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Abstract— We consider the problem of controlling a large
fleet of drones to deliver packages simultaneously across broad
urban areas. To conserve energy, drones hop between public
transit vehicles (e.g., buses and trams). We design a com-
prehensive algorithmic framework that strives to minimize
the maximum time to complete any delivery. We address the
multifaceted complexity of the problem through a two-layer ap-
proach. First, the upper layer assigns drones to package delivery
sequences with a near-optimal polynomial-time task allocation
algorithm. Then, the lower layer executes the allocation by
periodically routing the fleet over the transit network while
employing efficient bounded-suboptimal multi-agent pathfind-
ing techniques tailored to our setting. Experiments demonstrate
the efficiency of our approach on settings with up to 200 drones,
5000 packages, and transit networks with up to 8000 stops
in San Francisco and Washington DC. Our results show that
the framework computes solutions within a few seconds (up to
2 minutes at most) on commodity hardware, and that drones
travel up to 450% of their flight range with public transit.

I. INTRODUCTION

Rapidly growing e-commerce demands have greatly
strained dense urban communities by increasing delivery
truck traffic and slowing operations and impacting travel
times for public and private vehicles [23, 25]. Further
congestion is being induced by newer services relying on
ride-sharing vehicles. There is a clear need to redesign
the current method of package distribution in cities [28].
The agility and aerial reach of drones, the flexibility and
ease of establishing drone networks, and recent advances in
drone capabilities make them highly promising for logistics
networks [27]. However, drones have limited travel range and
carrying capacity [14, 43]. On the other hand, ground-based
transit networks have less flexibility but greater coverage and
throughput. By combining the strengths of both, we can
achieve significant commercial benefits and social impact
(e.g., reducing ground congestion and delivering essentials).

We address the problem of operating a large number of
drones to deliver multiple packages simultaneously in an
area. The drones can use one or more vehicles in a public-
transit network as modes of transportation, thereby saving
their limited battery energy stored onboard and increasing
their effective travel range. We are required to decide which
deliveries each drone should make and in what order, which
modes of transit to use, and for what duration (Figure 1).

Our approach must contend with the multiple significant
challenges of our problem. It must plan over large time-
dependent transit networks, while accounting for energy
constraints that limit the drones’ flight ranges. It must avoid
inter-drone conflicts, such as where more than one drone
attempts to board the same vehicle at the same time, or when
the maximum carrying capacity of a vehicle is exceeded.
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Fig. 1: Our multi-drone delivery framework plans for drones to piggyback
on public transit vehicles while delivering packages from depots to the
requested locations. Our framework is scalable and efficient, and minimizes
the amount of time for any individual delivery.

We seek not just feasible multi-agent plans but high-quality
solutions in terms of a cumulative objective over all drones,
the makespan, i.e., the maximum individual delivery time for
any drone. Additionally, our approach must also solve the
task allocation problem of determining which drones deliver
which packages, and from which distribution centers.

A. Related work

Some individual aspects of our problem have already been
studied. Choudhury et al. [10] investigated the single-agent
setting of controlling a drone to use multiple modes of
transit en route to its destination. Recent work has considered
pairing a drone with a delivery truck, which does not
exploit public transit [2, 18, 34]. The multi-agent issues of
task allocation and inter-agent conflicts were not addressed
either. Our problem is closely related to routing a fleet
of autonomous vehicles providing mobility-on-demand ser-
vices [26, 42, 45]. Specifically, the task is to compute routes
for the vehicles (both customer-carrying and empty) so that
travel demand is fulfilled and operational cost is minimized.
In particular, recent works study the combination of such
service with public transit, where passengers can use several
modes of transportation in the same trip [38, 48]. However,
such works abstract away inter-agent constraints or dynamics
and are not suited for autonomous pathfinding. The task-
allocation setting we consider in our problem can be viewed
as an instance of the vehicle routing problem [8, 35, 44],
variants of which are typically solved by mixed integer linear
programming (MILP) formulations that scale poorly, or by
heuristics without optimality guarantees.

We must contend with the challenges of planning for mul-
tiple agents. Accordingly, the second layer of our approach
is a multi-agent path finding (MAPF) problem [16, 46].
Since the drones are on the same team, we have a cen-
tralized or cooperative pathfinding setting [40]. The MAPF
problem is NP-hard to solve optimally [47]. A number
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of efficient solvers have been developed that work well
in practice [17]. The MAPF formulation and algorithms
have been extended to several relevant scenarios such as
lifelong pickup-and-delivery [31] and joint task assignment
and pathfinding [24, 30], though for different task settings
and constraints than ours. Also, a MAPF formulation was
applied for UAV traffic management in cities [22]. However,
none of the approaches considered pathfinding over large
time-dependent transit networks. We use models, algorithms
and techniques from transportation planning [6, 13, 37].

B. Statement of contributions

We present a comprehensive algorithmic framework for
large-scale multi-drone delivery in synergy with a ground
transit network. Our approach strives to minimize the max-
imum time to complete any delivery. We decompose the
highly challenging problem and solve it stage-wise with a
two-layer approach. First, the upper layer assigns drones to
package-delivery sequences with a task allocation algorithm.
Then, the lower layer executes the allocation by periodically
routing the fleet over the transit network.

