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Abstract— The cooperative localization problem consists of a
group of networked agents aiming to find the true probability
density function(pdf) of their states. Unlike existing algorithms
such as Distributed Kalman filters or non-Bayesian social
learning, our algorithm restricts each agent’s estimates to a local
pdf on its own and its neighbors’ state variables. The agents
update these pdfs via local observations of their neighbors and
their shared messages. This partial state estimation problem
is formulated as a distributed constrained optimization in the
space of probability density functions. Consistent estimates
across the agents are enforced with a constraint requiring equal
estimated densities over common states in every communicating
agent pair. Stochastic mirror descent steps are then computed
to develop a novel cooperative estimation algorithm with
geometric averaging over the common marginals to enforce
the constraint. We specialize this algorithm to update rules
with Gaussian observation models and density estimates. The
Gaussian relative position observations are simulated and accu-
racy is compared to Belief propagation and full state consensus
algorithms in varying graph topology.

I. INTRODUCTION

Advances in sensor technology, data processing and com-

munication systems have enabled the deployment of mul-

tiple sensors onboard autonomous robots, connected in a

communication network [12], [26]. Distributed localization

of the sensors in a common reference frame based on

relative measurements is a critical capability needed in such

networks. Fast and accurate localization forms the basis

of services such as target tracking [1], [24], distributed

mapping [14], and task assignment [34]. Localization of

the robot team by a central entity is prohibitive in large

networks due to communication and processing costs, and

is fault-susceptible even in small ones. This motivates the

design of distributed localization algorithms that rely on

local measurements, storage, computation, communication to

estimate the sensor states in a global frame.

Related work: Distributed network estimation algorithms

include diffusion-based approaches [6], where agents share

both observations and estimates, and distributed Bayesian

approaches [15], where agents only share densities over

the state estimates. Bayesian techniques such as the sum-

product algorithm (belief propagation) [33], [31] and con-

sensus pooling [17], [16] can be decomposed into consensus

and likelihood update steps. Consensus algorithm estimates
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converge to true pdf when each agent’s prior is (geomet-

rically) averaged [17], [13] with one-hop neighbors before

applying the usual Bayesian measurement update. Gaussian

distributions versions of the consensus [7], [1] and belief

propagation [9], [4] algorithms have been designed and also

shown to converge. Distributed Bayesian and consensus pool-

ing algorithms require maintaining and exchanging estimates

over entire network’s state, which is not feasible in large

networks. On the other hand, the belief propagation updates

agents’ own state estimates based on their edge likelihoods

and neighbor marginals. When a factor graph contains cycles,

usually present in localization problems, belief propagation

does not guarantee convergence. For reducing the stored

and communicated data across the network, our previous

work [19] details likelihood averaging algorithm for source

localization in sensor-specific subsets in discrete setting.

Network localization may be performed with sensors such

as radar, infrared, acoustic and cameras [2], [11], [20],

modeled via range and bearing models. Several parametric

and non-parametric algorithms have been applied to location

tracking in range [28], [21] and bearing models [32]. The

cooperative approaches require agents to share all estimated

sensor positions in the network. In localization problems

using relative measurements, the notion of network identi-

fiability determines the existence of a unique solution given

the choice of agent observation models. With relative po-

sition measurements, the estimated positions are translation

invariant, which necessitates at least one anchor node with

known position to remove the translation ambiguity [1].

Localization with range-only measurements can be solved

up to an isometry [8], [29], while bearing-only localization

requires a rigid graph for a unique solution [30]. In this work,

we assume that network identifiability holds for the available

observation models.

Contributions: This work proposes novel likelihood av-

eraging rules for distributed estimation that enable learning

agent densities defined over local neighbor states, exploiting

the structure in localization problems with relative (edge)

measurements. We derive the proposed algorithm using dis-

tributed stochastic mirror descent over the space of pdfs

subject to a constraint that the agent pdfs agree over the

intersections of their local neighborhoods. The proposed

algorithm significantly reduces the storage and communi-

cation costs compared to consensus-pooling and distributed

Bayesian algorithms. We specialize the general formulation

to Gaussian estimates and observation models and show

that the algorithm converges in sparse graphs with relative

position measurements where Belief propagation fails.



