


a method of navigating partially-revealed environments in

minimum distance by modeling the problem as a Partially

Observable Markov Decision Process (POMDP), where op-

timal actions correspond to frontiers that lead directly to

the goal rather than lengthy detours or dead ends. Towards

a similar objective, [7] passes an occupancy grid encoding

a robot’s current knowledge of the environment through a

Convolutional Neural Network (CNN) and uses the output

to weigh frontiers based on their likelihood of leading to a

point of interest. While these works enable shorter-distance

navigation through unknown environments to a desired goal,

they crucially do not consider robot dynamics.
Another class of such works look to directly predict

the structure of the unknown environment. [8] represents

building floor plans as graphs, where nodes correspond to

rooms and edges indicate traversable paths, and proposes a

method of predicting extensions to the known environment

topology. Such an approach would be useful for improving

high-level routing, yet the graph representation of the en-

vironment is not amenable to low-level trajectory planning

for dynamic robots. [9], [10] more explicitly attempt to

predict an occupancy grid of the unknown environment

by comparing the robot’s current observations against a

collection of previously stored maps. The prediction process

compares the surroundings of an unexplored region with the

built map of explored regions. However, the accuracy and

feasibility of this prediction depends on the robot having

previously observed similar structure, hampering generaliza-

tion. Drawing inspiration from image inpainting literature

(e.g. [11], [12]), [13], [14] treat the problem of occupancy

grid prediction as one of image completion. These works

propose using CNNs which take as input an occupancy

grid of the observed environment and produce occupancy

predictions for the unknown regions as outputs. However, a

CNN-based approach requires that the inputs and outputs be

of some fixed sizes set at training time. Due to the dynamic

nature of navigation in unknown environments, available

information and desired outputs may vary. For example, in

confined environments a robot’s sensing is limited and only

a small subset of the CNN input would be required whereas

sparse environments would require much larger inputs to

provide enough context. Similarly, high-speed navigation

would require a significantly larger prediction region than

low-speed travel.
Several works have also sought to combine reasoning

about the unknown environment with planning. [15] proposes

a neural network architecture that is trained to learn a

mapping from first-person views to a discrete movement

action set (i.e. stay still, move forward, turn left/right), and

is capable of navigating novel environments. Yet, beyond

the limited action space, such an end-to-end learning-based

approach is effectively a black-box function which provides

little insight behind the robot’s reasoning for choosing a

particular action. [16] introduces a planner for dynamic,

high-speed navigation through unknown environments. The

planning problem is formulated as a POMDP where actions

are chosen from a library of motion primitives minimizing

time and collision probability. Reasoning about the unob-

served environment is implicitly performed via the prediction

of collision probabilities which are learned as a function of

the robot action and a set of hand-coded features encoding

the robot’s immediate observations. [17] proposes a similar

planner for visual navigation by mapping images and robot

actions to collision probabilities using a neural network.

While these works demonstrate significant performance gains

in terms of trajectory time, they crucially lack formal safety

guarantees.

Along the lines of combining map prediction and plan-

ning, [18] introduces a general framework for tackling this

problem and is closely related to this work. As such, we

formulate our motion problem according to this framework

and experimentally compare to a baseline algorithm which

is an instantiation of this framework.

Statement of Contributions: To address the problem of

motion planning in unknown environments, we make the

following three contributions: (1) We introduce a data-driven

approach to predicting structured environments (such as a

grid or maze-like hallway environment) in regions that are

occluded or beyond sensor range. In particular, our method

produces human-interpretable probabilistic map predictions

that can be passed to any general motion planning algorithm.

(2) We propose a method of incorporating these predictions

within a motion planning framework that guarantees robot

safety. This framework makes use of the predictions to

penalize trajectories passing through regions with a high

probability of occupancy. (3) We demonstrate, with extensive

numerical experiments, that using these predictions yields

a substantial improvement in trajectory time over a naı̈ve

frontier pursuit method and significant computation time

reduction over methods using more sophisticated frontier

selection heuristics. Our method uniquely addresses all four

aforementioned desiderata; it is capable of planning safe,

dynamically-constrained trajectories with low computation

times amenable to real-time performance.

III. PROBLEM FORMULATION

In order to more efficiently navigate unknown environ-

ments, we seek to predict the probability of occupancy at

some set of unobserved points in the environment given some

nearby observations as context. We then formulate a motion

planning problem seeking a safe trajectory minimizing a

desired cost function through these environments.

A. Map Prediction

We begin with the assumption that robot perception is

achieved via some range-limited line-of-sight mechanism

such as a lidar. We further assume that the robot’s per-

ception is incorporated within a deterministic occupancy

grid representation of the environment, encoding regions of

free, occupied and unknown space. Finally, we make the

assumption that the environment is static.

We consider the environment’s occupancy grid to be an n-

tuple random variable (Y1, . . . , Yn) whose elements represent

the occupancy at grid cell i and are described by some

unknown distribution. We denote yi ∈ Y = {0, 1} to be

a realization of Yi. We also define a map’s set of spatial

coordinates as the set X ∈ R
2, with the observed and

unobserved regions denoted by Xobs ⊂ X and Xun = X \
Xobs, respectively. We let the context set C = {(xi, yi)}i=1:c,

correspond to the set of c observed locations xj ∈ Xobs for





The encoding procedure involves using the encoding neu-

ral network, h(xi, yi), to produce embeddings ri for each of

the c context pairs (xi, yi) ∈ C. These embeddings are then

aggregated into a single conditioning representation vector r.