Algorithmically, we develop a new delivery sequence allo-
cation method for the upper layer that obtains a near-optimal
solution in polynomial runtime. For the lower layer, we ex-
tend techniques for multi-agent path finding that account for
time-dependent transit networks and agent energy constraints
to perform multi-drone routing. Experimentally, we present
results supporting the efficiency of our approach on settings
with up to 200 drones, 5000 packages, and transit networks
of up to 8000 stops in San Francisco and the Washington
DC area. Our framework can compute solutions within a
few seconds (up to 2 minutes for the largest settings) on
commodity hardware, and in our problem scenarios, drones
can travel up to 450% of their flight range using transit.

The following is the paper structure. We present an overall
description of the two-layer approach in Section II, and
then elaborate on each layer in Sections III and IV. We
present experimental results on simulations in Section V, and
conclude the paper with Section VI. We will also refer to the
appendix of the extended version [11] for additional details,
illustrations, results, and discussions.

II. METHODOLOGY

We provide a high-level description of our formulation and
approach to illustrate the various interacting components.

A. Problem Formulation

We are operating a centralized homogeneous fleet of
m drones within a city-scale domain. There are ¢ prod-
uct depots with known geographic locations, denoted by
Vp == {d1,...,ds} C R2. The depots are both product
dispatch centers and drone-charging stations. At the start
of a large time interval (e.g., a day), a batch of delivery
request locations for k different packages, denoted Vp :=
{p1,...,pr} C R?, is received (we assume that k >> m).
We assume that any package can be dispatched from any
depot; our framework exploits this property to optimize the
solution quality in terms of makespan, i.e., the maximum

execution time for any delivery. In Section III, we mention
how our approach can accommodate dispatch constraints.
The drones carry packages from depots to delivery loca-
tions. They can extend their effective travel range by using
public transit vehicles in the area, which remain unaffected
by the drones’ actions. Our problem is to route drones to
deliver all packages while minimizing makespan. A drone
route consists of its current location and the sequence of
depot and package locations to visit with a combination
of flying and riding on transit. We characterize the drones’
limited energy as a maximum flight distance constraint. A
feasible solution must satisfy inter-drone constraints such as
collision avoidance and transit vehicle capacity limits.
Finally, we make some assumptions for our setting: a
drone carries one package at a time, which is reason-
able given state-of-the-art drone payloads [14]; drones are
recharged upon visiting a depot in negligible time (e.g., a bat-
tery replacement); depots have unlimited drone capacity; the
transit network is deterministic with respect to locations and
vehicle travel times (we mention uncertainty in Section VI).
We do account for the time-varying nature of the transit.

B. Approach overview

In principle, we could frame the entire problem as a mixed
integer linear program (MILP). However, for real-world
problems (hundreds of drones; thousands of packages; large
transit networks), even state-of-the-art MILP approaches are
unlikely to scale. Moreover, even a simpler problem that
ignores the interaction constraints is an instance of the noto-
riously challenging multi-depot vehicle routing problem [35].
Thus, we decouple the problem into two distinct subproblems
that we solve stage-wise in layers.

The upper layer performs task allocation to determine
which packages are delivered by which drone and in what
order. It takes as input the known depot and package lo-
cations, and an estimate of the drone travel time between
every pair of locations. It then solves a threefold allocation
to minimize delivery makespan and assigns to each package
(i) the dispatch depot and (ii) the delivery drone, and to
each drone (iii) the order of package deliveries. To this
end, we develop an efficient polynomial-time task-allocation
algorithm that achieves a near-optimal makespan.

The lower layer performs route planning for the drone
fleet to execute the allocated delivery tasks. It generates
detailed routes of drone locations in time and space and
the transit vehicles used, while accounting for the time-
varying transit network. It also ensures that (i) simultaneous
transit boarding by multiple drones is avoided, (ii) no transit
vehicle exceeds its drone-carrying capacity, and (iii) drone
(battery) energy constraints are respected. We efficiently
handle individual and inter-drone constraints by framing the
routing problem as an extension of multi-agent path finding
(MAPF) to transit networks. We adapt a scalable, bounded
sub-optimal variant of a highly effective MAPF solver called
Conflict-Based Search (CBS) [39] to solve the one-delivery-
per-drone problem. Finally, we obtain routes for the sequence
of deliveries in a receding-horizon fashion by replanning for
the next task once a drone completes its current one.
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Decomposition-based stage-wise optimization approaches
typically have an approximation gap compared to the optimal
solution of the full problem. For us, this gap manifests in
the surrogate cost estimate we use for the drone’s travel
time in the task-allocation layer (instead of jointly solving
for allocation and multi-agent routing over transit networks,
which is not feasible at scale). The better the surrogate, the
more coupled the layers are, i.e., the better is the solution
of the first stage for the second one. Such surrogates have
a tradeoff between efficiency and approximation quality. An
easy-to-compute travel time surrogate, for instance, is the
drone’s direct flight time between two locations (ignoring
transit). However, that can be poor-quality when the drone
requires transit for an out-of-range target. We use a surrogate
that actually accounts for the transit network, at the expense
of some modest preprocessing. We defer details to the
appendix, but the idea is to precompute the pairwise shortest
travel times between locations spread around the city, over
a representative snapshot of the transit network.

