

In many applications, change-point detection algorithms are
applied to sensitive data, and may require formal privacy
guarantees. For example, the Center for Disease Control
(CDC) may wish to analyze hospital records to detect dis-
ease outbreaks, or the Census Bureau may wish to analyze
income records to detect changes in employment rates. We
will use differential privacy (Dwork et al., 2006) as our
privacy notion, which has been well-established as the pre-
dominant privacy notion in theoretical computer science.
Informally, differential privacy bounds the effect of any in-
dividual’s data in a computation, and ensures that very little
can be inferred about an individual from seeing the out-
put of a differentially private analysis. Differential privacy
is typically achieved algorithmically by adding noise that
scales with the sensitivity of a computation, which is the
maximum change in the function’s value that can be caused
by changing a single entry in the database. Privacy for high
sensitivity analyses require large amounts of noise, which
yield high statistical error (see Section 2.2 for more details).
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Unfortunately, most nonparametric estimation procedures
are not amenable to differential privacy. Indeed, all prior
work on private change-point detection has been in the para-
metric setting, where P0 and P1 are known (Cummings
et al., 2018; Canonne et al., 2019). A standard approach in
the nonparametric setting is to first estimate a parametric
model, and then perform parametric change-point detec-
tion using the estimated model. Common nonparametric
estimation techniques include kernel methods and spline
methods (Parzen, 1962; Rosenblatt, 1956) or nonparamet-
ric regression (Azzalini et al., 1989). These methods are
difficult to make private in part because of the complexity
of finite sample error bounds combined with the effect of
injecting additional noise for privacy. In contrast, simple
rank-based statistics, which order samples by their value,
have sensitivity that is easy to analyze.

In this work, we estimate nonparametric change-points us-
ing the Mann-Whitney test (Wilcoxon, 1945; Mann & Whit-
ney, 1947), which is a rank-based test statistic, presented
formally in Section 2.1. This test picks an index k and mea-
sures the fraction of points before k that are greater than
points after k. For the change-point problem, the expecta-
tion of this statistic is largest around the true change-point
k∗ (under mild non-degeneracy conditions on the pre- and
post-change distributions). This statistic simply computes
pairwise comparisons of the observed data, and it does not
require any additional knowledge of P0 or P1 beyond the
assumption that a data point from P0 is larger than a data
point from P1 with probability > 1/2. The test statistic has
sensitivity O(1/n) for a database of size n, which is lower
than most other test statistics for the same task (Mann &
Whitney, 1947).

1.1. Our Results

In this paper, we provide differentially private algorithms
for accurate nonparametric change-point detection in both
the offline and online settings. We also apply our results to
settings where data are not sampled i.i.d., but are instead
sampled from distributions changing smoothly over time.

In the offline case, the entire database X = {x1, . . . , xn} is
given up front, and the analyst seeks to estimate the change-
point with small additive error. We use the Mann-Whitney
rank-sum statistic and its extension to the change-point
setting (Darkhovsky, 1976). At every possible change-
point time k, the test measures the fraction of points be-
fore k that are greater than points after k using statistic

V (k) =
∑n

j=k+1

∑k
i=1 I(xi>xj)

k(n−k) . The test then outputs the

index k̂ that maximizes this statistic. Even before adding
privacy, we improve the best previously-known finite sam-
ple accuracy guarantees of this estimation procedure. The
previous non-private accuracy guarantee has O(n2/3) addi-
tive error (Darkhovsky, 1976), whereas our Theorem 1 in

Section 3.1 achieves O(1) additive error.

With these improved accuracy bounds, we give Algorithm 1,
PNCPD, in Section 3.2 to make this estimation procedure
differentially private. Our algorithm uses the REPORTMAX
framework of (Dwork & Roth, 2014). The REPORTMAX
algorithm takes in a collection of queries, computes a noisy
answer to each query, and returns the index of the query
with the largest noisy value. We instantiate this framework
with our test statistics V (k) as queries to privately select the
argmax of the statistics. One challenge is ensuring that the
test statistics V (k) have low enough sensitivity that the ad-
ditional noise required for privacy does not harm the estima-
tion error by too much. We show that our PNCPD algorithm
is differentially private (Theorem 2) and has O( 1

ε1.01 ) addi-
tive accuracy (Theorem 3), meaning that the accuracy affect
of adding privacy is independent of the database size n.

In the online case, the analyst starts with an initial database
of size n and receives a stream of additional data points,
arriving online. The analyst’s goal is to accurately estimate
the change-point quickly after it occurs. This is a more chal-
lenging setting because the analyst will have very little post-
change data if they want to detect changes quickly. In this
setting, we give Algorithm 2, ONLINEPNCPD in Section
4. This algorithm uses the ABOVETHRESHOLD framework
of (Dwork et al., 2009; 2010). The ABOVETHRESHOLD al-
gorithm takes in a potentially unbounded stream of queries,
compares the answer of each query to a fixed noisy thresh-
old, and halts when it finds a noisy answer that exceeds the
noisy threshold. Our algorithm computes the test statistic
V (k) for the middle index k of each sliding window of the
last n data points. Once the algorithm finds a window with
a high enough test statistic, it waits for enough additional
data points to meet the requirements of our offline algorithm
PNCPD for accuracy, and then calls PNCPD on the n most
recent data points to estimate the change-point time. One
technical challenge in the online setting is finding a thresh-
old that is high enough to prevent false positives before
a change occurs, and low enough that a true change will
trigger a call to the offline algorithm. We show that our ON-
LINEPNCPD algorithm is differentially private (Theorem 4)
and has O(log n) additive error (Theorem 5).