II. PROBLEM FORMULATION

We consider a cooperative localization problem over a

sensor network with unknown states, where each agent/n-

ode receives relative observations from its neighbors and

estimates its state in a global reference frame [3]. Denote

the state vectors of the n agents as xi ∈ X ⊆ R
d, i ∈

{1, . . . , n}, where X is bounded. The agents communicate

via an undirected and connected graph G with node set V
and edge set E . The neighbors of agent i, including itself,

are denoted Vi. The common neighbors of agents i and j
are Vij , Vi ∩ Vj . We represent the communication graph

via an adjacency matrix A with entries Aij = 0, if agents i
and j are not connected, and Aij > 0 for existing edges and

self-loops. Every such matrix A representing a connected

network can be made doubly stochastic [27].

Each agent’s relative measurements with respect

to its neighbors at each time t are represented

as zij,t ∈ R
ℓ and assumed to be a sample of the

observation model qi(zij,t|x
∗
i ,x

∗
j ) ∈ Fℓ. The pdf

space Fℓ over a variable of ℓ-dimensions is described as,

Fℓ =

{

g ∈ L2(Rℓ) s.t.

∫

X
g(x)dx = 1, g(x) ≥ 0, ∀x ∈ R

ℓ

}

(1)

.
The vector of all such observations zij,t at agent i is

given as variable zi,t, and variable z1:n,t represents

the collection of zi,t over all n agents. Similarly, the

vector x1:n ∈ R
nd concatenates (x1, . . . ,xn). Combining

pairwise observations at an agent, the observation model

for agent i is qi(zi,t|yi) =
∏

j∈Vi
qi(zij,t|xi,xj). For

agent i, the vector yi ∈ R
nid includes neighbor node

states {xi, {xj}j∈Vi
}. The observation model for all

agents is q(z1:n,t|x1:n) ∈ Fnℓ is written as a product

in observation space
∏

i∈V qi(zi,t|yi). These observation

models may represent range, bearing, position and any other

combinations. The true data generating model are defined

with true locations y
∗
i ,x

∗
1:n.

We make the following assumptions to further define

our problem: (a) The communication network is connected

and the graph adjacency matrix A satisfies A1 = 1, A =
A⊤, and diagonal entries Aii > 0 , ∀i ∈ {1, . . . , n},

where 1 is a vector of ones. (b) Each agent i estimates a

pdf pi(yi) over the self and neighbor state variables. (c)

Relative measurements are conditionally independent and

conditioned on the neighbor nodes following the observation

model qi(zi,t|{xj}j∈Vi
). (d) Relative measurements {zi,t}

at agent i are independent across time.

Problem 1: The network of agents aims at collectively

learning the pdf p̄(x1:n) ∈ Fnd over the unknown agent

positions x1:n using edge measurements z1:n,t collected at

each time t.

min
p̄

{

E
(x1:n)∼p̄

[f(x1:n)]

}

, (2)

where f(x1:n) := DΨ(q(·|x
∗
1:n)|| q(·|x1:n)). For den-

sity functions q(·|x∗
1:n), q(·|x1:n) ∈ Fnℓ, the KL-

divergence is defined as DΨ(q(·|x
∗
1:n)|| q(·|x1:n)) =

∫

Rnℓ q(·|x
∗
1:n) log(q(·|x

∗
1:n)/ q(·|x1:n)).