ITI. TASK ASSIGNMENT AND PACKAGE ALLOCATION

We leverage our problem’s structure to design a new
algorithm called MERGESPLITTOURS for the task-allocation
layer, which guarantees a near-optimal solution in polyno-
mial time. The goal of this layer is to (i) distribute the set
of packages Vp among m agents, (ii) assign each package
destination p € Vp to a depot d € Vp, and (iii) assign drones
to a sequence of depot pickups and package deliveries. The
objective is to minimize the maximum travel time among
all agents over all three of the above components.

Our problem can be cast as a special version of the
m traveling salesman problem [7], which we call the m
minimal visiting paths problem (m-MVP). We seek a set
of m paths such that the makespan, i.e., the maximum travel
time for any path, is minimized. We only need paths that
start and end at (the same or different) depots, not tours.
Our formulation is a special case of the the asymmetric
variant, for a directed underlying graph, which is NP-hard
even for m = 1 on general graphs [4] (although it is
not known whether the specific instance of our problem is
NP-hard as well). Moreover, the current best polynomial-
time approximation [4] yields the fairly large approximation
factor O(logn/loglogn), for a graph with n vertices. An
additional challenge is the inability to assume the triangle
inequality on our objective of travel times.

A key element of m-MVP is the allocation graph G 4 =
(Va, E4), with vertex set V4 = Vp U Vp. Each directed
edge (u,v) € E4 is weighted according to an estimated
travel time c,,, from the location of u to that of v in the city.
For every d € Vp,p € Vp we exclude the edge (d,p) from
E 4 if it is impossible to reach p from d while using at most
1/2 of the flight range allowed (similarly for (p,d) edges).
As we flagged in Section II-B, any dispatch constraints are
modeled by excluding edges from the corresponding depot.
We are now ready for the full definition of m-MVP:

Definition 1. Given allocation graph G4, the m minimal
visiting paths problem (m-MVP) consists of finding m paths
Py, on G 4, such that (1) each path P} starts at some depot

Algorithm 1: MERGESPLITTOURS(G 4)

Solve MCT(G 4) to get t tours T := {71, ...
while |T| > 1 do
Pick distinct tours T, 7" € T and depots
deT,d €T’ that minimize cqq + Cqrd;
Merge T, T by adding (d,d’), (d’,d) edges ;
Split final tour 7" into m paths Py,..., P, where
LENGTH(F;) is proportional to LENGTH(T")/m for
each ¢ (similar to [19]);
Extend each P; to ensure it begins and ends at a
depot;
return P, ...

aTt};

)PW'L;

TABLE I: An integer programming formulation of the MCT problem.

Given allocation graph G4 = (V4, E4), with V4 = Vp U Vp,
minimize Z Ty * Cuw Y]
(u,v)€EL
subject to
Zuy € {0,1}, V(u,v) € Ea,u € Vp Vv € Vp, ()
Tyv € N;O: V(d, dl) S EA:d7 dl S VD7 (3)
S wgp= Y wpa=1, VpeEVp, ¥
deENL (p) deN_(p)
Z Toyd — Z Tgy =0, Vde Vp. )
vEN, (d) vEN_(d)
where N4 (v), N_(v) denote the in and out going neighbors of v € V4.

d € Vp and terminates at the same or different d’ € Vp, (2)
exactly one path visits each package p € Vp, and (3) the
maximum travel time of any of the paths is minimized.

Let OPT be the optimal makespan, i.e., OPT :=
max;e[m] LENGTH(F;"), where LENGTH(-) denotes the total
travel time along a given path or tour. We make three obser-
vations. First, if a path contains the sub-path (d,p), (p,d’),
for some d,d’ € Vp,p € Vp, then p should be dispatched
from depot d and the drone delivering p will return to
d' after delivery. Second, a package p being found in P}

indicates that drone ¢ € [m] should deliver it. Third, P;* fully
characterizes the order of packages delivered by drone i.

A. Algorithm Overview

We present our MERGESPLITTOURS algorithm for solv-
ing m-MVP (Algorithm 1); see a detailed description in
the appendix. A key step is generating an initial set of
tours T by solving the minimal-connecting tours (MCT)
problem (see Table I), which attempts to connect packages
to depots within tours to minimize the total edge weight
in eq. (1). The constraint in eq. (4) is that each package
is connected to precisely one incoming and one outgoing
edge from and to depots respectively. The final constraint
in eq. (5) enforces inflow and outflow equality for every
depot. Edges connecting packages can be used at most once,
whereas edges connecting depots can be used multiple times.
The solution to MCT is the assignment {Zyy }(u,v)eE,» i€
which edges of G4 are used and how many times. This
assignment implicitly represents the desired collection of the
tours 74, ..., T}; see the appendix.
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Fig. 2: In our formulation of multi-agent path finding with transit networks, conflicts arise from the violation of shared inter-drone constraints: (a) boarding
conflicts between two or more drones and (c) capacity conflicts between more drones than the transit vehicle can accommodate. The modified paths after
resolving the corresponding conflicts are depicted in (b) and (d), respectively.

B. Theoretical Guarantees

All proofs from this secion are in the appendix. The
following theorem states that MERGESPLITTOURS is correct
and that its makespan is close to optimal.

