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Abstract— RRT∗ is one of the most widely used sampling-
based algorithms for asymptotically-optimal motion planning.
RRT∗ laid the foundations for optimality in motion planning
as a whole, and inspired the development of numerous new
algorithms in the field, many of which build upon RRT∗ itself.
In this paper, we first identify a logical gap in the optimality
proof of RRT∗, which was developed by Karaman and Frazzoli
(2011). Then, we present an alternative and mathematically-
rigorous proof for asymptotic optimality. Our proof suggests
that the connection radius used by RRT∗ should be increased

from γ
(

log n
n

)1/d
to γ′

(

log n
n

)1/(d+1)
in order to account

for the additional dimension of time that dictates the samples’
ordering. Here γ, γ′ are constants, and n,d are the number
of samples and the dimension of the problem, respectively.

I. INTRODUCTION

For many robot motion-planning applications, feasibility

is not enough—we further desire path plans that are of high

quality, reflecting a need for robots that can achieve their

goals with efficiency, alacrity, and economy of motion. To

this end we seek planning algorithms that can be trusted,

whatever obstacle environment a robot faces, to produce

optimal or near-optimal plans with minimal scenario-specific

tuning. The advent of the asymptotically-optimal rapidly-

exploring random tree (RRT∗) algorithm [1] has ushered in a

decade of theoretical and practical successes in the develop-

ment of optimal sampling-based motion-planning algorithms.

Although proposed in its initial form for the case of

minimum-length path planning for robots without dynamic

constraints, RRT∗ has been extended to handle kinodynamic

planning problems [2] including robotic systems governed

by non-holonomic constraints [3], more expressive costs

accounting for robot energy expenditure [4], [5], and even to

plan paths that minimize violation of safety rules [6] or that

otherwise balance performance considerations with safety

constraints [7]. Heuristic modifications to the core algorithm

have also been demonstrated that improve practical RRT∗

implementations [8], [9].

Each of these extensions leverages the simple yet powerful

iterative local graph-rewiring technique introduced by RRT∗

to enable convergence to the optimal solution (as computa-

tion budget increases), provided an appropriate choice for the

scaling of the rewiring radius as a function of sample count.

Moreover, each of these extensions draws upon the original

analysis presented in [1] for the fundamental asymptotic
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scaling of this algorithm parameter; this analysis is therefore

core to each of their optimality guarantees.

Contribution. The primary contribution of this paper is an

in-depth study of the theoretical analysis underpinning the

asymptotic-optimality criterion for the RRT∗ algorithm. In

revisiting this analysis, we identify a logical gap in the orig-

inal proof and provide an amended proof suggesting a larger

radius scaling exponent to ensure asymptotic optimality. The

impact of this paper is potentially far-reaching in the large

number of works that currently appeal to RRT∗ optimality

to make their theoretical guarantees.

The paper is organized as follows. Section II provides

preliminaries and a description of RRT∗. In Section III we

review the original optimality proof of RRT∗ and identify a

logical gap within it. In Section IV we provide the main

contribution of this paper, which is an alternative proof

that circumvents this logical gap. We conclude the paper in

Section V.

II. PRELIMINARIES

We provide several basic definitions that will be used

throughout the paper. Given two points x, y ∈ R
d, denote

by ‖x − y‖ the standard Euclidean distance. Denote by

Br(x) the d-dimensional ball of radius r > 0 centered at

x ∈ R
d. Define Br(Γ) :=

⋃

x∈Γ Br(x) for any Γ ⊆ R
d.

Similarly, given a curve σ : [0, 1] → R
d, define Br(σ) =

⋃

τ∈[0,1] Br(σ(τ)). For a subset D ⊂ R
d, |D| denotes its

Lebesgue measure. All logarithms used herein are to base e.

A. Motion planning

Denote by C the robot’s configuration space, and by F ⊆ C
the free space, i.e., the set of all collision free configurations.