The optimization presented here follows stochastic pro-

gramming [25] with the caveat that the pdf q(z1:n,t) ,

q(z1:n,t|x
∗
1:n) is unknown, but sampled at each time

step. We can express the minimization problem defined

for finding p̄(x1:n) ∈ Fnd in terms of sampling av-

erages. We introduce inner product notation 〈p1, p2〉 =
∫

Ω
p1p2dω, for p1, p2 ∈ Fnd.

min
p̄∈Fnd

{

E
x1:n∼p̄

[DΨ(q(z1:n,t)|| q(z1:n,t|x1:n))]

}

= min
p̄∈Fnd

{

E
x1:n∼p̄

[−〈q(z1:n,t), log(q(z1:n,t|x1:n))〉]

}

(3)

= min
p̄∈Fnd

{

E
z1:n,t∼q(z1:n,t)

E
x1:n∼p̄

[− log(q(z1:n,t|x1:n))]

}

(Fubini-Tonelli theorem)

=min
p̄

{

E
z1:n,t∼q(z1:n,t)

F [p̄, z1:n,t]

}

,

F [p̄; z1:n,t] = E
x1:n∼p̄

[− log(q(z1:n,t|x1:n))]. (4)

where the first equality after (3), the entropy term
∫
q log(q)

is independent of x1:n. The expectation function in (4)

can be approximated in terms of sampled data z1:n,t in

objective F [p̄; z1:n,t] at different time steps as,

min
p̄∈F

{

1

T

T∑

t=1

F [p̄; z1:n,t]

}

. (5)

III. CONVEX FUNCTIONALS AND DERIVATIVES

This section introduces the stochastic mirror descent

(SMD) algorithm and its application in function spaces.

A. A primer on the Stochastic Mirror Descent algorithm

The SMD algorithm [5], [18] generalizes stochastic gra-

dient descent (SGD) for convex optimization problems via a

divergence operator. Let g(w;v), with w ∈ R
n, v ∈ R

m, be

a real-valued function which is convex in its first argument.

Consider the stochastic optimization problem:

min
w

E[g(w;v)] ≈
1

T

T∑

t=1

g(w;vt), (6)

where {vt} is a random sequence available online. As T →
∞, computating the gradient of the objective function may be

infeasible. Instead, the SMD algorithm employs the gradient

∇g(w;vt) at time t to perform iterative optimization:

wt+1 = argmin
w

{

〈∇g(wt,vt),w〉+
1

αt

Dφ(w,wt)

}

, (7)

where 〈·, ·〉 is the inner product on R
n and Dφ(w,wt) is a

Bregman divergence between w and wt.

Definition 1: Consider a continuously differentiable and

strictly convex function φ : X → R defined on a convex

set X . The Bregman divergence associated with φ for points

w, w̄ ∈ X is Dφ(w, w̄) := φ(w)−φ(w̄)−〈∇φ(w̄),w−w̄〉.
Choosing φ(w) = ‖w‖22, makes Dφ the squared Eu-

clidean distance and (7) becomes the standard SGD algo-

rithm. The sequence {αt}t≥1 should be non-summable but



square-summable to ensure convergence. The convergence

rate for minimizing convex functions is O( 1√
T
), indepen-

dently of the problem dimension [18].

B. Derivatives and Bregman divergence in functional space

The problem considered in this paper (5) is defined over

the function space Fnd of probability density functions p̄.

Applying SMD to (5) requires generalizing the terms in (7).

Consider functions g1, g2 ∈ L2(Xn). The standard inner

product on L2(Xn) is 〈g1, g2〉 :=
∫
g1g2dµ, where µ is the

Lebesgue measure on Xn. A subset A of L2(Xn) is convex

if and only if αg1 + (1 − α)g2 ∈ A for any g1, g2 ∈ A
and α ∈ [0, 1]. The set of pdfs Fnd in (1) is a closed convex

subset of L2(Xn). To define a divergence operator over Fnd,

we consider the entropy functional Ψ[g] =
∫
g log(g) for

g ∈ Fnd. Entropy is continuously differentiable and strictly

convex as (i) Fnd is convex and (ii) x log(x) in x is strictly

convex over the positive real numbers, and the integration

operator is linear, so it holds that Ψ[αg1 + (1 − α)g2] <
αΨ[g1] + (1 − α)Ψ[g2] for all g1, g2 ∈ Fnd, g1 6= g2 a.e.

The Bregman divergence associated with Ψ is the Kullback-

Leibler divergence DΨ(g1, g2) :=
∫
g1 log(g1/g2) [10].

