

of efficient solvers have been developed that work well

in practice [17]. The MAPF formulation and algorithms

have been extended to several relevant scenarios such as

lifelong pickup-and-delivery [31] and joint task assignment

and pathfinding [24, 30], though for different task settings

and constraints than ours. Also, a MAPF formulation was

applied for UAV traffic management in cities [22]. However,

none of the approaches considered pathfinding over large

time-dependent transit networks. We use models, algorithms

and techniques from transportation planning [6, 13, 37].

B. Statement of contributions

We present a comprehensive algorithmic framework for

large-scale multi-drone delivery in synergy with a ground

transit network. Our approach strives to minimize the max-

imum time to complete any delivery. We decompose the

highly challenging problem and solve it stage-wise with a

two-layer approach. First, the upper layer assigns drones to

package-delivery sequences with a task allocation algorithm.

Then, the lower layer executes the allocation by periodically

routing the fleet over the transit network.

Algorithmically, we develop a new delivery sequence allo-

cation method for the upper layer that obtains a near-optimal

solution in polynomial runtime. For the lower layer, we ex-

tend techniques for multi-agent path finding that account for

time-dependent transit networks and agent energy constraints

to perform multi-drone routing. Experimentally, we present

results supporting the efficiency of our approach on settings

with up to 200 drones, 5000 packages, and transit networks

of up to 8000 stops in San Francisco and the Washington

DC area. Our framework can compute solutions within a

few seconds (up to 2 minutes for the largest settings) on

commodity hardware, and in our problem scenarios, drones

can travel up to 450% of their flight range using transit.

The following is the paper structure. We present an overall

description of the two-layer approach in Section II, and

then elaborate on each layer in Sections III and IV. We

present experimental results on simulations in Section V, and

conclude the paper with Section VI. We will also refer to the

appendix of the extended version [11] for additional details,

illustrations, results, and discussions.

II. METHODOLOGY

We provide a high-level description of our formulation and

approach to illustrate the various interacting components.

A. Problem Formulation

We are operating a centralized homogeneous fleet of

m drones within a city-scale domain. There are ℓ prod-

uct depots with known geographic locations, denoted by

VD := {d1, . . . , dℓ} ⊂ R
2. The depots are both product

dispatch centers and drone-charging stations. At the start

of a large time interval (e.g., a day), a batch of delivery

request locations for k different packages, denoted VP :=
{p1, . . . , pk} ⊂ R

2, is received (we assume that k ≫ m).

We assume that any package can be dispatched from any

depot; our framework exploits this property to optimize the

solution quality in terms of makespan, i.e., the maximum

execution time for any delivery. In Section III, we mention

how our approach can accommodate dispatch constraints.

The drones carry packages from depots to delivery loca-

tions. They can extend their effective travel range by using

public transit vehicles in the area, which remain unaffected

by the drones’ actions. Our problem is to route drones to

deliver all packages while minimizing makespan. A drone

route consists of its current location and the sequence of

depot and package locations to visit with a combination

of flying and riding on transit. We characterize the drones’

limited energy as a maximum flight distance constraint. A

feasible solution must satisfy inter-drone constraints such as

collision avoidance and transit vehicle capacity limits.

Finally, we make some assumptions for our setting: a

drone carries one package at a time, which is reason-

able given state-of-the-art drone payloads [14]; drones are

recharged upon visiting a depot in negligible time (e.g., a bat-

tery replacement); depots have unlimited drone capacity; the

transit network is deterministic with respect to locations and

vehicle travel times (we mention uncertainty in Section VI).

We do account for the time-varying nature of the transit.

B. Approach overview

In principle, we could frame the entire problem as a mixed

integer linear program (MILP). However, for real-world

problems (hundreds of drones; thousands of packages; large

transit networks), even state-of-the-art MILP approaches are

unlikely to scale. Moreover, even a simpler problem that

ignores the interaction constraints is an instance of the noto-

riously challenging multi-depot vehicle routing problem [35].

Thus, we decouple the problem into two distinct subproblems

that we solve stage-wise in layers.

The upper layer performs task allocation to determine

which packages are delivered by which drone and in what

order. It takes as input the known depot and package lo-

cations, and an estimate of the drone travel time between

every pair of locations. It then solves a threefold allocation

to minimize delivery makespan and assigns to each package

(i) the dispatch depot and (ii) the delivery drone, and to

each drone (iii) the order of package deliveries. To this

end, we develop an efficient polynomial-time task-allocation

algorithm that achieves a near-optimal makespan.

The lower layer performs route planning for the drone

fleet to execute the allocated delivery tasks. It generates

detailed routes of drone locations in time and space and

the transit vehicles used, while accounting for the time-

varying transit network. It also ensures that (i) simultaneous

transit boarding by multiple drones is avoided, (ii) no transit

vehicle exceeds its drone-carrying capacity, and (iii) drone

(battery) energy constraints are respected. We efficiently

handle individual and inter-drone constraints by framing the

routing problem as an extension of multi-agent path finding

(MAPF) to transit networks. We adapt a scalable, bounded

sub-optimal variant of a highly effective MAPF solver called

Conflict-Based Search (CBS) [39] to solve the one-delivery-

per-drone problem. Finally, we obtain routes for the sequence

of deliveries in a receding-horizon fashion by replanning for

the next task once a drone completes its current one.