In Section 5 we report experimental results that empirically
validate our theoretical results. We start by applying our
PNCPD algorithm to a real-world dataset of stock price
time-series data that appear by visual inspection to contain
a change-point, and we find that our algorithm finds the cor-
rect change-point with minimal error, even for small ε values.
We then apply our PNCPD algorithm to simulated datasets
sampled from Gaussian distributions, varying the parame-
ters corresponding to the size of the distributional change,
the location of the change-point in the dataset, and ε. We
also perform simulations for our application to drift change
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detection. Finally, we apply our ONLINEPNCPD algorithm
to streaming simulated datasets drawn from Gaussian dis-
tributions, again varying the parameters that correspond to
the size of the distributional change, the location of the
change-point in the dataset, and ε. In all cases, the empirical
accuracy supports our theoretical guarantees.

In Section 6, we apply our results to privately solve the
problem of drift change detection, where points are sam-
pled from smoothly changing distributions whose means
are shifting linearly with time, and the linear drift parameter
changes at unknown change-time k∗. We also suggest ex-
tensions of this reduction technique to apply our algorithm
for non-linear drift change detection.

1.2. Related work

Change-point detection is a canonical problem in statistics
that has been studied for nearly a century; selected results in-
clude (Shewhart, 1931; Page, 1954; Shiryaev, 1963; Roberts,
1966; Lorden, 1971; Pollak, 1985; 1987; Moustakides, 1986;
Lai, 1995; 2001; Kulldorff, 2001; Mei, 2006; 2008; 2010;
Chan, 2017). The problem originally arose from industrial
quality control, and has since been applied in a wide variety
of other contexts including climatology (Lund & Reeves,
2002), econometrics (Bai & Perron, 2003), and DNA anal-
ysis (Zhang & Siegmund, 2012). In the parametric setting
where pre-change and post-change distributions P0 and P1

are perfectly known, the Cumulative Sum (CUSUM) pro-
cedure (Page, 1954) is among the most commonly used
algorithms for solving the change-point detection problem.
It follows the generalized log-likelihood ratio principle, cal-
culating `(k) =

∑n
i=k log P1(xi)

P0(xi)
for each k ∈ [n], and

declaring that a change occurs if and only if `(k̂) ≥ T for
MLE k̂ = argmaxk `(k) and appropriate threshold T > 0.
Nonparametric change-point detection has also been well-
studied in the statistics literature (Darkhovsky, 1976; Carl-
stein, 1988; Bhattacharyya & Johnson, 1968), and requires
different test statistics that do not rely on exact knowledge
of the distributions P0 and P1.

The only two prior works on differentially private change-
point detection (Cummings et al., 2018; Canonne et al.,
2019) both considered the parametric setting and employed
differentially private variants of the CUSUM procedure and
the change-point MLE underlying it. (Cummings et al.,
2018) directly privatized non-private procedures for the
offline and online settings. (Canonne et al., 2019) gave
private change-point detection as an instantiation of a so-
lution to the more general problem of private hypothesis
testing, partitioning time series data into batches of size
equal to the sample complexity of the hypothesis testing
problem, and then outputs the batch number most consistent
with a change-point. Both works assumed that the pre- and
post-distributions were fully known in advance.

In our nonparametric setting, we use the Mann-Whitney
test (Wilcoxon, 1945; Mann & Whitney, 1947) instead of
the MLE that the CUSUM procedure is built on. The
Mann-Whitney test was originally proposed as a rank-
based nonparametric two-sample test, to test whether two
samples were drawn from the same distribution using the
null hypothesis that after randomly selecting one point
from each sample, each point is equally likely to be the
larger of the two. It was extended to the change-point
setting by (Darkhovsky, 1976), for testing whether sam-
ples from before and after the hypothesized change-point
were drawn from the same distribution. Given a database
X = {x1, . . . , xn}, for each possible change-point k, the

test statistic V (k) =
∑n

j=k+1

∑k
i=1 I(xi>xj)

k(n−k) counts the pro-
portion of index pairs (i, j) with i ≤ k < j for which
xi > xj . This is a nonparametric test because it does not
require any additional knowledge of the distributions from
which data are drawn. Additionally, the Mann-Whitney
test is known to be more efficient (Gibbons & Chakraborti,
2011) and have lower sensitivity (Mann & Whitney, 1947)
than most other test statistics for the same task, includ-
ing the Wald statistic (Wald & Wolfowitz, 1940) and the
Kolmogorov-Smirnov test (Lilliefors, 1967). Differentially
private versions of related test statistics have been used in
recent unpublished work in the context of hypothesis testing,
but they have not been applied to the change-point problem
(Couch et al., 2018; 2019).

