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Abstract— We study fundamental theoretical aspects of prob-
abilistic roadmaps (PRM) in the finite time (non-asymptotic)
regime. In particular, we investigate how completeness and
optimality guarantees of the approach are influenced by the
underlying deterministic sampling distribution X and connec-
tion radius r > 0. We develop the notion of (δ, ε)-completeness
of the parameters X , r, which indicates that for every motion-
planning problem of clearance at least δ > 0, PRM using X , r
returns a solution no longer than 1+ε times the shortest δ-clear
path. Leveraging the concept of ε-nets, we characterize in terms
of lower and upper bounds the number of samples needed to
guarantee (δ, ε)-completeness. This is in contrast with previous
work which mostly considered the asymptotic regime in which
the number of samples tends to infinity. In practice, we propose
a sampling distribution inspired by ε-nets that achieves nearly
the same coverage as grids while using fewer samples.

I. INTRODUCTION

The Probabilistic Roadmap Method (PRM) [1] is one of

the most widely used sampling-based technique for motion

planning. PRM generates a graph approximation of the full

free space of the problem, by generating a set of configura-

tion samples and connecting nearby samples when it is pos-

sible to move between configurations without collision using

straight-line paths. PRM is particularly suitable in multi-

query settings, where the workspace environment needs to

be preprocessed to answer multiple queries consisting of

different start and goal points. Recently PRM has been ap-

plied to challenging robotic settings, including manipulation

planning [2], inspection planning and coverage [3], task

planning [4], and multi-robot motion planning [5], [6]. PRM

is instrumental in many modern single-query planners, which

implicitly maintain a PRM graph and return a solution that

minimizes the path’s cost [7], [8], [9], [10], [11].

Extensive study of PRM’s theoretical properties quickly

followed its inception. The first question that occupied the

research community was whether PRM guarantees to find a

solution if one exists [12], [13], [14], and later on the quality

of the returned solution. Several works have established the

magnitude of the connection radius r sufficient to guarantee

the convergence of the solution returned by PRM to an opti-

mal solution [7], [15], [16]. However, the majority of works

addressing those two questions consider in their analysis the

(somewhat unrealistic) asymptotic regime, where the number

of samples n tends to infinity. The question of what are the

smallest values of n, r to guarantee a high-quality solution

in practice, i.e., when n is fixed, remains open.

Statement of Contributions: In this work we make progress

toward addressing the aforementioned question. In particular,

we study how the sample set X , and its cardinality n, as well

as the size of the connection radius r, affect completeness
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and optimality guarantees of PRM. We develop the notion of

(δ, ε)-completeness of the parameters X , r, which indicates

that for every motion-planning problem of clearance δ > 0,

PRM using X , r returns a solution no longer than 1 + ε times

the shortest path with at least δ clearance from the obstacles.

The concept of ε-nets [17] plays a key role in our contri-

butions in both the theory and application. From a theoretical

perspective, we leverage properties of ε-nets to characterize

in terms of lower and upper bounds the sample size and

connection radius needed to guarantee (δ, ε)-completeness.

This is in contrast with previous work which mostly con-

sidered the asymptotic regime in which the number of

samples tends to infinity. From an application perspective,

we leverage properties of ε-nets via a template method to

produce sample sets that efficiently cover the workspace. We

observe empirically that these sample sets offer nearly the

same coverage as grids while using fewer samples. Grids

are an important baseline because they are used widely

in practice and offer better coverage (i.e., dispersion) than

uniform random sampling [18]. The increased efficiency

provided by the template method over grids can improve the

runtime of PRM and related algorithms. An extended version

the paper provides additional information and missing proofs

[19] .

This paper is organized as follows. Related work is sur-

veyed in Section II. Preliminaries are discussed in Section III.

Section IV presents the main theoretical contributions and

Section V presents proof sketches for some of the results.

Numerical experiments comparing the efficiency of our ε-net

based template method to grids are presented in Section VI.

We summarize our work and discuss future directions in

Section VII.

II. RELATED WORK

We provide a literature review of results concerning the

theoretical properties of PRM. The majority of results apply to

the setting of a Euclidean configuration spaces, and samples

that are generated in a uniform and random fashion.

The the study of asymptotic optimality in sampling-based

planning was initiated in [15]. This paper proves that if

r > γ
(

logn
n

)1/d

, for some constant γ > 0, then the length

of the solution returned by PRM converges asymptotically

almost surely (a.a.s.), as the number of samples n→∞, to

length cost of the robust optimal solution. Such a connection

radius leads to a graph of size Θ(n log n), in contrast to

a size of Θ(n2) induced by a constant radius (as in [1]).