4544

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

Decomposition-based stage-wise optimization approaches

typically have an approximation gap compared to the optimal

solution of the full problem. For us, this gap manifests in

the surrogate cost estimate we use for the drone’s travel

time in the task-allocation layer (instead of jointly solving

for allocation and multi-agent routing over transit networks,

which is not feasible at scale). The better the surrogate, the

more coupled the layers are, i.e., the better is the solution

of the first stage for the second one. Such surrogates have

a tradeoff between efficiency and approximation quality. An

easy-to-compute travel time surrogate, for instance, is the

drone’s direct flight time between two locations (ignoring

transit). However, that can be poor-quality when the drone

requires transit for an out-of-range target. We use a surrogate

that actually accounts for the transit network, at the expense

of some modest preprocessing. We defer details to the

appendix, but the idea is to precompute the pairwise shortest

travel times between locations spread around the city, over

a representative snapshot of the transit network.

III. TASK ASSIGNMENT AND PACKAGE ALLOCATION

We leverage our problem’s structure to design a new

algorithm called MERGESPLITTOURS for the task-allocation

layer, which guarantees a near-optimal solution in polyno-

mial time. The goal of this layer is to (i) distribute the set

of packages VP among m agents, (ii) assign each package

destination p ∈ VP to a depot d ∈ VD, and (iii) assign drones

to a sequence of depot pickups and package deliveries. The

objective is to minimize the maximum travel time among

all agents over all three of the above components.

Our problem can be cast as a special version of the

m traveling salesman problem [7], which we call the m
minimal visiting paths problem (m-MVP). We seek a set

of m paths such that the makespan, i.e., the maximum travel

time for any path, is minimized. We only need paths that

start and end at (the same or different) depots, not tours.

Our formulation is a special case of the the asymmetric

variant, for a directed underlying graph, which is NP-hard

even for m = 1 on general graphs [4] (although it is

not known whether the specific instance of our problem is

NP-hard as well). Moreover, the current best polynomial-

time approximation [4] yields the fairly large approximation

factor O(log n/ log log n), for a graph with n vertices. An

additional challenge is the inability to assume the triangle

inequality on our objective of travel times.

A key element of m-MVP is the allocation graph GA =
(VA, EA), with vertex set VA = VD ∪ VP . Each directed

edge (u, v) ∈ EA is weighted according to an estimated

travel time cuv from the location of u to that of v in the city.

For every d ∈ VD, p ∈ VP we exclude the edge (d, p) from

EA if it is impossible to reach p from d while using at most

1/2 of the flight range allowed (similarly for (p, d) edges).

As we flagged in Section II-B, any dispatch constraints are

modeled by excluding edges from the corresponding depot.

We are now ready for the full definition of m-MVP:

Definition 1. Given allocation graph GA, the m minimal

visiting paths problem (m-MVP) consists of finding m paths

P ∗
1:m on GA, such that (1) each path P ∗

i starts at some depot

Algorithm 1: MERGESPLITTOURS(GA)

Solve MCT(GA) to get t tours T := {T1, . . . , Tt};

while |T| > 1 do
Pick distinct tours T, T ′ ∈ T and depots

d ∈ T, d′ ∈ T ′ that minimize cdd′ + cd′d;

Merge T, T ′ by adding (d, d′), (d′, d) edges ;
Split final tour T into m paths P1, . . . , Pm, where

LENGTH(Pi) is proportional to LENGTH(T)/m for

each i (similar to [19]);

Extend each Pi to ensure it begins and ends at a

depot;

return P1, . . . , Pm;

TABLE I: An integer programming formulation of the MCT problem.

Given allocation graph GA = (VA, EA), with VA = VD ∪ VP ,

minimize
∑

(u,v)∈EA

xuv · cuv (1)

subject to

xuv ∈ {0, 1}, ∀(u, v) ∈ EA, u ∈ VP ∨ v ∈ VP , (2)

xuv ∈ N>0, ∀(d, d′) ∈ EA, d, d′ ∈ VD, (3)
∑

d∈N+(p)

xdp =
∑

d∈N−(p)

xpd = 1, ∀p ∈ VP , (4)

∑

v∈N+(d)

xvd −
∑

v∈N−(d)

xdv = 0, ∀d ∈ VD. (5)

where N+(v), N−(v) denote the in and out going neighbors of v ∈ VA.

d ∈ VD and terminates at the same or different d′ ∈ VD, (2)

exactly one path visits each package p ∈ VP , and (3) the

maximum travel time of any of the paths is minimized.