Despite structural similarities with (Cummings et al., 2018),
the analyses for this paper’s algorithms are vastly differ-
ent due to new challenges introduced by the nonparametric
setting. Most test statistics for nonparametric estimation
have high sensitivity, and therefore require large amounts
of noise to be added to satisfy differential privacy. This
means that off-the-shelf applications of nonparametric test
statistics to the differentially private change-point frame-
work of (Cummings et al., 2018) would result in high error.
Indeed, even with our use of the Mann-Whitney test statistic
which was chosen for its low sensitivity, an immediate ap-
plication of the best known finite-sample accuracy bounds
(Darkhovsky, 1976) yielded additive error O(n2/3) in the
offline setting for databases of size n. To achieve our much
tighter O(ε−1.01) error bounds required a new analysis.

2. Preliminaries
This section provides the necessary background for inter-
preting our results for the problem of private nonparametric
change-point detection. Section 2.1 defines the nonparamet-
ric change-point detection problem, Section 2.2 describes
the differentially private tools that will be brought to bear.
Additional preliminaries can be found in Appendix A.
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2.1. Change-point background

Let X = {x1, . . . , xn} be n real-valued data points. The
change-point detection problem is parametrized by two dis-
tributions, P0 and P1. The data points inX are hypothesized
to initially be sampled i.i.d. from P0, but at some unknown
change time k∗ ∈ [n], an event may occur (e.g., epidemic
disease outbreak) and change the underlying distribution
to P1. The goal of a data analyst is to announce that a
change has occurred as quickly as possible after k∗. Since
the xi may be sensitive information—such as individuals’
medical information or behaviors inside their home—the
analyst will wish to announce the change-point time in a
privacy-preserving manner.

In the standard non-private offline change-point literature,
the analyst wants to test the null hypothesis H0 : k∗ = n,
where x1, . . . , xn ∼iid P0, against the composite alternate
hypothesis H1 : k∗ < n, where x1, . . . , xk∗ ∼iid P0 and
xk∗+1, . . . , xn ∼iid P1. For known P1 and P0, the log-
likelihood ratio of k∗ =∞ against k∗ = k is

`(k,X) =
∑n
i=k+1 log P1(xi)

P0(xi)
.

The maximum likelihood estimator (MLE) of the change
time k∗ is argmaxk∈[n]`(k,X). However, note that to per-
form this test, the analyst must have complete knowledge of
distributions P0 and P1 to compute the log-likelihood ratio.

In this paper, we consider the situation that we do not know
both the pre-change distribution and the post-change dis-
tribution. We require no knowledge of the pre- and post-
change distributions, and assume only that the probability
of an observation from P0 exceeding an observation from
P1 is different than the probability of an observation from
P1 exceeding an observation from P0, which is necessary
for technical reasons. The Mann-Whitney test (Wilcoxon,
1945) is a commonly used nonparametric test of the null
hypothesis that it is equally likely that a randomly selected
value from one sample will be less than or greater than a ran-
domly selected value from a second sample. (Darkhovsky,
1976) proposed a modification of the Mann-Whitney test to
solve the change-point estimation problem. For each possi-
ble change-point k, a test statistic counting the proportion
of index pairs (i, j) with i ≤ k, j > k for which xi > xj is
calculated as follows:

V (k,X) =

∑n
j=k+1

∑k
i=1 I(xi > xj)

k(n− k)
(1)

For data X drawn according to the change-point model with
distributions P0, P1, this statistic is largest or smallest in ex-
pectation at the true change-point k∗ depending on the value
a = Prx0∼P0,x1∼P1

[x0 > x1]. If a > 1/2, we estimate the
change-point by taking the arg max of the Mann-Whitney
statistics; otherwise we take the arg min. When X is clear

from context, we will simply write V (k). The estimator
k̂ is understood to denote the argmax or argmin of V (k)
depending on whether a > 1/2.

We will measure the additive error of our estimations of the
true change-point as follows.
Definition 1 ((α, β)-accuracy). A change-point detection
algorithm that produces a change-point estimator k̃ is
(α, β)-accurate if Pr[|k̃ − k∗| > α] ≤ β, where the prob-
ability is taken over randomness of the data X sampled
according to the change-point model with true change-point
k∗ and (possibly) the randomness of the algorithm.

2.2. Differential privacy background

Differential privacy bounds how much a single data entry
can affect analysis performed on the database. Databases
X,X ′ are neighboring if they differ in at most one entry.
Definition 2 (Differential Privacy (Dwork et al., 2006)). An
algorithm M : Rn → R is ε-differentially private if for
every pair of neighboring databases X,X ′ ∈ Rn, and for
every subset of possible outputs S ⊆ R,

Pr[M(X) ∈ S] ≤ exp(ε) Pr[M(X ′) ∈ S].