Theorem 1. Suppose G4 is strongly connected and the
subgraph G 4(Vp) induced by the vertices Vp is a directed
clique. Let Py,...,P,, be the output of MERGESPLIT-
TOURS. Then, every package p € Vp is contained in exactly
one path P;, and every P; starts and ends at a depot.
Moreover, maxc|,,,) LENGTH(P;) < OPT + « + 3 holds,

max

where o := max cgqg+cyq =
d,d'€Vp B d,d’'€Vp,peVp

CdptCpd’ -

The key idea is that the total cost of the tours induced
by the solution to MCT cannot exceed the total length of
{Pj,..., P%}. The MCT solution is then adapted to m paths
with an additional overhead of o + (8 per path. When m <«
|[Vp| (typically the case), a and 3 are small compared to
OPT, making the bound tight. For instance, in our randomly-
generated scenarios in Section V-A, for m = 5 and k£ = 200,
the approximation ratio max; ¢, LENGTH(F;)/OPT = 1.09,
and for m = 10, k = 500, the factor is 1.06.

The computational bottleneck of the algorithm is MCT,
while the other components can clearly be implemented
polynomially in the input size. However, it suffices to solve a
relaxed version of MCT to obtain the same integral solution.

Lemma 1. The optimal solution to the fractional relaxation
of MCT, in which x,,, € [0,1] for all w € Vp Vv € Vp, and
Tyy € Ry otherwise, yields the integer optimal solution.

The lemma follows from casting MCT as the minimum-
cost circulation problem, for which the constraint matrix is
totally unimodular [3]. Therefore, MERGESPLITTOURS can
be implemented in polynomial time.

IV. MULTI-AGENT PATH FINDING

For each drone i € [m], the allocation layer yields a
sequence of delivery tasks dipj...pid;+1. Each delivery
sequence has one or more subsequences of dpd’. The route-
planning layer treats each dpd’ subsequence as an individual
drone task, i.e., leaving with the package from depot d,
carrying it to package location p and returning to the (same
or different) depot d’, without exceeding the energy capacity.
We seek an efficient and scalable method to obtain high-
quality (with respect to travel time) feasible paths, while
using transit options to extend range, for m different drone

dpd’ tasks simultaneously. The full set of delivery sequences
can be satisfied by replanning when a drone finishes its
current task and begins a new one; we discuss and com-
pare two replanning strategies in the appendix. Thus, we
formulate the problem of multi-drone routing to satisfy a set
of delivery sequences as receding-horizon multi-agent path
finding (MAPF) over transit networks. In this section, we
describe the graph representation of our problem and present
an efficient bounded sub-optimal algorithm.

A. MAPF with Transit Networks (MAPF-TN)

The problem of Multi-Agent Path Finding with Transit
Networks (MAPF-TN) is the extension of standard MAPF
to where agents can use one or more modes of transit in
addition to moving. The incorporation of transit networks
introduces additional challenges and underlying structure.
The input to MAPF-TN is the set of m tasks (d;, p;, d;)i=1.m
and the directed operation graph Go = (Vo, Ep). In Sec-
tion III, the allocation graph GG 4 only considered depots and
packages, and edges between them. Here, G also includes
transit vertices, Vpry = UTeT R,, where T is the set of
trips, and each trip R, = {(s1,%1) ...} is a sequence of time-
stamped stop locations (a given stop location may appear as
several different nodes with distinct time-stamps). Similarly,
we also use time-expanded versions of Vp and Vp [37].

The edges are defined as follows: An edge e = (u,v) € E
is a transit edge if u,v € Vpy and are consecutive stops
on the same trip R?;. Any other edge is a flight edge. An
edge is time-constrained if v € Vi and time-unconstrained
otherwise. Every edge has three attributes: traversal time 7T,
energy expended N, and capacity C. Since each vertex is
associated with a location, ||[v — u| denotes the distance
between them for a suitable metric. MAPF typically abstracts
away agent dynamics; we have a simple model where drones
move at constant speed o, and distance flown represents
energy expended. Due to high graph density (drones can
fly point-to-point between many stops), we do not explicitly
enumerate edges but generate them on-the-fly during search.

We now define the three attributes for Ep. For time-
constrained edges, T'(¢) = v.t—uw.t is the difference between
corresponding time-stamps (if v € Vp U Vp, w.t is the
chosen departure time), and for time-unconstrained edges,
T(e) = ||lv — ul|/o is the time of direct flight. For flight
edges, N(e) = |[v—ul| (flight distance), and for transit edges,
N(e) = 0. For transit edges, C'(e) is bounded by the capacity
of the vehicle, while for flight edges, C(e) = oo. Here, we
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assume that time-unconstrained flight in open space can be
accommodated (thorougly examined in [22]).

We now describe the remaining relevant MAPF-TN de-
tails. An individual path m; for drone ¢ from d; through p;
to d; is feasible if the energy constraint ) .. N(e) < N is
satisfied, where [V is the drone’s maximum flight distance. In
addition, the drone should be able to traverse the distance of
a time-constrained flight edge in time, i.e., o X (v.t —u.t) >
||lv—wu]|. For simplicity, we abstract away energy expenditure
due to hovering in place by flying the drone at reduced speed
to reach the transit just in time. Thus, the constraint N is
only on the traversed distance. The cost of an individual path
is the total traversal time, 7'(m;) = >_ . T(e). A feasible
solution IT = | J,_,.,. m; is a set of m individually feasible
paths that does not violate any of the following two shared
constraints (see Figure 2): (i) Boarding constraint, i.e., no
two drones may board the same vehicle at the same stop; (ii)
Capacity constraint, i.e., a transit edge e may not be used
by more than C'(e) drones. As with the allocation layer, the
global objective for MAPF-TN is to minimize the solution
makespan, argming max,cm 7'(7), i.e., minimize the worst
individual completion time.