To finish the extension of SMD to Fnd, we need a defini-

tion of functional derivative. To evaluate how a functional

F changes in the vicinity of g ∈ L2(Xn), we consider

variations of g defined as g + ǫη, where η ∈ L2(Xn) and

ǫ ≥ 0 is a small scalar. For fixed g, η, F [g+ǫη] is a function

of ǫ and limits can be evaluated in the usual sense.

Definition 2: A functional F : L2(Xn) → R is Gateaux

differentiable at g ∈ L2(Xn), if

F ′[g; η] := lim
ǫ→0+

F [g + ǫη]− F [g]

ǫ
. (8)

exists for any η ∈ L2(Xn) and there is an element δF
δg

∈

L2(Xn) such that
∫

δF
δg

η = F ′[g; η].
Proposition 1: For p, g ∈ Fnd, the Gateaux derivative of:

1) L[p] = 〈p, g〉 is δL
δp

= g,

2) Ψ[p] = 〈p, log(p)〉 is δΨ
δp

= 1 + log p.

3) DΨ(p||g) = 〈p, log(p/g)〉 is δDΨ

δp
= 1 + log(p/g).

Proof: The derivative of L[p] follows by the definition.

The directional derivative of Ψ[p] along η ∈ F is,

Ψ′[g; η] = lim
ǫ→0+

1

ǫ

(∫

(g + ǫη) log(g + ǫη)−

∫

g log g

)

=

∫

lim
ǫ→0+

1

ǫ
((g + ǫη) log(g + ǫη)− g log g) =

∫

η log(g) + η,

where we use the dominated convergence theorem [23] to ex-

change the limit with the integral (as ǫ can be taken to be 0 ≤
ǫ ≤ 1, we have that (f+ǫη) log(f+ǫη) ≤ (f+η) log(f+η),
which is an integrable function). The derivations for linear

and entropy functionals may be summed to obtain the KL-

divergence derivative.

IV. STOCHASTIC MIRROR DESCENT OVER THE

PROBABILITY SIMPLEX

This section derives the existing distributed algorithms for

extensions to marginal space updates. We apply the SMD

algorithm to an optimization problem over the probability

simplex F in the form specified in (3). We start with deriving

the additive structure of F [p; z1:n,t] =
∑n

i=1 Fi[p; zi,t],
where Fi[p; z] := −〈log qi(z|·), p(·)〉 and exploit this to

obtain a distributed SMD formulation.

A. Centralized SMD

With {pt}t≥0 as iterates of SMD algorithm and DΨ(p||pt)
as the Bregman divergence between p, pt ∈ Fnd

(c.f. Sec. III), the SMD algorithm applied to Eqn. (5) is:

pt+1 = argmin
p∈F

{〈
δF

δp
[pt, z1:n,t], p

〉

+
1

αt

DΨ(p||pt)

}

. (9)

Proposition 2: The optimization problem in (9) has a

closed-form solution:

pt+1(·) ∝ exp

(

−αt

δF

δp
[pt(·); z1:n,t]

)

pt(·). (10)

Proof: Problem (9) is an equality-constrained opti-

mization over the pdf space Fnd. To take the constraint
∫
p = 〈1, p〉 = 1 into account, we consider the Lagrangian:

L(p, λ) =

〈
δF

δp
[pt, z1:n,t], p

〉

+
1

αt

DΨ(p||pt) + λ (〈1, p〉 − 1),

where λ is a multiplier. The variation of L w.r.t. p is:

δL

δp
=

δF

δp
[pt, z1:n,t] +

1

αt

(1 + log p− log pt) + λ.

Setting the variation to zero and solving for p leads to:

p(·) = e−1−αtλ−αt
δF
δp

[pt(·),z1:n,t]pt(·).

The value of λ can be obtained from the constraint:

1 =

∫

p(·) = e−1−αtλ

∫

e−αt
δF
δp

(pt(·),z1:n,t)pt(·)
︸ ︷︷ ︸

Z

,

showing that p(·) = 1
Z
exp

(

−αt
δF
δp

(pt(·), z1:n,t)
)

pt(·).