We assume that C is a subset of the Euclidean space. For

simplicity, let C = [0, 1]d ⊂ R
d for some fixed d ≥ 2. Given

start and target configurations s, t ∈ F , the motion-planning

problem consists of finding a continuous path (curve) σ :
[0, 1] → F such that σ(0) = s and σ(1) = t. That is,

the robot starts its motion along σ at s, and ends at t, while

avoiding collisions. An instance of the problem is defined by

(F , s, t). We consider the standard path length as a measure

of quality:

Definition 1. Given a path σ, its length (cost), which

corresponds to its Hausdorff measure, is represented by

c(σ) = sup
n∈N+,0=τ1≤...≤τn=1

n
∑

i=2

‖σ(τi)− σ(τi−1)‖.

We proceed to describe the notion of robustness, which is

essential when discussing theoretical properties of sampling-

based planners. Given a subset Γ ⊂ C and two configurations



x, y ∈ Γ, denote by ΣΓ
x,y the set of all continuous paths,

whose image is in Γ, that start in x and end in y, i.e., if

σ ∈ ΣΓ
x,y then σ : [0, 1] → Γ and σ(0) = x, σ(1) = y.

We mention that the following definition is slightly different

than the one used in [1], [10].

Definition 2. Let (F , s, t) be a motion-planning problem.

A path σ ∈ ΣF
s,t is robust if there exists δ > 0 such that

Bδ(σ) ⊂ F . We also say that (F , s, t) is robustly feasible if

there exists such a robust path.

Definition 3. The robust optimum is defined as

c∗ = inf
{

c(σ)
∣

∣σ ∈ ΣF
s,t is robust

}

.

B. Algorithms

While our main focus in this paper is the RRT∗ algorithm,

we also rely on the properties of the RRT algorithm, which is

described first. The following description of the (geometric)

RRT algorithm is based on [11] and [1].

Algorithm 1 RRT(xinit := s, xgoal := t, n, η)

1: V = {xinit}
2: for j = 1 to n do
3: xrand ← SAMPLE-FREE( )
4: xnear ← NEAREST(xrand, V )
5: xnew ← STEER(xnear, xrand, η)
6: if COLLISION-FREE(xnear, xnew) then
7: V = V ∪ {xnew}; E = E ∪ {(xnear, xnew)}

8: return G = (V,E)

The input for RRT (Algorithm 1) is an initial and goal

configurations xinit, xgoal, number of iterations n, and a

steering parameter η > 0. RRT constructs a tree G = (V,E)
by performing n iterations. In each iteration, a new sample

xrand is returned from F uniformly at random by calling

SAMPLE-FREE. Then, the vertex xnear ∈ V that is nearest

(according to ‖ · ‖) to xrand is found using NEAREST. A new

configuration xnew ∈ X is then returned by STEER, such that

xnew is on the line segment between xnear and xrand, and the

distance ‖xnear − xnew‖ is at most η. Finally, COLLISION-

FREE(xnear, xnew) checks whether the straight-line path from

xnear to xnew is collision free. If so, xnew is added as a vertex

to G and is connected by an edge from xnear.

We proceed to describe RRT∗ [1] in Algorithm 2. Ev-

ery RRT∗ iteration begins with an RRT-style extension.

The difference lies in the subsequent lines. First, RRT∗

attempts to connect the tree to xnew from all its neigh-

bors in V within a min{r(|V |), η} vicinity (lines 7-15).

Notice that the expression r(|V |) determines the radius

based on the current number of vertices in V . (The op-

eration NEAR(xnew, V,min{r(|V |), η}) returns the subset

V ∩ Bmin{r(|V |),η}(xnew), i.e., the vertices that are within

a distance of min{r(|V |), η} from xnew.) However, it only

adds a single edge to xnew from the neighbor xmin ∈ Xnear

such that COST(xnew) is minimized (line 16). In the next

step, RRT∗ attempts to perform rewires (lines 17-21): with

the addition of xnew, it may be beneficial to reroute the

existing path of xnear to use xnew. RRT∗ checks whether

changing the parent of xnear to be xnew reduces COST(xnear).
(PARENT(xnear) returns the immediate predecessor of xnear in

G. COST(x) for x ∈ V returns the cost of the path leading

from xinit to x in G.)