B. Conflict-Based Search for MAPF-TN

To tackle MAPF-TN, we modify the Conflict-Based
Search (CBS) algorithm [39]. The multi-agent level of CBS
identifies shared constraints and imposes corresponding path
constraints on the single-agent level. The single-agent level
computes optimal individual paths that respect all constraints.
If individual paths conflict (i.e., violate a shared constraint),
the multi-agent level adds further constraints to resolve the
conflict, and invokes the single-agent level again, for the con-
flicting agents. In MAPF-TN, conflicts arise from boarding
and capacity constraints. CBS obtains optimal multi-agent
solutions without having to run (potentially significantly
expensive) multi-agent searches. However, its performance
can degrade heavily with many conflicts in which constraints
are violated. Figure 2 illustrates the generation and resolution
of conflicts in our MAPF-TN problem.

For scalability, we use a bounded sub-optimal variant of
CBS called Enhanced CBS (ECBS), which achieves orders
of magnitude speedups over CBS [5]. ECBS uses bounded
sub-optimal Focal Search [36] at both levels, instead of best-
first A* [21]. Focal search allows using an inadmissible
heuristic that prioritizes efficiency. We now describe a crucial
modification to ECBS required for MAPF-TN.

Focal Weight-constrained Search: Unlike typical MAPF,
the low-level graph search in MAPF-TN has a path-wide
constraint (traversal distance) in addition to the objective
function of traversal time. For the shortest path problems on
graphs, adding a path-wide constraint makes it NP-hard [20].
Several algorithms for constrained search require an explicit
enumeration of the edges [9, 15]. We extend the A* for
MultiConstraint Shortest Path (A*-MCSP) algorithm [29]
(suitable for our implicit graph) to focal search (called Focal-
MCSP). Focal-MCSP uses admissible heuristics on both
objective and constraint and maintains only non-dominated
paths to intermediate nodes. This extensive book-keeping
requires a careful implementation for efficiency.

TABLE II: The mean computation time for MERGESPLITTOURS in seconds,
over 100 different trials for each setting. MERGESPLITTOURS is polynomial
in input size and highly scalable. Here, k = |Vp| is the number of package
deliveries and £ = |Vp| is the number of depots. The Out-of-Memory cases
are due to the linear programming step of MCT and could be resolved in
practice with a larger machine or a distributed implementation.

k =2 =5 ¢ =10 ? =20 £ =30
50 0.006 0.022 0.074 0.326 0.981
100 0.016 0.070 0.268 1.274 2.823
200 0.053 0.272 1.171 4.323 11.09
500 0.311 1.731 6.532 31.15 83.31
1000 1.483 6.811 31.08 OutOfMem  OutOfMem
5000 38.05 OutOfMem OutOfMem OutOfMem  OutOfMem

Focal-MCSP inherits the properties of A*-MCSP and Fo-
cal Search; therefore, it yields a bounded-suboptimal feasible
path to the target. Accordingly, ECBS with Focal-MCSP
yields a bounded sub-optimal solution to MAPF-TN. The
result follows from the analysis of ECBS [5]. Also, note that
a dpd’ path requires a bounded sub-optimal path from d to
p and another from p to d’, such that their concatenation is
feasible. Since this is even more complicated, in practice, we
run Focal-MCSP twice (from d to p and p to d’) with half
the energy constraint each time and concatenate the paths,
guaranteeing feasibility. In the appendix we discuss other
required modifications to standard MAPF and important
speedup techniques that nonetheless retain the bounded sub-
optimality of Enhanced CBS for our MAPF-TN formulation.

V. EXPERIMENTS AND RESULTS

We implemented our approach using the Julia language
and tested it on a machine with a 6-core 3.7 GHz 16 GiB
RAM CPU.! For very large combinatorial optimization prob-
lems, solution quality and algorithm efficiency are of interest.
We have already shown that the upper and lower layers are
near-optimal and bounded-suboptimal respectively in terms
of solution quality, i.e., makespan. Therefore, for evaluation
we focus on their efficiency and scalability to large real-
world settings. We do not attempt to baseline against a MILP
approach for the full problem; we estimate that a typical
setting of interest will have on the order of 107 variables in
a MILP formulation, besides exponential constraints.

We ran simulations with two large-scale public transit
networks in San Francisco (SFMTA) and the Washington
Metropolitan Area (WMATA). We used the open-source
General Transit Feed Specification data [1] for each network.
We considered only the bus network (by far the most exten-
sive), but our formulation can accommodate multiple modes.
We defined a geographical bounding box in each case, of
area 150 km? for SFMTA and 400 km? for WMATA (illus-
trated in the appendix), within which depots and package
locations were randomly generated. For the transit network,
we considered all bus trips that operate within the bounding
box. The size of the time-expanded network, |Vry|, is the
total number of stops made by all trips; |Vyn| = 4192 for
SFMTA and |Vry| = 7608 for WMATA (recall that edges
are implicit, so |Ery| varies between queries, but the full
graph G can be dense). The drone’s flight range constraint

IThe code for our work is available at https://github.com/sisl/
MultiAgentAllocationTransit. jl.
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TABLE III: (All times are in seconds) An extensive analysis of the MAPF-TN layer, on 20 trials for each {¢,m} setting, with different randomly
generated depots and delivery locations for each trial. The integer carrying capacity of any transit edge C(e) was randomly chosen from {3, 4,5} (single
and double-buses). The sub-optimality factor for ECBS was 1.1. For settings with m/¢ = 10, a number of trials timed out (over 180s) and were discarded.