For our specific choice of F [p, z1:n,t],

δF

δp
[pt(·), z1:n,t] = −

δ

δp
〈log q(z1:n,t|·), p(·)〉

∣
∣
∣
∣
p(·)=pt(·)

= − log q(z1:n,t| ·). (11)

Applying Prop. 2 leads to the following SMD algorithm over

the probability simplex:

pt+1(x1:n) ∝ q(z1:n,t|x1:n)
αtpt(x1:n). (12)

B. Distributed SMD

Instead of solving the optimization problem (5) cen-

trally, we observe the additive structure of F to obtain

a distributed formulation, in which agents keep local es-

timates pi,t ∈ Fnd of the state pdf. The key idea was

proposed in [16] based on the observation that we can

introduce new agent-specific variables p̄i = p̄ in (2), along

with a constraint that their values agree, p̄i = p̄j for all

i, j ∈ V . Using the nodal independence of zi in obser-

vation models log(q(z1:n|x1:n)) =
∑n

i=1 log(qi(zi|x1:n))
and data generating densities q(z1:n,t) =

∏

i∈V qi(zi,t)



on Eqn. 4, the distributed objective satisfies F [p̄, z1:n] =
∑n

i=1 Fi[p̄i, zi,t] is,

Fi[p̄i, zi,t] = E
x1:n∼p̄i

[− log(qi(zi,t|x1:n))]. (13)

The agent-wise optimization yields the same results as cen-

tralized upon enforcing the constraint p̄i = p̄j , ∀i, j ∈ V .

The SMD algorithm can now be applied locally at each

agent i with iterates pi,t(x1:n). To eventually enforce the

agreement constraint, p̄i = p̄j , [16] uses geometric averaging

with stochastic weights Aij , depending on the network

structure, of the pdfs pi,t:

pi,t(·) ∝
∏

j∈Vi

(pj,t(·))
Aij .

Thus, the local SMD problem becomes:

min
p∈Fnd

{

−〈log qi(zi,t|·), p〉+
1

αi,t

DKL

(
p,
∏

j∈Vi

p
Aij

j,t

)
}

, (14)

leading to the distributed update rule:

pi,t+1(x1:n) ∝ qi(zi,t|x1:n)
αi,t

∏

j∈Vi

pj,t(x1:n)
Aij . (15)

The convergence of the algorithm in (15) has been shown

in [16]. Applying (15) to the localization problem, leads

to a distributed algorithm but the amount of information

maintained and exchanged by the agents is still nd di-

mensional because pi,t ∈ Fnd. This significant memory

and communication requirement is counter-intuitive because

agents are interested in estimating only their own states

xi ∈ R
d and do not necessarily care about the states of

the entire network. Our main contribution in the following

section allows pdfs defined only over the local neighborhood

of i to be maintained and exchanged.

V. PROPOSED MARGINAL CONSENSUS ESTIMATION

ALGORITHM IN PARTIAL SPACES

For localization networks with relative measurements, the

pdfs are defined on the partial space of local neighborhood

states yi. This section derives the objective function based

on observation models in yi, propose an algorithm and

specialize it for Gaussian densities. We write the centralized

objective in terms of observation models pi(·|yi), and follow

the steps in distributed SMD section to decompose the

function along agent i’s observations zi,t. We start with

showing that the centralized estimation of node states in

equations (2) to (3) can be distributed along agents in partial

neighbor state space given by yi.

min
p̄

E
x1:n∼p̄

[DΨ(q(z1:n,t)|| q(z1:n,t|yi))]

=
∑

i∈V
min
p̄i

E
yi∼p̄i

[DΨ(qi(zi,t)|| qi(zi,t|yi)].

The decomposition leads to a distributed version of (3)

by introducing pdfs’ pi(yi) along with constraints ensuring

agreement on common states estimated by any two agents.

min
p̄

F [p̄; zt] =
∑

i∈V
min
p̄i

E
yi∼p̄i

[−〈qi(zi,t), log qi(zi,t|yi)〉],

further leading to the approximation,

min
p̄

F [p̄; zt] =
∑

i∈V
min
p̄i

E
yi∼p̄i

E
zi,t∼qi

[− log(qi(zi,t|yi))]

=
∑

i∈V
min
p̄i

T∑

t=1

E
yi∼p̄i

[− log(qi(zi,t|yi))].