Let OPT be the optimal makespan, i.e., OPT :=
maxi∈[m] LENGTH(P ∗

i), where LENGTH(·) denotes the total

travel time along a given path or tour. We make three obser-

vations. First, if a path contains the sub-path (d, p), (p, d′),
for some d, d′ ∈ VD, p ∈ VP , then p should be dispatched

from depot d and the drone delivering p will return to

d′ after delivery. Second, a package p being found in P ∗
i

indicates that drone i ∈ [m] should deliver it. Third, P ∗
i fully

characterizes the order of packages delivered by drone i.

A. Algorithm Overview

We present our MERGESPLITTOURS algorithm for solv-

ing m-MVP (Algorithm 1); see a detailed description in

the appendix. A key step is generating an initial set of

tours T by solving the minimal-connecting tours (MCT)

problem (see Table I), which attempts to connect packages

to depots within tours to minimize the total edge weight

in eq. (1). The constraint in eq. (4) is that each package

is connected to precisely one incoming and one outgoing

edge from and to depots respectively. The final constraint

in eq. (5) enforces inflow and outflow equality for every

depot. Edges connecting packages can be used at most once,

whereas edges connecting depots can be used multiple times.

The solution to MCT is the assignment {xuv}(u,v)∈EA
, i.e.,

which edges of GA are used and how many times. This

assignment implicitly represents the desired collection of the

tours T1, . . . , Tt; see the appendix.

4545

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

CAPACITY

= 2

BOARDING

CONFLICT

(a)

CAPACITY

= 2

CONFLICT

RESOLVED

(b)

CAPACITY

= 1

CAPACITY

CONFLICT

(c)

CAPACITY

= 1

CONFLICT

RESOLVED

(d)

Fig. 2: In our formulation of multi-agent path finding with transit networks, conflicts arise from the violation of shared inter-drone constraints: (a) boarding
conflicts between two or more drones and (c) capacity conflicts between more drones than the transit vehicle can accommodate. The modified paths after
resolving the corresponding conflicts are depicted in (b) and (d), respectively.

B. Theoretical Guarantees

All proofs from this secion are in the appendix. The

following theorem states that MERGESPLITTOURS is correct

and that its makespan is close to optimal.

Theorem 1. Suppose GA is strongly connected and the

subgraph GA(VD) induced by the vertices VD is a directed

clique. Let P1, . . . , Pm be the output of MERGESPLIT-

TOURS. Then, every package p ∈ VP is contained in exactly

one path Pi, and every Pi starts and ends at a depot.

Moreover, maxi∈[m] LENGTH(Pi) 6 OPT + α+ β holds,

where α := max
d,d′∈VD

cdd′+cd′d , β := max
d,d′∈VD,p∈VP

cdp+cpd′ .

The key idea is that the total cost of the tours induced

by the solution to MCT cannot exceed the total length of

{P ∗
1 , . . . , P

∗
m}. The MCT solution is then adapted to m paths

with an additional overhead of α+ β per path. When m ≪
|VP | (typically the case), α and β are small compared to

OPT, making the bound tight. For instance, in our randomly-

generated scenarios in Section V-A, for m = 5 and k = 200,

the approximation ratio maxi∈[m] LENGTH(Pi)/OPT = 1.09,

and for m = 10, k = 500, the factor is 1.06.

The computational bottleneck of the algorithm is MCT,

while the other components can clearly be implemented

polynomially in the input size. However, it suffices to solve a

relaxed version of MCT to obtain the same integral solution.

Lemma 1. The optimal solution to the fractional relaxation

of MCT, in which xuv ∈ [0, 1] for all u ∈ VP ∨ v ∈ VP , and

xuv ∈ R+ otherwise, yields the integer optimal solution.

The lemma follows from casting MCT as the minimum-

cost circulation problem, for which the constraint matrix is

totally unimodular [3]. Therefore, MERGESPLITTOURS can

be implemented in polynomial time.

IV. MULTI-AGENT PATH FINDING

For each drone i ∈ [m], the allocation layer yields a

sequence of delivery tasks d1p1 . . . pldl+1. Each delivery

sequence has one or more subsequences of dpd′. The route-

planning layer treats each dpd′ subsequence as an individual

drone task, i.e., leaving with the package from depot d,

carrying it to package location p and returning to the (same

or different) depot d′, without exceeding the energy capacity.

We seek an efficient and scalable method to obtain high-

quality (with respect to travel time) feasible paths, while

using transit options to extend range, for m different drone

dpd′ tasks simultaneously. The full set of delivery sequences

can be satisfied by replanning when a drone finishes its

current task and begins a new one; we discuss and com-

pare two replanning strategies in the appendix. Thus, we

formulate the problem of multi-drone routing to satisfy a set

of delivery sequences as receding-horizon multi-agent path

finding (MAPF) over transit networks. In this section, we

describe the graph representation of our problem and present

an efficient bounded sub-optimal algorithm.

A. MAPF with Transit Networks (MAPF-TN)

The problem of Multi-Agent Path Finding with Transit

Networks (MAPF-TN) is the extension of standard MAPF

to where agents can use one or more modes of transit in

addition to moving. The incorporation of transit networks

introduces additional challenges and underlying structure.