Algorithm 2 RRT∗(xinit := s, xgoal := t, n, r, η)

1: V = {xinit}
2: for j = 1 to n do
3: xrand ← SAMPLE-FREE( )
4: xnear ← NEAREST(xrand, V )
5: xnew ← STEER(xnear, xrand, η)
6: if COLLISION-FREE(xnear, xnew) then
7: Xnear = NEAR(xnew, V,min{r(|V |), η})
8: V = V ∪ {xnew}
9: xmin = xnear

10: cmin = COST(xnear) + ‖xnew − xnear‖
11: for xnear ∈ Xnear do
12: if COLLISION-FREE(xnear, xnew) then
13: if COST(xnear) + ‖xnew − xnear‖ < cmin then
14: xmin = xnear

15: cmin = COST(xnear) + ‖xnew − xnear‖

16: E = E ∪ {(xmin, xnew)}
17: for xnear ∈ Xnear do
18: if COLLISION-FREE(xnew, xnear) then
19: if COST(xnew) + ‖xnear − xnew‖ < COST(xnear) then
20: xparent = PARENT(xnear)
21: E = E ∪ {(xnew, xnear)} \ {(xparent, xnear)}

22: return G = (V,E)

Remark 1. As mentioned above, RRT∗ performs extensions

of the tree in a manner similar to RRT. That is, STEER

generates xnew, which lies on the straight line connecting

xnear, xrand, such that ‖xnew − xnear‖ ≤ η. Note that initially

xnew 6= xrand, but once the space is sufficiently covered by

G, i.e., when F ⊂
⋃

v∈V Bη(v), then in all the following

iterations it will hold that xnew = xrand. This property will

be important in the analysis of RRT∗, as it indicates that

xnew is uniformly sampled from F . This notion will be

formalized below. For now, it is useful to note that given

the same sequence of samples, RRT and RRT∗ will generate

two (possibly distinct) graphs that have a common vertex set.

III. ORIGINAL OPTIMALITY PROOF

In this section we review the original proof [1] for

asymptotic optimality of RRT∗, and point out a logical gap.

Specifically, Theorem 38 in [1] states that if the connection

radius used by RRT∗ is of the form

rKF(n) = γKF

(

log n

n

)1/d

, (1)

where n ∈ N+, and for some constant γKF > 0, the cost

of the solution obtained by RRT∗ converges to the robust

optimum c∗ as n → ∞, almost surely.

A. Review of previous proof

We provide a sketch of the original proof and identify a

logical gap. We mention that our definitions of robustness

(Definition 2) and robust optimum (Definition 3) are simpli-

fied versions of the ones used originally in [1], where the





in the correct order. For a more detailed example see the

appendix.

As we show in our proof in the next section, condition

(iii) is in fact sufficient to guarantee asymptotic optimality,

and we prove that it indeed holds with high probability when

we slightly increase the connection radius from Equation (1),

and modify the constant γKF.

IV. ALTERNATIVE PROOF

In order to account for the additional dimension of time,

we set the connection radius to be r(n) = γ
(

logn
n

)
1

d+1

,

where γ is a constant that will be determined below. We

state our main theorem and provide an overview of the proof.

The full proof is presented later on. Note that our result

suggests that the exponent should be decreased from 1/d
to 1/(d + 1), which yields a larger radius overall. Denote

by σn the path connecting s to t returned by RRT∗ after n
iterations. Recall that c(σn) denotes its length (in case that

no solution is found, the length of σn is assumed to be ∞).

Our main theorem, which appears below, states that if γ is

set correctly, then the cost of the solution returned by RRT∗

is upper-bounded asymptotically by (1 + ε)c∗, where c∗ is

the robust optimum, and ε is a tuning parameter. Additional

tuning parameters that appear in the theorem are as follows:

η is the steering size of RRT∗ (Algorithm 2, line 5), while

µ and θ are constants whose purpose will become clear in

the proof of the theorem.