San Francisco (|Vry| = 4192 ; Area 150 km?)

Washington DC (|Vr x| = 7608; Area 400 km?)

{Depots, Agents}  {Median, Avg}  {Avg, Max}  {Avg, Max}  Avg Soln. {Median, Avg}  {Avg, Max}  {Avg, Max}  Avg Soln.
{¢,m Plan Time Range Ext.  Transit Used = Makespan Plan Time Range Ext.  Transit Used = Makespan
{5,10} {0.53,1.07} {1.5,3.0} {2.9,6} 2464.8 {4.73,7.17} {2.0,3.5} {3.3,8} 5006.5
{5,20} {1.11,2.79} {1.6,2.5} {3.1,6} 2555.5 {11.5,12.4} {2.3,3.8} {4.5,7} 5819.2
{5,50} {3.18,8.29} {1.7,2.4} {4.5,6} 3485.8 {50.5,57.6} {2.9,3.6} {5.1,7} 6861.7
{10, 20} {0.64,0.68}  {1.2,1.8} {2.3,4} 2082.7 {7.31,8.78}  {2.1,3.2} {3.7,7} 5195.6
{10,50} {1.73,2.96} {1.6,3.6} {3.2,5} 2671.1 {15.6,19.8} {2.5,4.5} {3.9,6} 6316.7
{10,100} {2.09,4.17} {1.4,1.8} {3.7,7} 3084.5 {35.9,39.7} {2.5,3.7} {4.9,8} 6889.8
{20,50} {0.19,0.26} {0.9,1.2} {0.8,4} 1054.8 {8.14,11.2} {1.9,4.1} {3.6,7} 5086.9
{20,100} {0.41,0.66}  {1.1,1.3} {1.4,4} 1457.6 {175,192}  {2.2,3.7} {4.1,6} 5400.9
{20,200} {0.73,1.70}  {1.1,2.3} {2.2,5} 1824.4 {229,262}  {2.2,2.9} {4.4,6} 6050.1

is set (conservatively) to 7km and average speed to 25 kph,
based on the DJI Mavic 2 specifications [14]. In this section,
we evaluate the two main components — the task allocation
and multi-agent path finding layers. In the appendix we
compare the performance of two replanning strategies for
when a drone finishes its current delivery, and two surrogate
travel time estimates for coupling the layers.

A. Task Allocation

The scale of the allocation problem is determined by the
number of depots and packages, i.e., £ + k. The runtimes
for MERGESPLITTOURS with varying ¢, k over SFMTA are
displayed in Table II. The roughly quadratic increase in
runtimes along a specific row or column demonstrate that
our provably near-optimal MERGESPLITTOURS algorithm is
indeed polynomial in the size of the input. Even for up to
5000 deliveries, the absolute runtimes are quite reasonable.
We do not compare with naive MILP even for allocation, as
the number of variables would exceed / - k, in addition to
the expensive subtour elimination constraints [32].

B. MAPF with Transit Networks (MAPF-TN)

Solving multi-agent path finding optimally is NP-
hard [47]. Previous research has benchmarked CBS variants
and shown that Enhanced CBS is most effective [5, 12].
Therefore, we focus on extensively evaluating our own
approach rather than redundant baselining. Table III quan-
tifies several aspects of the MAPF-TN layer with varying
numbers of depots (¢) and agents (m), the two most tunable
parameters. Before each trial, we run the allocation layer and
collect m dpd’ tasks, one for each agent. We then run the
MAPF-TN solver on this set of tasks to compute a solution.

We discuss broad observations here and provide a detailed
analysis in the appendix. The results are very promising; our
approach scales to large numbers of agents (200) and large
transit networks (nearly 8000 vertices); the highest average
makespan for the true delivery time is less than an hour
(3485.8 s) for SFMTA and 2 hours (6889.8 s) for WMATA;
drones are using up to 8 transit options per route to extend
their range by up to 4.5x. As we anticipated, conflict reso-
lution is a major bottleneck of MAPF-TN. A higher ratio
of agents to depots increases conflicts due to shared transit,
thereby increasing plan time (compare {5, 20} to {10,20}).
A higher number of depots puts more deliveries within flight
range of a depot, reducing conflicts, makespan, and the need

for transit usage and range extension (compare {10,50} to
{20,50}). Plan times are much higher for WMATA due to
a larger area and a larger and less uniformly distributed
bus network, leading to higher single-agent search times and
more multi-agent conflicts. Trials taking more than 3 minutes
were discarded; two pathological cases with SFMATA and
WMATA (each with {{ = 10,m = 100}) took nearly 4
and 8 minutes, due to 30 and 10 conflicts respectively. In
any case, a deployed system would have better compute and
parallelized implementations. Finally, note that the running
times reported here are actually pessimistic, because we con-
sider cases where drones are released simultaneously from
the depots, which increases conflicts. However, a gradual
release by executing the MAPF solver over a longer horizon
(as we discuss in the appendix) results in fewer conflicts,
allowing us to cope with an even larger drone fleet.