The input to MAPF-TN is the set of m tasks (di, pi, d
′
i)i=1:m

and the directed operation graph GO = (VO, EO). In Sec-

tion III, the allocation graph GA only considered depots and

packages, and edges between them. Here, GO also includes

transit vertices, VTN =
⋃

τ∈T
Rτ , where T is the set of

trips, and each trip Rτ = {(s1, t1) . . .} is a sequence of time-

stamped stop locations (a given stop location may appear as

several different nodes with distinct time-stamps). Similarly,

we also use time-expanded versions of VD and VP [37].

The edges are defined as follows: An edge e = (u, v) ∈ E
is a transit edge if u, v ∈ VTN and are consecutive stops

on the same trip Rt. Any other edge is a flight edge. An

edge is time-constrained if v ∈ VTN and time-unconstrained

otherwise. Every edge has three attributes: traversal time T ,

energy expended N , and capacity C. Since each vertex is

associated with a location, ‖v − u‖ denotes the distance

between them for a suitable metric. MAPF typically abstracts

away agent dynamics; we have a simple model where drones

move at constant speed σ, and distance flown represents

energy expended. Due to high graph density (drones can

fly point-to-point between many stops), we do not explicitly

enumerate edges but generate them on-the-fly during search.

We now define the three attributes for EO. For time-

constrained edges, T (e) = v.t−u.t is the difference between

corresponding time-stamps (if u ∈ VD ∪ VP , u.t is the

chosen departure time), and for time-unconstrained edges,

T (e) = ‖v − u‖/σ is the time of direct flight. For flight

edges, N(e) = ‖v−u‖ (flight distance), and for transit edges,

N(e) = 0. For transit edges, C(e) is bounded by the capacity

of the vehicle, while for flight edges, C(e) = ∞. Here, we

4546

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

assume that time-unconstrained flight in open space can be

accommodated (thorougly examined in [22]).

We now describe the remaining relevant MAPF-TN de-

tails. An individual path πi for drone i from di through pi
to d′i is feasible if the energy constraint

∑
e∈πi

N(e) 6 N̄ is

satisfied, where N̄ is the drone’s maximum flight distance. In

addition, the drone should be able to traverse the distance of

a time-constrained flight edge in time, i.e., σ× (v.t−u.t) >
‖v−u‖. For simplicity, we abstract away energy expenditure

due to hovering in place by flying the drone at reduced speed

to reach the transit just in time. Thus, the constraint N̄ is

only on the traversed distance. The cost of an individual path

is the total traversal time, T (πi) =
∑

e∈πi
T (e). A feasible

solution Π =
⋃

i=1:m πi is a set of m individually feasible

paths that does not violate any of the following two shared

constraints (see Figure 2): (i) Boarding constraint, i.e., no

two drones may board the same vehicle at the same stop; (ii)

Capacity constraint, i.e., a transit edge e may not be used

by more than C(e) drones. As with the allocation layer, the

global objective for MAPF-TN is to minimize the solution

makespan, argminΠ maxπ∈Π T (π), i.e., minimize the worst

individual completion time.

B. Conflict-Based Search for MAPF-TN

To tackle MAPF-TN, we modify the Conflict-Based

Search (CBS) algorithm [39]. The multi-agent level of CBS

identifies shared constraints and imposes corresponding path

constraints on the single-agent level. The single-agent level

computes optimal individual paths that respect all constraints.

If individual paths conflict (i.e., violate a shared constraint),

the multi-agent level adds further constraints to resolve the

conflict, and invokes the single-agent level again, for the con-

flicting agents. In MAPF-TN, conflicts arise from boarding

and capacity constraints. CBS obtains optimal multi-agent

solutions without having to run (potentially significantly

expensive) multi-agent searches. However, its performance

can degrade heavily with many conflicts in which constraints

are violated. Figure 2 illustrates the generation and resolution

of conflicts in our MAPF-TN problem.

For scalability, we use a bounded sub-optimal variant of

CBS called Enhanced CBS (ECBS), which achieves orders

of magnitude speedups over CBS [5]. ECBS uses bounded

sub-optimal Focal Search [36] at both levels, instead of best-

first A* [21]. Focal search allows using an inadmissible

heuristic that prioritizes efficiency. We now describe a crucial

modification to ECBS required for MAPF-TN.

Focal Weight-constrained Search: Unlike typical MAPF,

the low-level graph search in MAPF-TN has a path-wide

constraint (traversal distance) in addition to the objective

function of traversal time. For the shortest path problems on

graphs, adding a path-wide constraint makes it NP-hard [20].

Several algorithms for constrained search require an explicit

enumeration of the edges [9, 15]. We extend the A* for

MultiConstraint Shortest Path (A*-MCSP) algorithm [29]

(suitable for our implicit graph) to focal search (called Focal-

MCSP). Focal-MCSP uses admissible heuristics on both

objective and constraint and maintains only non-dominated

paths to intermediate nodes. This extensive book-keeping

requires a careful implementation for efficiency.