Theorem 1. Suppose that (F , s, t) is robustly feasible and

fix η > 0, ε ∈ (0, 1),1 θ ∈ (0, 1/4), and µ ∈ (0, 1). Define

the radius of RRT∗ to be

r(n) = γ

(

log n

n

)
1

d+1

, (2)

such that

γ ≥ (2 + θ)

(

(1 + ε/4)c∗

(d+ 1)θ(1− µ)
·
|F|

ζd

)
1

d+1

, (3)

where ζd is the volume of a unit d-dimensional hypersphere.

Then

lim
n→∞

Pr[c(σn) ≤ (1 + ε)c∗] = 1.

Our proof of Theorem 1 proceeds similarly to the proof

of the asymptotic optimality of FMT∗ [10] (which is in turn

based on [1]), but with additional complications due to the

time dimension and the coupling with the RRT algorithm.

We proceed to describe the main ingredients of the proof.

Fix the parameters ε ∈ (0, 1), θ ∈ (0, 1/4), µ ∈ (0, 1), η >
0. Due to the fact that (F , s, t) is robustly feasible, there

exists a robust path σε ∈ ΣF
s,t and δ > 0 such that c(σε) ≤

(1 + ε/4)c∗ and Bδ(σε) ⊂ F . We will show that the RRT∗

graph G contains a path that is in the vicinity of σε, which

implies that the solution returned by RRT∗ is of cost at most

(1 + ε)c∗ (which is slightly larger than (1 + ε/4)c∗ due to

the fact that this is still an approximation of the path σε).

1For simplicity, we upper-bound ε with 1 although the proof can be
adapted to accommodate larger stretch factors.

The first part of the proof deals with the technicality

involved with the samples produced by the algorithm. Denote

by V = {X1 . . . , Xn} the sequence of vertices produced

by RRT∗, where Xj is equal to xnew generated in iteration

j. Due to the fact that RRT∗ (and RRT) perform steering

(line 5), samples are not distributed in a uniform manner,

as xrand is not necessarily identical to xnew (see Remark 1).

However, we do show that most of the vertices in V that

are in the vicinity of σε are distributed uniformly at random,

with probability approaching 1 (see Lemma 1). This event

is denoted by E
1 (see Definition 4).

Next, we proceed in a manner similar to other proofs of

asymptotic optimality (see, [1], [10], [13]), by defining a

sequence of points x1, . . . , xMn
along the path σε and spec-

ifying a sequence of balls Bn,1, . . . , Bn,Mn
that are centered

on those points respectively, and whose radius is proportional

to r(n). More formally, define Mn =
⌈

c(σε) ·
(

r(n)
2+θ

)−1 ⌉

,

and let x1, . . . , xMn be a sequence of points along σε such

that ‖xi − xi−1‖ ≤ θr(n)
2+θ , x1 = s, xMn

= t. For every

1 ≤ i ≤ Mn define Bn,i := B r(n)
2+θ

(xi).

As suggested in Section III, we need to reason both about

the existence of samples inside those balls, and the order

of those samples. We assign to every ball Bn,i a specific

time window Ti, corresponding to allowed timestamps of

samples, and partition the sample set V = {X1, . . . , Xn}
into the subsets V0, V1, . . . , VMn

, where Xj ∈ Vi if j ∈ Ti. In

particular, T0 consists of the first n′ indices, where n′ = µn,

and every Ti, where i > 1 consists of (n− n′)/Mn indices,

and µ ∈ (0, 1) is a constant:

Ti 6=0 =
{

n′ + (i− 1) ·
⌊

n−n′

Mn

⌋

+ 1, . . . , n′ + i ·
⌊

n−n′

Mn

⌋}

.