The distributed objective function then becomes,

Fi[p̄i; zi,t] = E
yi∼p̄i

[− log(qi(zi,t|yi))]. (16)

The SMD algorithm locally learns pdf over local neighbor

variables pi,t(yi) with likelihood update as the Gateaux

derivative δ
δp̄i

Fi[p̄i; zi,t] = − log(qi(zi,t|yi)), the same as

presented in (15). The agent wise optimization matches the

centralized estimates under the constraints p̄i =
∫

X\Xi
p̄,

which depend on the unknown global p̄. Therefore, the

constraints are instead represented as agreement in marginal

agent pdfs p̄i, ∀i ∈ V over a common space,
∫

p̄idxk|k∈Vi\Vij
=

∫

p̄jdxk|k∈Vj\Vij
, ∀(i, j) ∈ E .

Since every agent’s state is estimated by its one and two-hop

neighbors, all marginals of the estimated pdfs on any com-

mon set of variables are equal. These constraints requiring

marginal agreement on edges are enforced with geometric

averaging on self-conditional and neighbor-marginals prod-

uct p̃ji,t as detailed below. Each agent messages marginal

density estimates pji,t over common states to neighbors.

pi,t ∝
∏

j∈Vi

(p̃ji,t)
Aij ,

p̃ji,t = pi,t({xk}k∈Vi\Vij
|{xk}k∈Vij

)pji,t({xk}k∈Vij
),

pji,t({xk}k∈Vij
) =

∫

pj,t({xk}k∈Vj
)dxk|k∈Vj\Vij

.

Our Algorithm 1 thus consists of the following steps: edge

merging, geometric pooling, likelihood update and mes-

sage generation performed by each agent at each time step.

Data: estimate pi,t(yi), weights {Aij}j∈Vi , neighbor
messages pji,t({xk}k∈Vij

), measurement zi,t,
measurement model qi(zi,t|yi)

// Combine neighbor estimates.

for j ∈ Vi do
Product of j’s marginal and i’s conditional:
p̃ji,t = pi,t({xk}k∈Vi\Vij

|{xk}k∈Vij
)pji,t({xk}k∈Vij

);

Weighted average: p̃i,t(yi) :=
∏

j∈Vi
p̃ji,t(yi)

Aij ;

// Bayesian update.

pi,t+1(yi) = qi(zi,t+1|yi)p̃i,t(yi);
// Generate neighbor messages.

for j ∈ Vi do
Find common neighbor marginal
pij,t+1({xk}k∈Vij

) =
∫

V\Vij
pi,t+1(yi);

Algorithm 1: Marginal density averaging at agent i



In comparison to distributed algorithm in Section IV-

B, this algorithm reduces the size of the communicated

messages from a density over all the network states in V to

a partial common set Vij between sensors (i, j). Whereas,

on computational front, there is an added step for finding the

conditional density at each node. This trade-off depends on

the number of connections in the sensor network.

Gaussian marginal density averaging

This section specializes our proposed Algorithm 1 to

Gaussian marginal updates. We present the Gaussian estimate

equivalent to the four algorithm steps in the following

lemmas. Here, we denote a Gaussian random variable with

mean µ and information matrix as Ω N (µ,Ω−1), and its

associated density function as φ(·|µ,Ω−1).

Lemma 1 (Neighbor messages): The marginal density of

the Gaussian pdf φ

(

[

x1

x2

]

∣

∣

∣

∣

∣

[

µ1

µ2

]

,

[

Ω11 Ω12

Ω21 Ω22

]−1
)

with re-

spect to x1 is given as,

φ(x1

∣
∣
∣µ1,

(
Ω11 − Ω12Ω

−1
22 Ω21

)−1
).

Lemma 2 (Pre-edge merging): Let (X1, X2) be random

vectors represented by a joint Gaussian distribution with

mean

[
µ1

µ2

]

and information matrix Ω =

[
Ω11 Ω12

Ω21 Ω22

]

. The

pdf associated with conditional distribution is,

(X1|X2 = x2) ∼ N
(
µ1 − Ω−1

11 Ω12(x2 − µ2),Ω
−1
11

)
.