TABLE II: The mean computation time for MERGESPLITTOURS in seconds,
over 100 different trials for each setting. MERGESPLITTOURS is polynomial
in input size and highly scalable. Here, k = |VP | is the number of package
deliveries and ℓ = |VD| is the number of depots. The Out-of-Memory cases
are due to the linear programming step of MCT and could be resolved in
practice with a larger machine or a distributed implementation.

k ℓ = 2 ℓ = 5 ℓ = 10 ℓ = 20 ℓ = 30

50 0.006 0.022 0.074 0.326 0.981
100 0.016 0.070 0.268 1.274 2.823
200 0.053 0.272 1.171 4.323 11.09
500 0.311 1.731 6.532 31.15 83.31
1000 1.483 6.811 31.08 OutOfMem OutOfMem
5000 38.05 OutOfMem OutOfMem OutOfMem OutOfMem

Focal-MCSP inherits the properties of A*-MCSP and Fo-

cal Search; therefore, it yields a bounded-suboptimal feasible

path to the target. Accordingly, ECBS with Focal-MCSP

yields a bounded sub-optimal solution to MAPF-TN. The

result follows from the analysis of ECBS [5]. Also, note that

a dpd′ path requires a bounded sub-optimal path from d to

p and another from p to d′, such that their concatenation is

feasible. Since this is even more complicated, in practice, we

run Focal-MCSP twice (from d to p and p to d′) with half

the energy constraint each time and concatenate the paths,

guaranteeing feasibility. In the appendix we discuss other

required modifications to standard MAPF and important

speedup techniques that nonetheless retain the bounded sub-

optimality of Enhanced CBS for our MAPF-TN formulation.

V. EXPERIMENTS AND RESULTS

We implemented our approach using the Julia language

and tested it on a machine with a 6-core 3.7GHz 16GiB
RAM CPU.1 For very large combinatorial optimization prob-

lems, solution quality and algorithm efficiency are of interest.

We have already shown that the upper and lower layers are

near-optimal and bounded-suboptimal respectively in terms

of solution quality, i.e., makespan. Therefore, for evaluation

we focus on their efficiency and scalability to large real-

world settings. We do not attempt to baseline against a MILP

approach for the full problem; we estimate that a typical

setting of interest will have on the order of 107 variables in

a MILP formulation, besides exponential constraints.

We ran simulations with two large-scale public transit

networks in San Francisco (SFMTA) and the Washington

Metropolitan Area (WMATA). We used the open-source

General Transit Feed Specification data [1] for each network.

We considered only the bus network (by far the most exten-

sive), but our formulation can accommodate multiple modes.

We defined a geographical bounding box in each case, of

area 150 km2 for SFMTA and 400 km2 for WMATA (illus-

trated in the appendix), within which depots and package

locations were randomly generated. For the transit network,

we considered all bus trips that operate within the bounding

box. The size of the time-expanded network, |VTN |, is the

total number of stops made by all trips; |VTN | = 4192 for

SFMTA and |VTN | = 7608 for WMATA (recall that edges

are implicit, so |ETN | varies between queries, but the full

graph GO can be dense). The drone’s flight range constraint

1The code for our work is available at https://github.com/sisl/
MultiAgentAllocationTransit.jl.

4547

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

TABLE III: (All times are in seconds) An extensive analysis of the MAPF-TN layer, on 20 trials for each {ℓ,m} setting, with different randomly
generated depots and delivery locations for each trial. The integer carrying capacity of any transit edge C(e) was randomly chosen from {3, 4, 5} (single
and double-buses). The sub-optimality factor for ECBS was 1.1. For settings with m/ℓ = 10, a number of trials timed out (over 180 s) and were discarded.

San Francisco
(

|VTN | = 4192 ;Area 150 km2
)

Washington DC
(

|VTN | = 7608;Area 400 km2
)

{Depots, Agents} {Median, Avg} {Avg, Max} {Avg, Max} Avg Soln. {Median, Avg} {Avg, Max} {Avg, Max} Avg Soln.
{ℓ,m} Plan Time Range Ext. Transit Used Makespan Plan Time Range Ext. Transit Used Makespan