One common technique for achieving differential privacy
is by adding Laplace noise. The Laplace distribution with
scale b is the distribution with probability density function:
Lap(x|b) = 1

2b exp
(
− |x|b

)
. We will write Lap(b) to de-

note the Laplace distribution with scale b, or (with a slight
abuse of notation) to denote a random variable sampled
from Lap(b). The sensitivity of a function or query f is
defined as ∆(f) = maxneighborsX,X′ |f(X)− f(X ′)|, and
it determines the scale of noise that must be added to satisfy
differential privacy. The Laplace Mechanism of (Dwork
et al., 2006) takes in a function f , database X , and privacy
parameter ε, and outputs f(X) + Lap(∆(f)/ε).

One helpful property of differential privacy is that it com-
poses, meaning that the privacy parameter degrades grace-
fully as additional computations are performed on the same
database. (Theorem 7 in the appendix.)

Our algorithms use REPORTMAX (Dwork & Roth, 2014),
which takes in a collection of queries, computes a noisy
answer to each query, and returns the index of the query
with the largest noisy value. We use this as the framework
for our offline private nonparametric change-point detector
PNCPD in Section 3 to privately select the time k with the
highest Mann-Whitney statistics V (k).

The ABOVETHRESHOLD algorithm of (Dwork et al., 2009;
2010), refined to its current form by (Dwork & Roth, 2014),
takes in a potentially unbounded stream of queries, com-
pares the answer of each query to a fixed noisy threshold,
and halts when it finds a noisy answer that exceeds the
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noisy threshold. We use this algorithm as a framework
for our online private nonparametric change-point detector
ONLINEPNCPD in Section 4 when new data points arrive
online in a streaming fashion. Both ABOVETHRESHOLD
and REPORTMAX are reviewed in detail in Appendix A.

3. Offline private nonparametric
change-point detection

In this section, we give an offline private algorithm for
change-point detection when the pre- and post-change distri-
butions are unknown. In Section 3.1, we first offer the finite
sample accuracy guarantee for the non-private nonparamet-
ric algorithm given by k̂ = argmax V (k) for the test statis-
tic V (k) given in Equation (1), which will serve as the
baseline for evaluating the utility of our private algorithm.
Then in Section 3.2 we present our private algorithm, and
give privacy and accuracy guarantees. All omitted proofs
are given in Appendix B.

3.1. Finite sample accuracy guarantee for the
non-private nonparametric estimator

In this section, we provide error bounds for the non-private
nonparametric change-point estimator when the data are
drawn from two unknown distributions P0, P1 with true
change-point k∗ ∈ {dγne, . . . , b(1− γ)nc}, for some
known γ < 1/2. This γ bounds away from the change-point
occurring too early or too late in the sample, and is necessary
to ensure sufficient number of samples from both the pre-
change and post-change distributions. Without loss of gener-
ality, we assume that a := Prx0∼P0,x1∼P1

[x0 > x1] > 1/2.

For the non-private task, we use the following estimation
procedure of (Darkhovsky, 1976), which calculates the esti-
mated change-point k̂ as the argmax of V (k) over all k in
the range permitted by γ:

k̂ = argmaxk∈{dγne,...,b(1−γ)nc}V (k),

for test statistic V (k) defined in Equation (1). We show
in Theorem 1 that the additive error of this procedure is
constant with respect to the sample size n.

Our result is much tighter that the previously known finite-
sample accuracy result in (Darkhovsky, 1976), which gave
an estimation error bound of O(n2/3). This sublinear re-
sult comes from a connection between the accuracy and the
maximal deviation of V (k) from the expected value over
[γn, (1 − γ)n] . To bound the maximal deviation, (Dark-
hovsky, 1976) first analyzed the variance approximation of
V (k) to bound the deviation for a single point k. Then they
utilized a Lipschitz property to partition [γn, (1− γ)n] to
small intervals, and took a union bound over these intervals
to yield a high probability guarantee. In contrast, we better
leverage the connection between V (k) and V (k∗) for im-

proved accuracy and a simplified proof. At a high level, we
show that the expectation of V (k) is single-peaked around
k∗, and V (k)−V (k∗) is subgaussian. We carefully analyze
the discrete derivative as a function of |k∗ − k|, γ, and n to
use a concentration bound yielding our constant error result.

Theorem 1. For data X = {x1, . . . , xn} drawn according
to the change-point model with any distributions P0, P1 with
a = Prx∼P0,y∼P1

[x > y] > 1/2, constraint γ ∈ (0, 1/2),
and change-point k∗ ∈ {dγne, . . . , b(1− γ)nc}, we have
that the estimator

k̂ = argmaxk∈[dγne,b(1−γ)n]c

∑n
j=k+1

∑k
i=1 I(xi > xj)

k(n− k)

is (α, β)-accurate for any β > 0 and

α = C ·
(

1

γ4(a− 1/2)2

)c
· log

1

β

for any constant c > 1 and for C > 0 depending only on c.

If a < 1/2 we achieve the same error bound using

k̂ = argmink∈[dγne,b(1−γ)n]c

∑n
j=k+1

∑k
i=1 I(xi > xj)

k(n− k)
.