VI. CONCLUSION AND FUTURE WORK

We designed a comprehensive algorithmic framework for
solving the highly challenging problem of multi-drone pack-
age delivery with routing over transit networks. Our two-
layer approach is efficient and highly scalable to large prob-
lem settings and obtains high-quality solutions that satisfy
the many system constraints. We ran extensive simulations
with two real-world transit networks that demonstrated the
widespread applicability of our framework and how using
ground transit judiciously allows drones to significantly
extend their effective range.

A key future direction is to perform case studies that
estimate the operational cost of our framework, evaluate
its impact on road congestion, and consider potential exter-
nalities like noise pollution and disparate impact on urban
communities. Another direction is to extend our model
to overcome its limitations: delays and uncertainty in the
travel pattern of transit vehicles [33] and delivery time
windows [41]; jointly routing ground vehicles and drones;
optimizing for the placements of depots, whose locations are
currently randomly generated and given as input.

ACKNOWLEDGMENTS

This work was supported in part by NSF, Award Number:
1830554, the Toyota Research Institute (TRI), and the Ford
Motor Company. The authors thank Sarah Laaminach, Nico-
las Lanzetti, Mauro Salazar, and Gioele Zardini for fruitful
discussions on transit networks.

4548

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.



[5]

[6

=

[7

—

[9]

[10]

[11]

[12

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23

[t

REFERENCES

General Transit Feed Specification. URL https://developers.
google.com/transit/gtfs/. Accessed: August 30, 2019.
Niels Agatz, Paul Bouman, and Marie Schmidt. Optimization Ap-
proaches for the Traveling Salesman Problem with Drone. Trans-
portation Science, 52(4):965-981, 2018.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pearson, 1993.

Arash Asadpour, Michel X. Goemans, Aleksander Madry,
Shayan Oveis Gharan, and Amin Saberi. An O(logn/loglogn)-
Approximation Algorithm for the Asymmetric Traveling Salesman
Problem. Operations Research, 65(4):1043-1061, 2017.

Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal
Variants of the Conflict-based Search Algorithm for the Multi-agent
Pathfinding Problem. In Symposium on Combinatorial Search, 2014.
Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Miiller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and
Renato F Werneck. Route Planning in Transportation Networks. In
Algorithm Engineering, pages 19-80. Springer, 2016.

Tolga Bektas. The Multiple Traveling Salesman Problem: an Overview
of Formulations and Solution Procedures. Omega, 34(3):209-219,
2006.

Jose Caceres-Cruz, Pol Arias, Daniel Guimarans, Daniel Riera, and
Angel A. Juan. Rich Vehicle Routing Problem: Survey. ACM Comput.
Surv., 47(2):32:1-32:28, 2014.

W Matthew Carlyle, Johannes O Royset, and R Kevin Wood.
Lagrangian Relaxation and Enumeration for Solving Constrained
Shortest-Path Problems. Networks, 52(4):256-270, 2008.

Shushman Choudhury, Jacob P. Knickerbocker, and Mykel J. Kochen-
derfer. Dynamic Real-time Multimodal Routing with Hierarchical
Hybrid Planning. In IEEE Intelligent Vehicles Symposium (IV), pages
2397-2404, 2019.

Shushman Choudhury, Kiril Solovey, Mykel J Kochenderfer, and
Marco Pavone. Efficient Large-Scale Multi-Drone Delivery Using
Transit Networks. arXiv preprint arXiv:1909.11840, 2019.

Liron Cohen, Tansel Uras, TK Satish Kumar, Hong Xu, Nora Ayanian,
and Sven Koenig. Improved Solvers for Bounded-Suboptimal Multi-
Agent Path Finding. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 3067-3074, 2016.

Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wag-
ner. Engineering Route Planning Algorithms. In Algorithmics of Large
and Complex Networks, pages 117-139. Springer-Verlag, 2009.

DJI. DJI Mavic 2 Specifications Sheet. URL http://bit.ly/
2mfCAvz.

Irina Dumitrescu and Natashia Boland. Improved Preprocessing,
Labeling and Scaling Algorithms for the Weight-Constrained Shortest
Path Problem. Networks: An International Journal, 42(3):135-153,
2003.

Michael Erdmann and Tomas Lozano-Perez.
Objects. Algorithmica, 2(1-4):477, 1987.
Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir
Goldenberg, Guni Sharon, Nathan Sturtevant, Glenn Wagner, and
Pavel Surynek. Search-based Optimal Solvers for the Multi-Agent
Pathfinding Problem: Summary and Challenges. In Symposium on
Combinatorial Search, 2017.

Sergio Mourelo Ferrandez, Timothy Harbison, Troy Weber, Robert
Sturges, and Robert Rich. Optimization of a Truck-Drone in Tandem
Delivery Network using k-means and Genetic Algorithm. Journal of
Industrial Engineering and Management, 9(2):374-388, 2016.

Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Ap-
proximation Algorithms for some Routing Problems. In /7th Annual
Symposium on Foundations of Computer Science, Houston, Texas,
USA, 25-27 October 1976, pages 216-227, 1976.

Michael R Garey and David S Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. WH Freeman & Co.,
1990.

Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 2(4):100-107, 1968.