{5, 10} {0.53, 1.07} {1.5, 3.0} {2.9, 6} 2464.8 {4.73, 7.17} {2.0, 3.5} {3.3,8} 5006.5
{5, 20} {1.11, 2.79} {1.6, 2.5} {3.1, 6} 2555.5 {11.5, 12.4} {2.3, 3.8} {4.5, 7} 5819.2
{5, 50} {3.18, 8.29} {1.7, 2.4} {4.5, 6} 3485.8 {50.5, 57.6} {2.9, 3.6} {5.1, 7} 6861.7
{10, 20} {0.64, 0.68} {1.2, 1.8} {2.3, 4} 2082.7 {7.31, 8.78} {2.1, 3.2} {3.7, 7} 5195.6
{10, 50} {1.73, 2.96} {1.6, 3.6} {3.2, 5} 2671.1 {15.6, 19.8} {2.5,4.5} {3.9, 6} 6316.7
{10, 100} {2.09, 4.17} {1.4, 1.8} {3.7, 7} 3084.5 {35.9, 39.7} {2.5, 3.7} {4.9,8} 6889.8
{20, 50} {0.19, 0.26} {0.9, 1.2} {0.8, 4} 1054.8 {8.14, 11.2} {1.9, 4.1} {3.6, 7} 5086.9
{20, 100} {0.41, 0.66} {1.1, 1.3} {1.4, 4} 1457.6 {17.5, 19.2} {2.2, 3.7} {4.1, 6} 5400.9
{20, 200} {0.73, 1.70} {1.1, 2.3} {2.2, 5} 1824.4 {22.9, 26.2} {2.2, 2.9} {4.4, 6} 6050.1

is set (conservatively) to 7 km and average speed to 25 kph,

based on the DJI Mavic 2 specifications [14]. In this section,

we evaluate the two main components — the task allocation

and multi-agent path finding layers. In the appendix we

compare the performance of two replanning strategies for

when a drone finishes its current delivery, and two surrogate

travel time estimates for coupling the layers.

A. Task Allocation

The scale of the allocation problem is determined by the

number of depots and packages, i.e., ℓ + k. The runtimes

for MERGESPLITTOURS with varying ℓ, k over SFMTA are

displayed in Table II. The roughly quadratic increase in

runtimes along a specific row or column demonstrate that

our provably near-optimal MERGESPLITTOURS algorithm is

indeed polynomial in the size of the input. Even for up to

5000 deliveries, the absolute runtimes are quite reasonable.

We do not compare with naive MILP even for allocation, as

the number of variables would exceed ℓ · k, in addition to

the expensive subtour elimination constraints [32].

B. MAPF with Transit Networks (MAPF-TN)

Solving multi-agent path finding optimally is NP-

hard [47]. Previous research has benchmarked CBS variants

and shown that Enhanced CBS is most effective [5, 12].

Therefore, we focus on extensively evaluating our own

approach rather than redundant baselining. Table III quan-

tifies several aspects of the MAPF-TN layer with varying

numbers of depots (ℓ) and agents (m), the two most tunable

parameters. Before each trial, we run the allocation layer and

collect m dpd′ tasks, one for each agent. We then run the

MAPF-TN solver on this set of tasks to compute a solution.

We discuss broad observations here and provide a detailed

analysis in the appendix. The results are very promising; our

approach scales to large numbers of agents (200) and large

transit networks (nearly 8000 vertices); the highest average

makespan for the true delivery time is less than an hour

(3485.8 s) for SFMTA and 2 hours (6889.8 s) for WMATA;

drones are using up to 8 transit options per route to extend

their range by up to 4.5x. As we anticipated, conflict reso-

lution is a major bottleneck of MAPF-TN. A higher ratio

of agents to depots increases conflicts due to shared transit,

thereby increasing plan time (compare {5, 20} to {10, 20}).

A higher number of depots puts more deliveries within flight

range of a depot, reducing conflicts, makespan, and the need

for transit usage and range extension (compare {10, 50} to

{20, 50}). Plan times are much higher for WMATA due to

a larger area and a larger and less uniformly distributed

bus network, leading to higher single-agent search times and

more multi-agent conflicts. Trials taking more than 3 minutes

were discarded; two pathological cases with SFMATA and

WMATA (each with {l = 10,m = 100}) took nearly 4
and 8 minutes, due to 30 and 10 conflicts respectively. In

any case, a deployed system would have better compute and

parallelized implementations. Finally, note that the running

times reported here are actually pessimistic, because we con-

sider cases where drones are released simultaneously from

the depots, which increases conflicts. However, a gradual

release by executing the MAPF solver over a longer horizon

(as we discuss in the appendix) results in fewer conflicts,

allowing us to cope with an even larger drone fleet.

VI. CONCLUSION AND FUTURE WORK

We designed a comprehensive algorithmic framework for

solving the highly challenging problem of multi-drone pack-

age delivery with routing over transit networks. Our two-

layer approach is efficient and highly scalable to large prob-

lem settings and obtains high-quality solutions that satisfy

the many system constraints. We ran extensive simulations

with two real-world transit networks that demonstrated the

widespread applicability of our framework and how using

ground transit judiciously allows drones to significantly

extend their effective range.

A key future direction is to perform case studies that

estimate the operational cost of our framework, evaluate

its impact on road congestion, and consider potential exter-

nalities like noise pollution and disparate impact on urban

communities. Another direction is to extend our model

to overcome its limitations: delays and uncertainty in the

travel pattern of transit vehicles [33] and delivery time

windows [41]; jointly routing ground vehicles and drones;

optimizing for the placements of depots, whose locations are

currently randomly generated and given as input.