3.2. Private offline algorithm

We now give a differentially private version of the non-
parametric estimation procedure of (Darkhovsky, 1976), in
Algorithm 1. Our algorithm uses REPORTMAX as a pri-
vate subroutine, instantiated with queries V (k) to privately
compute argmax V (k). We show that our algorithm is dif-
ferentially private (Theorem 2) and produces an estimator
with additive accuracy that is constant with respect to the
sample size n (Theorem 3).

Algorithm 1 Private Nonparametric Change-Point Detector:
PNCPD(X, ε, γ)

Input: Database X = {x1, . . . , xn}, privacy parameter
ε, contraint parameter γ.
for k = {dγne, . . . , b(1− γ)nc} do

Compute V (k) = 1
k(n−k)

∑n
j=k+1

∑k
i=1 I(xi > xj)

Sample Zk ∼ Lap( 2
εγn )

end for
Output k̃ = argmax

k∈{dγne,...,b(1−γ)nc}
{V (k) + Zk}

The crux of the privacy proof involves analyzing the sensi-
tivity of the Mann-Whitney statistic to ensure that sufficient
noise is added for the REPORTMAX algorithm to maintain
its privacy guarantees. The low sensitivity of this test statis-
tic plays a critical role in requiring only small amounts
of noise to preserve privacy. The accuracy proof extends
Theorem 1 for the non-private estimator to incorporate the
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additional error due to the Laplace noise added for privacy.
Since the event V (k) > V (k∗) is less probable for k that
are further away from k∗, our analysis permits larger values
of Laplace noise Zk for k far from k∗, allowing privacy “for
free” with respect to accuracy, for small constants ε.

Theorem 2. For arbitrary data X = {x1, . . . , xn}, pri-
vacy parameter ε > 0, and constraint γ ∈ (0, 1/2),
PNCPD(X, ε, γ) is ε-differentially private.

Next we provide an accuracy guarantee for our private al-
gorithm PNCPD when the data are drawn according to
the change-point model. The first term in the error bound
of Theorem 3 comes from the randomness of the n data
points, and the second term is the additional cost that comes
from the randomness of the sampled Laplace noises, which
quantifies the cost of privacy. To ensure that the cost of
privacy is as small as possible, we use k-specific thresholds
tk in the proof to optimize the trade-off between how much
to tolerate the Laplace noise added for privacy versus the
randomness of the data. As |k − k∗| increases, V (k) is less
likely to be close to V (k∗), so we can allow more Laplace
noise rather than set a universal tolerance for all k.

Theorem 3. For data X = {x1, . . . , xn} drawn according
to the change-point model with any distributions P0, P1 with
a = Prx∼P0,y∼P1

[x > y] > 1/2, constraint γ ∈ (0, 1/2),
change-point k∗ ∈ {dγne, . . . , b(1− γ)nc}, and privacy
parameter ε > 0, we have that PNCPD(X, ε, γ) is (α, β)-
accurate for any β > 0 and

α = max

{
C1 ·

(
1

γ4(a− 1/2)2

)c
· log

1

β
,

C2 ·
(

1

εγ(a− 1/2)

)c
· log

1

β

}
,

for any constant c > 1 and some constants C1, C2 > 0
depending on c.

As with our analysis of the non-private estimator, we can
take the argmin and get the same error bounds (with a−1/2
replaced by |a− 1/2|) if Prx∼P0,y∼P1

[x > y] < 1/2.

4. Online change point detection
In this section, we show how to extend our results for
change-point detection with unknown distributions to the
online setting, where the databaseX is not given in advance,
but instead data points arrive one-by-one. We assume the
analyst starts with a database of size n, and receives one
new data point per unit time.

Our algorithm uses the Above Noisy Threshold algorithm
of (Dwork et al., 2009; 2010) (ABOVETHRESHOLD, Algo-
rithm 4) instantiated with queries of the Mann-Whitney
test statistic V (k) in the center of a sliding window of
the most recent n points. With each new data point

k > n, the algorithm computes V (k) for database
X =

{
xk−n/2+1, . . . xk+n/2

}
, and compares this statis-

tic against a noisy threshold for significance. When this
statistic is sufficiently high, the online algorithm calls the
offline algorithm PNCPD on this window to estimate k∗.
For simplicity in indexing and to avoid confusion with the
notation of the previous section, we define U(k) = V (k)
when V (k) is taken over database X for each k > n/2.
Since the algorithm only checks for a change-point in the
middle of the window, we assume that k∗ ≥ n/2 to ensure
that the change-point does not occur too early to be detected.

We note that the offline subroutine PNCPD assumes that a
change point occurs sometime after the first γn and before
the last γn of the n data points on which it is called. We will
show that for an appropriate choice of T , ONLINEPNCPD
exceeds T̂ for some k such that k∗ ∈ [k, k+n/2]. Therefore,
by waiting for an additional γn data points, we ensure that
the assumptions of PNCPD are met as long as γ < 1/4.