We show that the event E
2 (Definition 5) indicating that

every Bn,i contains a vertex from Vi occurs with probability

approaching 1 as well (Lemma 2). The motivation for this

event is the following claim, which indicates that edges

between points in consecutive balls are added if deemed

beneficial.

Claim 1. There exists n ∈ N+ large enough such that

the following holds with respect to Gji+1 = (Vji+1 , Eji+1):
Suppose that there exist Xji ∈ Vi ∩ Bn,i, Xji+1 ∈ Vi+1 ∩
Bn,i+1 and denote by Gji+1 the RRT∗ graph at the end of

iteration ji+1. Then in Gji+1 it follows that COST(Xji+1
) ≤

COST(Xji) + ‖Xji −Xji+1
‖.

Proof. Recall that Bn,i = B r(n)
2+θ

(xi) and ‖xi − xi+1‖ ≤
θr(n)
2+θ . For any x ∈ Bn,i, x

′ ∈ Bn,i+1 it follows that

‖x− x′‖ ≤ r(n)
2+θ + θr(n)

2+θ + r(n)
2+θ = r(n).

This implies that Xji ∈ Xnear = NEAR(Xji+1 , Vji , r(n)),
which will cause the execution of the test

COLLISION-FREE(Xji , Xji+1
) (line 12 of RRT∗). The

latter will be evaluated to be true since Bδ(σε) ⊆ F and

r(n) ≪ δ (for n large enough). Thus, in line 13 the edge

(Xji , Xji+1) will be added to the graph, unless there is a

lower-cost alternative for connection.



Thus, E2 guarantees that the RRT∗ tree G contains a path

σ′
n connecting s to t that follows σε closely. In order to

ensure that c(σ′
n) ≤ (1+ ε)c∗ we need one more step, since

σ′
n could stay close to σε but zig-zag around it, resulting in

a high-cost solution.

Define the constants α ∈ (0, θε/16), β ∈ (0, θε/16).
Additionally, define for every 1 ≤ i ≤ Mn the ball Bβ

n,i :=
B βr(n)

2+θ
(xi). The event E

3 (Definition 6) indicates that a

fraction of at most α of the smaller balls Bβ
n,i does not

contain samples from Vi. We show that E
3 occurs with

probability approaching 1 (Lemma 3). We then proceed

to show that if E
2,E3 occur simultaneously then RRT∗ is

guaranteed to return a solution with cost at most (1 + ε)c∗

(Lemma 4).

A. Proof of Theorem 1

We start with a formal definition of E1:

Definition 4. For every 1 ≤ j ≤ n denote by xj
rand, x

j
new the

random and new samples of RRT∗ in iteration j (line 3 and

line 5 in Algorithm 2, respectively). Define n′ := µn and

E
1
n := {∀1 ≤ i ≤ Mn, n

′ ≤ j ≤ n :

if xj
rand ∈ Bn,i then xj

rand = xj
new}.

That is, E1
n is the event that all xj

rand ∈ Bn,i for j between

n′ and n satisfy xj
rand = xj

new.

Remark 2. We wish to stress that the following lemma,

which lower bounds the probability of E1
n, is a key ingredient

in our proof. As we shall see below, this would allow us

to treat some of the vertices added by RRT∗ as uniformly

sampled, which is not true for all samples, as some are

perturbed by the STEER operation. We mention that this

issue was not addressed in the original proof in [1], where

the RRT∗ nodes were assumed (incorrectly) to be uniformly

distributed. Furthermore, setting the steering step η = ∞
does not resolve this issue.

Lemma 1. There exist two constants a, b > 0 such that

Pr[E1
n] ≥ 1− a · e−bn.

Proof. A similar proof appears in [13, Claim 6], albeit for a

different type of sampling scheme and in the context of an

RRG analysis. The main challenge here is to show that while

it is not true that all the new samples xnew are distributed

uniformly randomly (due to lines 4,5 in Algorithm 2), most

of them are. Define κ := min{η, δ}/10 and set z1, . . . , zℓ
to be a sequence of points placed along σε, such that ℓ =
c(σε)/κ, and ‖zk − zk+1‖ ≤ κ. Observe that for n large

enough it holds that
⋃Mn

i=1 Bn,i ⊂
⋃ℓ

k=1 Bκ(zk).
Denote by V RRT

n′ the vertex set of RRT after n′ iterations.