ACKNOWLEDGMENTS

This work was supported in part by NSF, Award Number:

1830554, the Toyota Research Institute (TRI), and the Ford

Motor Company. The authors thank Sarah Laaminach, Nico-

las Lanzetti, Mauro Salazar, and Gioele Zardini for fruitful

discussions on transit networks.

4548

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] General Transit Feed Specification. URL https://developers.

google.com/transit/gtfs/. Accessed: August 30, 2019.
[2] Niels Agatz, Paul Bouman, and Marie Schmidt. Optimization Ap-

proaches for the Traveling Salesman Problem with Drone. Trans-
portation Science, 52(4):965–981, 2018.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Pearson, 1993.

[4] Arash Asadpour, Michel X. Goemans, Aleksander Madry,
Shayan Oveis Gharan, and Amin Saberi. An O(logn/ log logn)-
Approximation Algorithm for the Asymmetric Traveling Salesman
Problem. Operations Research, 65(4):1043–1061, 2017.

[5] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal
Variants of the Conflict-based Search Algorithm for the Multi-agent
Pathfinding Problem. In Symposium on Combinatorial Search, 2014.

[6] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and
Renato F Werneck. Route Planning in Transportation Networks. In
Algorithm Engineering, pages 19–80. Springer, 2016.

[7] Tolga Bektas. The Multiple Traveling Salesman Problem: an Overview
of Formulations and Solution Procedures. Omega, 34(3):209–219,
2006.

[8] Jose Caceres-Cruz, Pol Arias, Daniel Guimarans, Daniel Riera, and
Angel A. Juan. Rich Vehicle Routing Problem: Survey. ACM Comput.
Surv., 47(2):32:1–32:28, 2014.

[9] W Matthew Carlyle, Johannes O Royset, and R Kevin Wood.
Lagrangian Relaxation and Enumeration for Solving Constrained
Shortest-Path Problems. Networks, 52(4):256–270, 2008.

[10] Shushman Choudhury, Jacob P. Knickerbocker, and Mykel J. Kochen-
derfer. Dynamic Real-time Multimodal Routing with Hierarchical
Hybrid Planning. In IEEE Intelligent Vehicles Symposium (IV), pages
2397–2404, 2019.

[11] Shushman Choudhury, Kiril Solovey, Mykel J Kochenderfer, and
Marco Pavone. Efficient Large-Scale Multi-Drone Delivery Using
Transit Networks. arXiv preprint arXiv:1909.11840, 2019.

[12] Liron Cohen, Tansel Uras, TK Satish Kumar, Hong Xu, Nora Ayanian,
and Sven Koenig. Improved Solvers for Bounded-Suboptimal Multi-
Agent Path Finding. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 3067–3074, 2016.

[13] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wag-
ner. Engineering Route Planning Algorithms. In Algorithmics of Large
and Complex Networks, pages 117–139. Springer-Verlag, 2009.

[14] DJI. DJI Mavic 2 Specifications Sheet. URL http://bit.ly/

2mfCAvz.
[15] Irina Dumitrescu and Natashia Boland. Improved Preprocessing,

Labeling and Scaling Algorithms for the Weight-Constrained Shortest
Path Problem. Networks: An International Journal, 42(3):135–153,
2003.

[16] Michael Erdmann and Tomas Lozano-Perez. On Multiple Moving
Objects. Algorithmica, 2(1-4):477, 1987.

[17] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir
Goldenberg, Guni Sharon, Nathan Sturtevant, Glenn Wagner, and
Pavel Surynek. Search-based Optimal Solvers for the Multi-Agent
Pathfinding Problem: Summary and Challenges. In Symposium on
Combinatorial Search, 2017.

[18] Sergio Mourelo Ferrandez, Timothy Harbison, Troy Weber, Robert
Sturges, and Robert Rich. Optimization of a Truck-Drone in Tandem
Delivery Network using k-means and Genetic Algorithm. Journal of
Industrial Engineering and Management, 9(2):374–388, 2016.

[19] Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Ap-
proximation Algorithms for some Routing Problems. In 17th Annual
Symposium on Foundations of Computer Science, Houston, Texas,
USA, 25-27 October 1976, pages 216–227, 1976.

[20] Michael R Garey and David S Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. WH Freeman & Co.,
1990.

[21] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 2(4):100–107, 1968.

[22] Florence Ho, Ana Salta, Ruben Geraldes, Artur Goncalves, Marc
Cavazza, and Helmut Prendinger. Multi-agent Path Finding for UAV
Traffic Management. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 131–139, 2019.

[23] Jose Holguin-Veras, Johanna Amaya Leal, Ivan Sanchez-Diaz,
Michael Browne, and Jeffrey Wojtowicz. State of the art and Practice
of Urban Freight Management: Part I: Infrastructure, Vehicle-Related,

and Traffic Operations. Transportation Research Part A: Policy and
Practice, 2018.

[24] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W Durham, and
Nora Ayanian. Conflict-based Search with Optimal Task Assignment.
In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 757–765, 2018.