Florence Ho, Ana Salta, Ruben Geraldes, Artur Goncalves, Marc
Cavazza, and Helmut Prendinger. Multi-agent Path Finding for UAV
Traffic Management. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 131-139, 2019.
Jose Holguin-Veras, Johanna Amaya Leal, Ivan Sanchez-Diaz,
Michael Browne, and Jeffrey Wojtowicz. State of the art and Practice
of Urban Freight Management: Part I: Infrastructure, Vehicle-Related,

On Multiple Moving

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

4549

and Traffic Operations. Transportation Research Part A: Policy and
Practice, 2018.

Wolfgang Honig, Scott Kiesel, Andrew Tinka, Joseph W Durham, and
Nora Ayanian. Conflict-based Search with Optimal Task Assignment.
In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 757-765, 2018.

Edward Humes. Online Shopping Was Supposed to Keep People
Out of Traffic. It Only Made Things Worse, 2018. URL http:
//bit.ly/2HCkAmQ. Accessed: August 30, 2019.

Ramoén Iglesias, Federico Rossi, Rick Zhang, and Marco Pavone. A
BCMP network approach to modeling and controlling autonomous
mobility-on-demand systems. I. J. Robotics Res., 38(2-3), 2019.
Martin Joerss, Florian Neuhaus, and Jurgen Schroder. How Customer
Demands are Reshaping Last-Mile Delivery, 2016. URL https:
//mck.co/2NIRdmE. Accessed: August 30, 2019.

Nabin Kafle, Bo Zou, and Jane Lin. Design and Modeling of a
Crowdsource-Enabled System for Urban Parcel Relay and Delivery.
Transportation Research Part B: Methodological, 99:62 — 82, 2017.
ISSN 0191-2615.

Yuxi Li, Janelee Harms, and Robert Holte. Fast Exact Multiconstraint
Shortest Path Algorithms. In IEEE International Conference on
Communications, pages 123-130, 2007.

Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and
Path Planning for Multi-Agent Pickup and Delivery. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1152-1160, 2019.

Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig. Lifelong
Multi-agent Path Finding for Online Pickup and Delivery Tasks.
In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 837-845, 2017.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer
Programming Formulation of Traveling Salesman Problems. Journal
of the ACM (JACM), 7(4):326-329, 1960.

Matthias Miiller-Hannemann, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis. Timetable Information: Models and Algorithms.
In Algorithmic Methods for Railway Optimization, pages 67-90.
Springer, 2007.

Chase C. Murray and Amanda G. Chu. The Flying Sidekick Traveling
Salesman Problem: Optimization of Drone-Assisted Parcel Delivery.
Transportation Research Part C: Emerging Technologies, 54:86 — 109,
2015.

Alena Otto, Niels Agatz, James Campbell, Bruce Golden, and Erwin
Pesch. Optimization Approaches for Civil Applications of Unmanned
Aerial Vehicles (uavs) or Aerial Drones: A Survey. Networks, 72(4):
411-458, 2018.

Judea Pearl and Jin H Kim. Studies in Semi-Admissible Heuristics.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (4):
392-399, 1982.

Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis. Efficient Models for Timetable Information in Public Trans-
portation Systems. Journal of Experimental Algorithmics (JEA), 12:
2-4, 2008.

Mauro Salazar, Federico Rossi, Maximilian Schiffer, Christopher H.
Onder, and Marco Pavone. On the interaction between autonomous
mobility-on-demand and public transportation systems. In Interna-
tional Conference on Intelligent Transportation Systems, pages 2262—
2269, 2018.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant.
Conflict-based Search for Optimal Multi-Agent Path Finding. In AAAJ
Conference on Artificial Intelligence (AAAI), 2012.

David Silver. Cooperative Pathfinding. In AAAI Conference on
Artificial Intelligence (AAAI), pages 117-122, 2005.

Marius M Solomon. Algorithms for the Vehicle Routing and Schedul-
ing Problems with Time Window Constraints. Operations Research,
35(2):254-265, 1987.

Kiril Solovey, Mauro Salazar, and Marco Pavone. Scalable and
Congestion-Aware Routing for Autonomous Mobility-On-Demand via
Frank-Wolfe Optimization. In Proceedings of Robotics: Science and
Systems, 2019.

Adrienne Welch Sudbury and E Bruce Hutchinson. A Cost Analysis
of Amazon Prime Air (Drone Delivery). Journal for Economic
Educators, 16(1):1-12, 2016.

P. Toth and D. Vigo. Vehicle Routing — Problems, Methods, and
Applications. SIAM, 2 edition, 2014.

Alex Wallar, Menno Van Der Zee, Javier Alonso-Mora, and Daniela
Rus. Vehicle rebalancing for mobility-on-demand systems with ride-
sharing. In IEEE/RSJ International Conference on Intelligent Robots

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.



and Systems, pages 4539-4546, 2018.

[46] J. Yuand S. M. LaValle. Optimal Multirobot Path Planning on Graphs:
Complete Algorithms and Effective Heuristics. IEEE Transactions on
Robotics, 32(5):1163-1177, 2016

[47] Jingjin Yu and Steven M LaValle. Structure and Intractability of
Optimal Multi-robot Path Planning on Graphs. In AAAI Conference
on Artificial Intelligence (AAAI), 2013.

[48] J. Zgraggen, M. Tsao, M. Salazar, M. Schiffer, and M. Pavone.
A Model Predictive Control Scheme for Intermodal Autonomous
Mobility-on-Demand. In IEEE International Conference on Intelligent
Transportation Systems, 2019.

4550

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.