Theorem 1 in [14] states that there exist constants a, c > 0
such that the probability that for every 1 ≤ k ≤ ℓ it holds

that V RRT
n′ ∩Bκ(zk) 6= ∅ is at least a ·e−cn′

= a ·e−bn, where

b := cµ. Notice that this theorem requires η to be fixed (i.e.,

independent of n) and strictly positive.

Denote the latter event to be E
′1
n. Next, we show that

E
′1
n implies E

1
n. First, observe that V RRT

n′ = V RRT∗

n′ , where

the latter is the vertex set of RRT∗ after n′ iterations, and

assume that E
′1
n holds . Fix an iteration n′ < j < n and

some 1 ≤ k ≤ ℓ. Due to the fact that η > 0 is fixed, by the

proof of Lemma 1 in [14] it follows that if xj
rand ∈ Bκ(zj)

then xj
near ∈ B5κ(zj), and consequently

‖xj
rand − xj

near‖ = ‖xj
rand − zj + zj − xj

near‖

≤ ‖xj
rand − zj‖+ ‖zj − xj

near‖ ≤ κ+ 5κ ≤ η.

This implies that xj
new = xj

rand. Additionally, observe that

due to the fact that the straight-line path from xj
near to xj

rand

is contained in Bκ(zj), where κ < δ/5, it is also collision

free. Thus, at the end of iteration j, xrand will be added to

the RRT∗ graph as a vertex.

We will prove that the following event E
2 holds with

probability approaching 1 by conditioning on E
1.

Definition 5. E
2
n represents the event that every Bn,i con-

tains at least one vertex from Vi. That is,

E
2
n := {∀1 ≤ i ≤ Mn, Vi ∩Bn,i 6= ∅}.

Lemma 2. limn→∞ Pr[E2
n] = 1.

Proof. Observe that

Pr[E2
n] = Pr[E2

n|E
1
n] · Pr[E

1
n] + Pr[E2

n|E
1
n] · Pr[E

1
n]

≥ Pr[E2
n|E

1
n] · Pr[E

1
n].

We shall lower-bound the expression Pr[E2
n|E

1
n]. By defini-

tion of E1
n, for every n′ < j ≤ n, and i such that j ∈ Ti, if

xj
rand ∈ Bn,i, then xj

new = xj
rand is a valid vertex of the RRT∗

graph. Thus, by conditioning on E
1
n we can treat V \ V0 as

uniform random samples from F . This will come in handy
in bounding the probability of E2:

Pr[E2
n|E

1
n] = Pr [∃1 ≤ i ≤Mn, Vi ∩Bn,i = ∅]

≤
Mn
∑

i=1

Pr[Vi ∩Bn,i = ∅] =
Mn
∑

i=1

(

1−
|Bn,i|

|F|

)|Ti|

(4)

≤Mn

(

1−
ζd

(

r(n)
2+θ

)d

|F|

)(n−n′)/Mn

≤Mn exp

{

−
n− n′

Mn
·
ζd

|F|
·

r(n)d

(2 + θ)d

}

(5)

≤Mn exp

{

−
nr(n)θ(1− µ)

c(σε)(2 + θ)
·
ζd

|F|
·

r(n)d

(2 + θ)d

}

= Mn exp

{

−
θζd(1− µ)

c(σε)(2 + θ)d+1|F|
· n · r(n)d+1

}

=: Mn exp

{

−ξ · n · γd+1 log n

n

}

(6)