[25] Edward Humes. Online Shopping Was Supposed to Keep People
Out of Traffic. It Only Made Things Worse, 2018. URL http:

//bit.ly/2HCkAmQ. Accessed: August 30, 2019.
[26] Ramón Iglesias, Federico Rossi, Rick Zhang, and Marco Pavone. A

BCMP network approach to modeling and controlling autonomous
mobility-on-demand systems. I. J. Robotics Res., 38(2-3), 2019.

[27] Martin Joerss, Florian Neuhaus, and Jurgen Schroder. How Customer
Demands are Reshaping Last-Mile Delivery, 2016. URL https:

//mck.co/2NIRdmE. Accessed: August 30, 2019.
[28] Nabin Kafle, Bo Zou, and Jane Lin. Design and Modeling of a

Crowdsource-Enabled System for Urban Parcel Relay and Delivery.
Transportation Research Part B: Methodological, 99:62 – 82, 2017.
ISSN 0191-2615.

[29] Yuxi Li, Janelee Harms, and Robert Holte. Fast Exact Multiconstraint
Shortest Path Algorithms. In IEEE International Conference on
Communications, pages 123–130, 2007.

[30] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and
Path Planning for Multi-Agent Pickup and Delivery. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1152–1160, 2019.

[31] Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig. Lifelong
Multi-agent Path Finding for Online Pickup and Delivery Tasks.
In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 837–845, 2017.

[32] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer
Programming Formulation of Traveling Salesman Problems. Journal
of the ACM (JACM), 7(4):326–329, 1960.

[33] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis. Timetable Information: Models and Algorithms.
In Algorithmic Methods for Railway Optimization, pages 67–90.
Springer, 2007.

[34] Chase C. Murray and Amanda G. Chu. The Flying Sidekick Traveling
Salesman Problem: Optimization of Drone-Assisted Parcel Delivery.
Transportation Research Part C: Emerging Technologies, 54:86 – 109,
2015.

[35] Alena Otto, Niels Agatz, James Campbell, Bruce Golden, and Erwin
Pesch. Optimization Approaches for Civil Applications of Unmanned
Aerial Vehicles (uavs) or Aerial Drones: A Survey. Networks, 72(4):
411–458, 2018.

[36] Judea Pearl and Jin H Kim. Studies in Semi-Admissible Heuristics.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (4):
392–399, 1982.

[37] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis. Efficient Models for Timetable Information in Public Trans-
portation Systems. Journal of Experimental Algorithmics (JEA), 12:
2–4, 2008.

[38] Mauro Salazar, Federico Rossi, Maximilian Schiffer, Christopher H.
Onder, and Marco Pavone. On the interaction between autonomous
mobility-on-demand and public transportation systems. In Interna-
tional Conference on Intelligent Transportation Systems, pages 2262–
2269, 2018.

[39] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant.
Conflict-based Search for Optimal Multi-Agent Path Finding. In AAAI
Conference on Artificial Intelligence (AAAI), 2012.

[40] David Silver. Cooperative Pathfinding. In AAAI Conference on
Artificial Intelligence (AAAI), pages 117–122, 2005.

[41] Marius M Solomon. Algorithms for the Vehicle Routing and Schedul-
ing Problems with Time Window Constraints. Operations Research,
35(2):254–265, 1987.

[42] Kiril Solovey, Mauro Salazar, and Marco Pavone. Scalable and
Congestion-Aware Routing for Autonomous Mobility-On-Demand via
Frank-Wolfe Optimization. In Proceedings of Robotics: Science and
Systems, 2019.

[43] Adrienne Welch Sudbury and E Bruce Hutchinson. A Cost Analysis
of Amazon Prime Air (Drone Delivery). Journal for Economic
Educators, 16(1):1–12, 2016.

[44] P. Toth and D. Vigo. Vehicle Routing – Problems, Methods, and
Applications. SIAM, 2 edition, 2014.

[45] Alex Wallar, Menno Van Der Zee, Javier Alonso-Mora, and Daniela
Rus. Vehicle rebalancing for mobility-on-demand systems with ride-
sharing. In IEEE/RSJ International Conference on Intelligent Robots

4549

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

and Systems, pages 4539–4546, 2018.
[46] J. Yu and S. M. LaValle. Optimal Multirobot Path Planning on Graphs:

Complete Algorithms and Effective Heuristics. IEEE Transactions on
Robotics, 32(5):1163–1177, 2016.

[47] Jingjin Yu and Steven M LaValle. Structure and Intractability of
Optimal Multi-robot Path Planning on Graphs. In AAAI Conference
on Artificial Intelligence (AAAI), 2013.

[48] J. Zgraggen, M. Tsao, M. Salazar, M. Schiffer, and M. Pavone.
A Model Predictive Control Scheme for Intermodal Autonomous
Mobility-on-Demand. In IEEE International Conference on Intelligent
Transportation Systems, 2019.

4550

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2020 at 02:13:27 UTC from IEEE Xplore. Restrictions apply.