Proposition 3 (Edge merging): Let X1, X2 be random

vectors with a joint Gaussian distribution. Assume that

X1 conditioned on X2 = x2 is distributed as N (µ1 −
Ω−1

11 Ω12(x2 − µ2),Ω
−1
11 ) and that the marginal distribution

of X2 is N (µ̄2, Ω̄
−1
22 ). Then, X1 and X2 joint distribution is

N

(

[

µ1 +Ω−1

11 Ω12(µ2 − µ̄2)
µ̄2

]

,

[

Ω11 Ω12

Ω⊤
12 Ω̄22 +Ω⊤

12Ω
−1

11 Ω12

]−1
)

.

Lemma 3 (Geometric averaging): Let Ωw =
∑n

i=1 AiΩi.

The weighted geometric product of Gaussian density func-

tions φ(x|µi,Ω
−1
i ), ∀i ∈ {1, . . . , n} with corresponding

weights Ai is given as,
n∏

i=1

φ(x|µi,Ω
−1
i )Ai = φ

(

x

∣
∣
∣Ω−1

w

n∑

i=1

AiΩiµi,Ω
−1
w

)

.

Lemma 4 (Likelihood update): Let the likelihood density

be described as qi(zi,t|yi) = φ (zi,t|Hiyi, Vi). Then the

posterior Gaussian density obtained as likelihood prior prod-

uct φ
(
zi,t|Hiyi, V

−1
i

)
φ
(
yi;µ,Ω

−1
i

)
is

N

(

(

H
⊤
i ViHi +Ωi

)−1

(H⊤
i Vizi,t +Ωiµi),

(

H
⊤
i ViHi +Ωi

)−1
)

These results lead to the closed-form implementation as

described in Algorithm 1.

VI. SIMULATIONS

A. Cooperative localization with relative measurements

Consider a network of 10 nodes with unknown loca-

tions x = [xi]i∈V ,xi ∈ R
2, which perform cooperative

localization via noisy relative measurements. To guarantee

network identifiability, and since the states lie in a two-

dimensional space, we assume there is one unique anchor

node with a known position in the network. Each node i
obtains relative measurements from node j of the form zij =
(xj−xi)+ǫ, ǫ ∼ N (0, Vi), Vi = Id. The collected measure-

ments at node i at time t are given as zi,t = [zij,t]j∈Vi
.

1) Full state estimation (FS): The Gaussian form of the

distributed SMD for the state vector x = [x⊤
1 . . .x⊤

n ]
⊤ and

observation model qi(x) = N (Hix, Vi) for each i ∈ V , is

given in [1]. The update rules employ the mean µi,t and

information matrix Ωi,t(= Σ−1
i,t ) for each agent as

Ωi,t =
∑

j∈Vi

Ωj,t−1; µi,t = Ω−1
i,t (

∑

j∈Vi

Ωj,t−1µj,t−1).

2) Belief propagation (BP): This long-established, dis-

tributed algorithm aims to compute a joint probability

distribution of the form
∏n

i=1 pi(xi), where pi(xi) (with
∑n

i=1 pi(x) = 1) refers to the pdf representing the agent

estimate of xi in the network. In absence of any loops in the

communication network, BP [22] has been shown to estimate

the correct marginals at each node. BP implements message

generation and pooling steps as follows

mt,ij(xi) =
∑

xi

qi(zij |xi,xj)pi,t(xi)
∏

k∈Vj\i
mt−1,kj(xi),

pi,t(xi) =
pi,t−1(xi)

∏

k∈Vi
mki(xi)

∑n
j=1 pj,t−1(xj)

∏

k∈Vj
mkj(xj)

.