In the CNP formulation, this aggregation operation, a(r1:c),
may take the form of any commutative operation mapping

multiple vectors in R
d to a single vector in R

d. Finally, the

decoding network, g(xi, r) produces a vector of parameters,

φ, of a distribution over the occupancy of some xi ∈ T .

The encoding network was designed as a four-layer

fully-connected feedforward network to produce a 256-

dimensional ri. Each layer consists of 256 neurons with

Rectified Linear Unit (ReLU) activations. For the aggregation

operation, we choose to simply average the embeddings

since this operation weighs all information equally and en-

sures a similar magnitude between the embeddings and r—

characteristics beneficial to network stability once deployed.

Finally, the decoding network consists of another four-

layer fully-connected network with each layer consisting of

256 ReLU activated neurons. The final layer feeds into a

sigmoid output representing a scalar-valued φ. The model

was trained to minimize a negative log-likelihood loss func-

tion such that φ could be interpreted as parametrizing a

Bernoulli distribution over a target point’s occupancy. With

the predicted occupancy values in hand, we now describe

how we these predictions are incorporated within our motion

planning framework.

B. Motion Planning

For this work, we are interested in navigating unknown

environments in minimum-time and as such take c(σk, σu) to

represent the overall trajectory duration, T . We also choose

h(σu,Φ) = α

∫

su

1

1− Φ(su) + ǫ
dsu

which yields a higher cost for σu passing through regions

of high occupancy probability. Here, Φ(su) is a function

mapping the state su to a predicted occupancy, α is a scaling

parameter chosen to be 0.25 experimentally and ǫ is a small,

positive constant introduced to avoid singularities. In this

work we present one possible selection of c and h, but

we emphasize that the framework is general and alternative

choices may be selected depending on designer preferences.

We take a simple friction circle car as our system of

interest with dynamics

ms̈(t) =

[

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]

u(t)

where m is the car’s mass, θ is the car’s instantaneous

heading. The state s ∈ R
2 represents the robot position. The

control input u may be explicitly written as [ulong ulat]
⊺ with

the first and second components respectively representing

longitudinal and lateral forces in the vehicle body frame.

The friction circle constraint is expressed as

‖u‖ ≤ µmg
where µ is the friction coefficient and g is the gravitational

constant. A constraint specifying the minimum turning ra-

dius, Rmin, is also enforced as

ulat ≤ m
‖ṡ‖2

Rmin

.

We modeled our system after a radio-controlled (RC) car

with m = 2.5 kg, µ = 0.9, Rmin = 0.5 m.

To approximate solutions to (1) at each iteration, we

perform a grid search to find a reference path from the robot’s

position to the goal, smooth this path to be feasible under our

system’s dynamics and then optimize the speed profile for

minimum-time traversal. As compared to [18]’s use of the

sampling-based planner FMT* [21], we choose this decom-

posed motion planning strategy with practical realizability

(i.e. real-time computation requirements) in mind.

We use the A* search algorithm to find the path from

the robot’s position to the goal. We use the Euclidean

distance heuristic and treat obstacles as impenetrable within

the known region. Within the unknown region, we attempt

to account for the effect of h in the objective function by

multiplying the Euclidean distance heuristic by α/(1−φi+ǫ).
Using the A* path as a reference, we then solve the

convex optimization problem formulated by [22] to produce

a dynamically-feasible trajectory. This smoothing operation

begins by placing a sequence of “bubbles” about the points

constituting the A* reference path defining a collision-

free “tube.” Within this tube, the optimization problem is

formulated as to minimize the curvature of the path subject

to dynamic constraints. As an implementation consideration,

we compute bubble radii for the A* path in the known region

using the distance from the corresponding reference point to

the nearest obstacle. Since we do not know the locations of

the obstacles in the unknown regions, we select a constant,

relatively small bubble radius1 to ensure that the smoothed

trajectory does not excessively stray from the reference path.

Finally, the speed profile of this trajectory is optimized for

minimum time traversal by solving the convex optimization

problem presented by [23]. In order to ensure safety, we

enforce the additional constraint that the robot velocity must

be zero at the end of σk. We reason that, provided the robot

begins in a safe state and succeeds in planning a collision-

free trajectory in the manner described, it will always be able

to safely return to zero velocity within the known region

of the environment. If any of the optimizations returns an

infeasible solution at a particular iteration i, it would suffice

to execute the remainder of the trajectory σk,i−1 planned at

the previous iteration to safely bring the robot to rest.

V. EXPERIMENTS

We have trained a CNP model using data obtained from

a set of 75 randomly-generated, single-path maze environ-

ments consisting of frequent corners and U-turns with 2.5 m

hallways spanning a 25 m × 25 m area. To generate training

data, we sample 504 unoccupied points from each map and

simulate a 5 m range lidar scan. The spatial coordinates of

the visible occupancy grid cells, expressed relative to the

robot, and their occupancies then make up the context set C.

The target set T consists of the coordinates corresponding

to points in C in addition to the coordinates of unobserved

points within a 7.5 m radius about each frontier. Although

our goal is to teach the model to predict the map beyond the

frontiers, including observed points in T was found to benefit

prediction accuracy. The model was trained for 1,000,000

iterations using a batch size of 4.

1We have found values similar to the vehicle’s turn radius to perform
well as demonstrated in our experiments.
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