=

⌈

c(σε) ·
(

r(n)
2+θ

)−1
⌉

exp
{

−ξγd+1 log n
}

<

(

c(σε) ·
(

r(n)
2+θ

)−1

+ 1

)

exp
{

−ξγd+1 log n
}

= c(σε)(2+θ)
θγ

(log n)−1/(d+1)
n
1/(d+1)−ξγd+1

+ exp
{

−ξγd+1 log n
}

, (7)

where (4) is due to the union bound and the fact that Vi
is uniformly sampled at random from F , (5) is due to the



inequality 1 − x ≤ e−x for x ∈ (0, 1) which applies here

for n large enough, and (6) defines ξ := θζd(1−µ)
c(σε)(2+θ)d+1|F|

. If

(d+ 1)−1 − ξγd+1 ≤ 0 then the final expression tends to 0.
Indeed,

1

d+ 1
−

θζd(1− µ)

c(σε)(2 + θ)d+1|F|
· γd+1 ≤ 0 ⇐⇒

(2 + θ)
(

c(σε)|F|
(d+1)θζd(1−µ)

) 1
d+1
≤ (2 + θ)

(

c∗(1+ε/4)|F|
(d+1)θζd(1−µ)

) 1
d+1
≤ γ.

It remains to show that limn→∞ Pr[E2
n|E

1
n] · Pr[E

1
n] = 1:

Pr[E2
n|E

1
n] · Pr[E

1
n] = (1− Pr[E2

n|E
1
n])(1− Pr[E1

n])

= 1 + Pr[E2
n|E

1
n] · Pr[E

1
n]− Pr[E2

n|E
1
n]− Pr[E1

n]

> 1− Pr[E2
n|E

1
n]− Pr[E1

n],

where the final expression converges to 1, according to

Equation 7 and Lemma 1.

Next we consider the existence of samples in a collection

of smaller balls.

Definition 6. Let Kβ
n := |{i ∈ {1, . . . ,Mn} : B

β
n,i ∩ Vi = ∅}|.

E
3
n := {Kβ

n ≤ αMn} is the event that at most αMn of the

smaller balls Bβ
n,i do not contain any samples from Vi.

Lemma 3. limn→∞ Pr[E3
n] = 1.

Proof. Similarly to Lemma 2, it is sufficient to show that

limn→∞ Pr[E3
n|E

1
n] = 0. We shall upper bound the prob-

ability that Kβ
n > αMn assuming that E

1
n holds. To this

end, we compute the expectation of Kβ
n and apply Markov’s

inequality.
For every 1 ≤ i ≤ Mn, denote by Ii the indicator variable

for the event that Bβ
n,i∩Vi = ∅. Observe that Kβ

n =
∑Mn

i=1 Ii.
For n large enough we have that

E[Ii] = Pr[Ii = 1] =

(

1−
|B

β
n,i|

|F|

)|Ti|

≤

(

1−
βdζd

(

r(n)
2+θ

)d

|F|

)n(1−µ)/Mn

≤ exp
{

− βdθζd(1−µ)

c(σε)(2+θ)d+1|F|
· n · r(n)d+1

}

≤ exp
{

− βdθζd(1−µ)

c(σε)(2+θ)d+1|F|
· γd+1 · log n

}

= exp
{

− βd

d+1
log n

}

= n
−βd/(d+1)

.

Thus, E[Kβ
n ] =

∑Mn

i=1 E[Ii] ≤ Mnn
−βd/(d+1). By Markov’s

inequality, it follows that

Pr[Kβ
n > αMn] ≤

E[Kβ
n ]

αMn
≤ Mnn−βd/(d+1)

αMn
= n−βd/(d+1)

α
. (8)

As α is fixed, the last expression tends to 0 as n tends to

∞. While the upper bound obtained in (8) is sufficient for

our purpose, we mention that a tighter bound can be derived

by using a slightly more complex Poissonization argument

similar to that used in [10].

Next, we show that if E
2,E3 occur simultaneously, then

the cost of c(σn) is bounded by (1 + ε)c∗.

Lemma 4. For n large enough, if the events E
2
n,E

3
n occur,

then c(σn) ≤ (1 + ε)c∗.