Algorithm 2 Online Private Nonparametric Change-Point
Detector: ONLINEPNCPD(X,n, ε, γ, T )

Input: Data streamX , starting size n , privacy parameter
ε, constraint parameter γ, threshold T .
Let T̂ = T + Lap

(
8
εn

)
for each new data point xk+n/2, k > n/2 do

Let U(k) = 4
n2

∑k+n/2
j=k+1

∑k
i=k−n/2+1 I(xi > xj)

Sample Zk ∼ Lap( 16
εn )

if U(k) + Zk > T̂ then
Wait for γn new data points to arrive
Output PNCPD({xk−n

2 +1+γn, . . . xk+ n
2 +γn}, ε2 , γ)

Halt
end if

end for

Privacy follows immediately from the privacy guarantees of
ABOVETHRESHOLD and PNCPD.

Theorem 4. For arbitrary data stream X with starting size
n, privacy parameter ε > 0, and constraint γ ∈ (0, 1/2),
ONLINEPNCPD(X,n, ε, γ) is ε-differentially private.

To give accuracy bounds on the performance of ONLINEP-
NCPD, we need to bound several sources of error. First
we need to set the threshold T such that the algorithm will
not raise a false alarm before the change-point occurs (i.e.,
control the false positive rate) and that the algorithm will
not fail to raise an alarm on a window containing the true
change-point (i.e., control the false negative rate). This must
be done taking into account the additional error from the
private ABOVETHRESHOLD subroutine. Finally, we can
use the accuracy guarantees of PNCPD to show that con-
ditioned on calling a window that contains the true change-
point, we are likely to output an estimator k̂ that is close to
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the true change-point k∗.

Theorem 5. For data stream X with starting size n drawn
according to the change-point model with any distributions
P0, P1 with a = Prx∼P0,y∼P1

[x > y] > 1/2, constraint
γ ∈ (0, 1/4), change-point k∗ ≥ n/2, privacy parameter
ε > 0, and threshold T ∈ [TL, TU ] such that

TL =
1

2
+

√
2

n
log(

8(k∗ − n/2)

β
) +

32 log((k∗ − n/2)/β)

nε

TU = a−

√
2

n
log

(
8

β

)
− 32 log(8(k∗ − n/2)/β)

nε
,

we have that ONLINEPNCPD(X,n, ε, γ, T ) is (α, β)-
accurate for any β > 0 and

α = max

{
C1 ·

(
1

γ4(a− 1/2)2

)c
· log

n

β
,

C2 ·
(

1

εγ(a− 1/2)

)c
· log

n

β

}
,

for any constant c > 1 and some constants C1, C2 > 0
which depend only on c.

For any starting database size that is at least this large (only
n = Ω(( log(k∗/β)

ε(a−1/2) )2)), the acceptable region [TL, TU ] for
a threshold T will be non-empty. Moreover, the log k∗

dependence of TL and TU means that only a rough estimate
of the true change-point is necessary in practice to choose
an acceptable threshold T .

5. Empirical Results
We now report the results of an experiment on real data fol-
lowed by Monte Carlo experiments designed to validate the
theoretical results of previous sections. We only consider
our accuracy guarantees because differential privacy pro-
vides a worst-case guarantee for all hypothetical databases.
Our simulations consider both offline and online settings for
detecting a change in the mean of Gaussian distribution.

5.1. Results of Offline Algorithm with Real Data

First we illustrate the effectiveness of our offline algorithm
on real data by applying it to a window of stock price data
including a sudden drop in price, and we use it to determine
approximately when this change-point occurred. We use a
dataset from (Cao et al., 2018), which contains stock price
data over time, with prices collected every second over a
span of 5 hours on October 9, 2012. We identified by visual
inspection a window of n = 200 seconds (indexed 6900 to
7100 in the dataset, reindexed 0 to 200 here) that appears to
include a discrete change in distribution from higher mean
price to lower mean price. We then calculated the argmax of

the Mann-Whitney statistic V (k) to identify the most likely
change-point as time k̂ = 92, assuming the pre-change data
were drawn i.i.d. from one distribution and the post-change
data were drawn i.i.d. from a distribution with lower mean.
We used this estimate as the ground truth (k∗ = k̂ = 92)
in error analysis of our private offline algorithm. We ran
our PNCPD algorithm with γ = 0.1 on the selected dataset
103 times for each privacy value ε = 0.1, 0.5, 1. Figure 1(a)
plots the data in our selected window, and Figure 1(b) plots
the empirical accuracy β = Pr[|k̃ − k∗| > α] as a function
of α for our PNCPD simulations.
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Figure 1. Real data and accuracy results.

5.2. Offline Results with Synthetic Data

We now provide simulations of our algorithms using syn-
thetic datasets drawn according to the change-point model.
We use an initial distribution of N (0, 1) and post-change
distributions of the formN (µ1, 1), considering both a small
change µ1 = 1 and a large change µ1 = 5. We use n = 200
observations with true change k∗ = 50, 100, 150. This
process is repeated 103 times for each value of k∗ and µ1.
We consider the performance of our algorithm for γ = 0.1
and ε = 0.1, 1, 5,∞, where ε = ∞ corresponds to the
non-private problem, which serves as our baseline. The
empirical probabilities β = Pr[|k̃ − k∗| > α] as a function
of α are summarized in Appendix C in Figure 4.