BP incurs into a significantly larger number of messages

passed between agents as compared to the method presented

here.
A Gaussian BP algorithm is described in [4] for agents

with observation model zi = H
[
xi xj

]⊤
+ ǫ, ǫ ∼

N (0d×1,Ω
z
i ), with H =

[
−1, 1

]
⊗Id, where ⊗ is a kronecker

product. The update rule for each agent is given as

Ωjj,t =
∑

i∈Vj

Ωij,t−1; µjj,t = Ω−1

jj,t





∑

i∈Vj

Ωij,t−1µij,t−1



 ,

which depends on the messages sent to j from i ∈ Vj :

Ωij,t =

[
Ωii,t − Ωji,t−1 0

0 0

]

+H⊤
i Ωz

iHi,

µij,t = Ω−1
ij,t

([∑

k∈{Vi\j} Ωki,t−1µki,t−1

0

]

+H⊤
i Ωz

i zij,t

)

.

3) Algorithm comparison: We compare our algorithm for

Gaussian estimates with the previous ones. Figure 1 presents

the performance of the three algorithms for a ring network.

As expected, the FS estimation performs better than our

algorithm based on partial updates, which outperforms BP.

In fact BP fails to converge in a reasonable amount of time,
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APPENDIX

PROOF OF PROPOSITION 3

Let X1, X2 be random vectors with a joint Gaussian

distribution. Assume that X1 conditioned on X2 = x2 is

distributed as N (µ1 −Ω−1
11 Ω12(x2 − µ2),Ω

−1
11 ) and that the

marginal distribution of X2 is N (µ̄2, Ω̄
−1
22 ).

Using the reparametrization trick, X1|X2 = x2 can be

expressed as the sum of a deterministic “mean” component

and a zero-mean random variable Y ∼ N (0,Ω−1
11 ):

X1 = Ω−1
11 Ω12x2 + µ1 +Ω−1

11 Ω12µ2 + Y

Let us now compute the product of the condi-

tional p1(x1|x2) with the marginal p2(x2),

E[x2] = µ̄2,

E[x1] = Ex2
[E[x1|x2]]

=

∫

x2

p2(x2)
(
Ω−1

11 Ω12(µ2 − x2) + µ1

)
dx2

= Ω−1
11 Ω12(µ2 − µ̄2) + µ1.

We can now compute the covariance matrix of the new
distribution. We know that E[(x2 − µ̄2)(x2 − µ̄2)

⊤] = Ω̄−1
22 .

The random variable Y is independent of X2 by definition,
thus we get,

E[(x1 − E[x1])(x1 − E[x1])
⊤]

= Ω−1

11 Ω12E[(x2 − µ̄2)(x2 − µ̄2)
⊤]Ω⊤

12Ω
−1

11 + E[ηη⊤]

= Ω−1

11 Ω12Ω̄
−1

22 Ω
⊤
12Ω

−1

11 +Ω−1

11 ,

E[(x1 − E[x1])(x2 − E[x2])
⊤]

= E[(x1 − (Ω−1

11 Ω12(µ2 − x2) + µ1))(x2 − µ̄2)
⊤]

= E[−(x1 − µ1)(x2 − µ̄2)
⊤ − Ω−1

11 Ω12(x2 − µ2)(x2 − µ̄2)
⊤]

= 0− Ω−1

11 Ω12Ω̄
−1

22 ,

E[(x2 − E[x2])(x1 − E[x1])
⊤] = −Ω̄−1

22 Ω
⊤
12Ω

−1

11 ,

E[(x2 − E[x2])(x2 − E[x2])
⊤] = Ω̄−1

22 .

Using the following block matrix inversion formula on the
covariance matrix blocks,
[

A B
C D

]−1

=

[

Ω−1

11 Ω12Ω̄
−1

22 Ω
⊤
12Ω

−1

11 +Ω−1

11 −Ω−1

11 Ω12Ω̄
−1

22

−Ω̄−1

22 Ω
⊤
12Ω

−1

11 Ω̄−1

22

]−1

we can obtain the updated normal distribution as

N

(

[

Ω−1

11 Ω12(µ2 − µ̄2) + µ1

µ̄2

]

,

[

Ω11 Ω12

Ω⊤
12 Ω̄22 +Ω⊤

12Ω
−1

11 Ω12

]−1
)