Proof. As E
2
n ∧ E

3
n we may define the sequence of vertices

Xj1 , . . . , XjMn
∈ V , such that Xj1 = s,XjMn

= t, and for

every 1 < i < Mn, Xji ∈ Vi ∩ Bβ
n,i if Vi ∩ Bβ

n,i 6= ∅, and

Xji ∈ Vi ∩Bn,i otherwise.

Denote by σ′
n the path induced by concatenating those

points, and notice that it is collision free by definition of

Bn,i and σε. Next, we claim that the cost of the path σn

obtained by RRT∗ is upper-bounded by the cost of σ′
n, which

is equal to
∑Mn

i=2 ‖Xji − Xji−1
‖. Consider iteration ji of

RRT∗, for 1 < i ≤ Mn and observe that (i) xji
new = Xji ,

(ii) Xji−1 ∈ Xji
near. By Claim 1, it follows that COST(Xji) ≤

∑i
k=2 ‖Xj(k) −Xj(k−1)‖, as desired. Thus, c(σn) ≤ c(σ′

n).
We proceed to bound c(σ′

n). Observe that for any 1 < i ≤
Mn it holds that ‖Xji −Xji−1

‖ is at most










θr(n)
2+θ

+ βr(n)
2+θ

+ βr(n)
2+θ

, if Xji−1 ∈ B
β
n,i−1 AND Xji ∈ B

β
n,i

θr(n)
2+θ

+ βr(n)
2+θ

+ r(n)
2+θ

, if Xji−1 ∈ B
β
n,i−1 XOR Xji ∈ B

β
n,i

θr(n)
2+θ

+ r(n)
2+θ

+ r(n)
2+θ

, otherwise

.

Thus,

c(σ′
n) ≤

Mn
∑

i=2

‖Xji −Xji−1‖

≤ (Mn − 1) θr(n)
2+θ

+ ⌈(1− α)(Mn − 1)⌉ 2βr(n)
2+θ

+ ⌊α(Mn − 1)⌋ 2r(n)
2+θ

≤ (Mn − 1)r(n)
θ + 2β + 2α

2 + θ

≤
c(σε)(2 + θ)

θr(n)
r(n)

θ + 2β + 2α

2 + θ
≤
(

1 + ε
4

)

c
∗ ·

θ + 2β + 2α

θ

<
(

1 + ε
4

)

c
∗ θ +

2θε
16

+ 2θε
16

θ
=
(

1 + ε
4

)2
c
∗

=
(

1 + ε
2
+ ε2

16

)

c
∗
<
(

1 + ε
2
+ ε

16

)

c
∗
< (1 + ε)c∗.

It remains to show that E2 ∧ E
3 occurs with probability

approaching 1:

lim
n→∞

Pr[E2 ∧ E
3] = 1− lim

n→∞
Pr[E2 ∨ E3]

≥ 1− lim
n→∞

(

Pr[E2] + Pr[E3]
)

= 1.

V. CONCLUSION

In this paper we revisited the original asymptotic-

optimality proof of RRT∗ in [1], and discussed an apparent

logical gap within it. We then introduced an alternative proof

that amends this logical gap. Our new proof suggests that

the connection radius of RRT∗ should be slightly larger than

the original bound on the radius that was developed in [1].

We leave the question of whether our bound is tight, i.e.,

whether the exponent of 1/(d + 1) in Equation (2) can be

lowered to 1/d, to future research. The practical successes

of the algorithm and its extensions, using the exponent 1/d,

provide some evidence that this might be the case.
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APPENDIX

We provide a detailed counter example (Figures 2-12)

illustrating our argument that the fact that for every 1 ≤ i <
Mn (i) there exist Xji , Xji+1

such that Xji ∈ Bn,i, Xji+1
∈

Bn,i+1 and (ii) ji < ji+1, does not necessarily mean that

(iii) there exists a sequence j1 ≤ j2 ≤ . . . ≤ jMn
such that

Xji ∈ Bn,i for every 1 ≤ i < Mn (see Section III-B).
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