As expected, the algorithm finds the change-point accurately,
with better performance when the distributional change is
larger or the ε value is larger. Performance is slightly dimin-
ished when the change-point is at the center of the window,
corresponding to k∗ = 100 in our experiments. This is due
to the scaling factor 1

k(n−k) in the expression of V (k) as
seen in Equation (1), which places relatively higher weight
on k that are close to the beginning and end of the window.

We also note that our simulations use slightly larger ε val-
ues and distributional changes than previous work on para-
metric private change-point detection, where the pre- and
post-change distributions are given explicitly as input to the
algorithm (Cummings et al., 2018).This is to be expected
since the nonparametric problem is information theoretically
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harder to solve.

Figure 2 illustrates these accuracy guarantees, showing the
values of the true test statistic V (k) and the noisy test statis-
tic V (k) + Zk for the same distributions. We still use
n = 200 observations and k∗ = 50, 100 and µ1 = 1, 5,
and run the process only once for each pair of parameter val-
ues. The smoother black line in the figures corresponds to
the noiseless test statistic V (k) and the more jagged orange
line corresponds to the noisy test statistic V (k) + Zk for
ε = 5. Figure 2 shows that in all cases, V (k) is minimized
at k∗. This is even more prominent when the distributional
change is larger (µ1 = 5), tolerating more noise. This il-
lustrates the structure of the proof of Theorem 3, and in
particular Equation (4), where we separate out the failure
probability of the algorithm into two terms: the probabil-
ity of bad data and the probability of bad draws from the
Laplace distribution.

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

k

V
(k
)

(a) k∗ = 50, µ1 = 5

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

k

V
(k
)

(b) k∗ = 100, µ1 = 5

0 50 100 150 200

0.
3

0.
4

0.
5

0.
6

k

V
(k
)

(c) k∗ = 50, µ1 = 1

0 50 100 150 200

0.
25

0.
30

0.
35

0.
40

0.
45

k

V
(k
)

(d) k∗ = 100, µ1 = 1

Figure 2. Value for statistics V (k) with (orange) and without
(black) Laplace noise with privacy parameter ε = 5 for varying
settings for the size change and location of a change point.

5.3. Online Results with Synthetic Data

We also perform simulations for our online private change-
point detection algorithm ONLINEPNCPD when the data
points arrive sequentially. We use an initial distribution of
N (5, 1) and post-change distribution of N (0, 1), where the
true change occurs at time k∗ = 5000. To help ensure that
the range of the appropriate threshold T in ONLINEPNCPD
is non-empty, we choose a larger window size n = 500, and
larger privacy parameter ε = 1, 5, 10,∞.

We choose the appropriate threshold T by setting a con-
straint that an algorithm must have positive and negative

false alarm rates both at most 0.1, which can be ensured by
setting β = 0.4. (Recall from the proof of Theorem 5 that
our false alarm rates are each β/4.)

Since we know k∗ and a, we can compute the theoreti-
cal upper and lower bounds on the threshold exactly for
the distributions used in our simulations using the expres-
sions given in the statement of Theorem 5. The resulting
lower bounds are TL = 1.28, 0.80, 0.74, 0.69 and the upper
bounds are TU = 0.16, 0.74, 0.81, 0.89 for ε = 1, 5, 10,∞,
respectively. Although the theoretical range of T is empty
for ε = 1, 5, our empirical results show that T = 0.8 is
sufficient to control both false alarm rates, as the theoretical
bounds are overly conservative. We choose T = 0.8 for all
ε = 1, 5, 10,∞. In practice when a and k∗ are unknown,
the analyst should set a to be the smallest interesting mag-
nitude of distributional change, and k∗ to be the analyst’s
estimate of the time of the change, and similarly compute
TL and TU using these estimates. We also note the ana-
lyst can also choose the lower and upper bounds of T via
numerical methods as in (Cummings et al., 2018).

We run our ONLINEPNCPD algorithm 103 times with
γ = 0.1 and privacy parameters ε = 1, 5, 10,∞. Fig-
ure 5 in Appendix C shows these simulation results. As
in the proof of Theorem 5, we can separate the error into
two possible sources within the algorithm: halting on an
incorrect window, and producing an incorrect estimate of
the change-point, even conditioned on halting on the correct
window. Figure 5(a) shows the error from both of these
sources, and Figure 5(b) shows the error from only the latter
source. These figures show that our algorithm works well
with privacy parameters ε = 5, 10,∞. For ε = 1, we can
control the overall error rate to be less than 0.4 as desired,
but not much lower. Figure 5(b) shows that this error mainly
comes from the failure to halt on the window that contains
the true change-point, because the error decreases dramati-
cally after conditioning on the algorithm halting on a correct
window that contains the true change-point.

6. Application: Drift Change Detection
In this section, we extend our consideration of the change-
point problem to the setting where data are not sampled i.i.d.
from fixed pre- and post-change distributions, but instead
are sampled from distributions that are changing smoothly
over time. In particular, we consider distributions with drift,
where the parameter of the distribution changes linearly with
time, and the rate of linear drift changes at the change-point.
Since the samples are not i.i.d., we consider differences
between successive pairs of samples in order to apply the
algorithms from the previous sections.

The drift change detection problem is parametrized by error
terms et independently sampled from a mean-zero distri-
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bution S, two drift terms ξ0 and ξ1, a drift change-point
t∗ ∈ [n], and a mean η associated with t∗. Independent
random variables X = {x1, . . . , xn} are said to be drawn
from the drift change detection model if we can write,

xt = µt + et,

for µt piecewise linear as follows:

µt =

{
η − (t∗ − t)ξ0 t ≤ t∗

η + (t− t∗)ξ1 t > t∗
.

Our goal is to estimate t∗ with the smallest possible error.

To apply our algorithms that require i.i.d. samples, we will
transform the sample X by considering differences of con-
secutive pairs of xi. These differences are i.i.d. with mean
ξ0 before t∗, and i.i.d. with mean ξ1 after t∗, and we can now
apply PNCPD to this instance of change-point detection.
For simplicity, we assume n is even and t∗ is odd.

Formally, define a new sample Y = {y1, . . . , yn/2} with
sample points yt = x2t − x2t−1, for t = 1, . . . n/2. Then,

yt =

{
ξ0 + e2t − e2t−1, for t = 1, . . . , t

∗−1
2 ,

ξ1 + e2t − e2t−1, for t = t∗+2
2 , . . . , N2 .

Note that random variables (e2t − e2t−1) are indepen-
dent and identically distributed. Thus yt are independent
and drawn from a fixed distribution before the change-
point, and from another distribution after the change.
We can apply the PNCPD algorithm and privately es-
timate the drift change-point t̂ as twice the output of
PNCPD(

{
y1, . . . , yn/2

}
, ε, γ). This estimation procedure

inherits the privacy and accuracy guarantees of Theorems 2
and 3.1

As a concrete example, consider points sampled from a
Gaussian distribution with mean µt = ξ0t+η0 and standard
deviation σ for t ≤ t∗, and from a Gaussian distribution
with mean µt = ξ1t+η1 and standard deviation σ for t > t∗.
Then yt = x2t − x2t−1 will be Gaussian with variance 2σ2

and mean ξ0 before the change-point and ξ1 after it. If
any of the parameters ξ0, ξ1, or σ are unknown, this would
require nonparametric change-point estimation.

Corollary 6. For dataX = {x1, . . . , xn} drawn according
to the drift change model with drift terms ξ0 > ξ1, constraint
γ ∈ (0, 1/2), drift change time t∗ ∈ (dγ2ne . . . d(1−

γ
2 )ne),

1This procedure finds a change-point in the sample Y , which
corresponds to a pair (x2t−1, x2t) such that one of them is the
estimated change point. Under our assumption that t∗ is odd, we
should output t̂ = 2t− 1. If t∗ is even, then the estimated change-
point may be off by one, and yt∗/2 is distributed differently than
other data points. However, since the PNCPD algorithm is differ-
entially private, its performance is guaranteed be in insensitive to a
single outlier in the database, so this fact will not affect the result
of the algorithm by too much.

and privacy parameter ε > 0, there exists an ε-differentially
private nonparametric change point estimator that is (α, β)-
accurate for any β > 0 and

α = max

{
C1 ·

(
1

γ4(a− 1/2)2

)c
· log

1

β
,

C2 ·
(

1

εγ(a− 1/2)

)c
· log

1

β

}
,

for any constant c > 1 and some constants C1, C2 > 0
depending only on c.

We note that this approach is not restricted solely to offline
linear drift detection. The same reduction in the online
setting would allow us to use ONLINEPNCPD to detect
drift changes online. Additionally, a similar approach could
be used to for other types of smoothly changing data, as
long as the smooth changes exhibited enough structure to
allow for reduction to the i.i.d. setting. For example, if
data were sampled of the form xt = f(µt + et) for any
one-to-one function f : R → R, we could define yt =
f−1(x2t)− f−1(x2t−1), and these yts would again be i.i.d..
This includes random variables of the form exp(µt + et),
log(µt + et), and arbitrary polynomials (µt + et)

k (where
even-degree polynomials must be restricted to, e.g., only
have positive range).

We use evaluate the performance of our algorithm for the
drift change detection problem on synthetic data with pa-
rameters η = 1, ξ0 = 0, ξ1 = 5, and et ∼i.i.d. N (0, 1). We
use n = 200 observations where the true drift change oc-
curs at time t∗ = 100, and repeat the process 103 times.
We modify the observations X to create a new sample
Y = {y1, . . . , yn/2}, and apply our PNCPD algorithm
to this new sample. Figure 3 plots the empirical accuracy
β = Pr[|t̃ − k∗| > α] as a function of α for γ = 0.1 and
ε = 0.1, 1, 5,∞, where ε =∞ is our non-private baseline.
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drift change detection.
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