Subsequent work managed to further reduce the constant

γ [7], [20]. A recent paper [16] establishes the existence

of a critical connection radius r∗ = γ′ ( 1
n

)1/d
, where γ′ is

constant: if r < r∗ then PRM is guaranteed to fail (even when

n → ∞), and if r > r∗ then it is guaranteed to converge



a.a.s. to a near-optimal solution. A finite-time analysis of

PRM, providing probabilistic bounds for achieving a given

stretch factor 1 + ε for a fixed number of samples n and a

specific connection radius of the aforementioned form was

established in [21], [22]. An algorithm has stretch factor β if

it produces a solution whose length is no more than β times

the length of the optimal solution.

The aforementioned results assume a uniform random

sampling scheme. A recent work [18] establishes that us-

ing a low-dispersion deterministic sampling scheme (e.g.,

Halton and Sukharev sequences), asymptotic optimality is

achieved with a radius as small as f(n)
(
1
n

)1/d
, for any

limn→∞ f(n) =∞.

Two recent works [23], [24] consider non-Euclidean sys-

tems and develop sufficient conditions for asymptotic opti-

mality with uniform random sampling.

III. PRELIMINARIES

We provide several basic definitions. Given two points

x, y ∈ R
d, denote by ||x− y||p := (

∑d
i=1 |xi − yi|p)1/p

the `p distance between them. When p = 2 we obtain the

standard Euclidean distance. We denote the d-dimensional

`p ball with radius r > 0 centered at x ∈ R
d as Bp(x, r) :=

{y : ‖x− y‖p 6 r}. For a Euclidean set X , co (X ) denotes

its convex hull and vol(X ) to denote its volume.

A. Motion planning

Denote by C the configuration space of the robot, which,

by rescaling we will assume is [0, 1]d throughout this paper.

The free space F ⊂ C denotes all collision-free configura-

tions. A motion-planning problem is then specified by the

tuple (F , xstart, xgoal). The objective is to find a (continuous)

path p : [0, 1]→ [0, 1]d that a) moves the robot from the start

to goal location, i.e. p(0) = xstart, p(1) = xgoal and b) avoids

collisions with obstacles, i.e. p(t) ∈ F for all t ∈ [0, 1].
We measure the quality of a path p by its length `(p).

A crucial property of paths in sampling-based planning

is the notion of clearance. A motion-planning problem

(F , xstart, xgoal) has δ-clearance if there exists a path p :
[0, 1] → [0, 1]d with p(0) = xstart, p(1) = xgoal, and⋃

t∈[0,1] B2(p(t), δ) ⊂ F .

B. Probabilistic Roadmaps

We provide a formal definition of the Probabilistic

Roadmaps Method (PRM). For a given motion-planning

problemM := (F , xstart, xgoal), PRM generates a graph GM,

whose vertices and edges represent collision-free config-

urations and straight-line paths connecting configurations,

respectively.

The PRM graph induced by M,X , r is denoted by

GM(X , r) = (V,E). The vertices V are all collision-free

configurations in X∪{xstart, xgoal}. The (undirected) edges E
connect between every pair of vertices u, v ∈ V such that (i)

the distance between them is at most r, and (ii) the straight-

line path between them is entirely collision free. Formally,

V := (X ∪ {xstart, xgoal}) ∩ F ,

E :=
{

(u, v) ∈ V × V : ||u− v||
2
6 r, co ({u, v}) ⊂ F

}

.

C. Sampling distributions

The choice of sample set X has significant implications

on the properties of GM(X , r). We discuss two types of

sample sets, namely ε-nets and grids, that are particularly

useful for PRM. We use sample set and sample distribution

interchangeably when referring to X .

Definition 1 (ε-nets). A set B ⊂ R
d is a ε-net for a set

A ⊂ R
d if for every a ∈ A, there exists a b ∈ B so that

||a− b||2 6 ε.

As far as motion planning is concerned, ε-nets are good

candidates for deterministic sampling schemes since by def-

inition they have uniformly dense coverage over the entire

space. The low dispersion sequences mentioned in [18] (i.e.

Sukharev Grids) are special cases of ε-nets, and we will

show that studying these objects in full generality leads to

improved covering efficiency. Minimal ε-nets, i.e. nets with

the smallest possible cardinality, are then good candidates

for efficiently covering the entire space. We will make these

intuitions formal in the coming sections. Grids have long

seen use as sample sets in motion planning [25], so we

use grids as benchmarks against which we compare the

performance of sample sets inspired by ε-nets. We define a

Sukharev grid of [0, 1]d with spacing w to be the following

collection of points:

Xgrid(w) :=

{

x ∈ R
d :

xi

w
+

1

2
∈
{

1, 2, ...,
1

w

}

∀i
}

.

See Section IV-C for a detailed comparison between grid

sampling and ε-net sampling.

D. Completeness as a Benchmark

We will use the following benchmark to measure the

quality of samples set X and a connection radius.

Definition 2 ((δ, ε)-completeness). Given a samples set X
and a connection radius r, we say that the pair (X , r) is

(δ, ε)-complete if for every δ-clear M it holds that

dGM(X ,r) (xstart, xgoal) < (1 + ε) · OPTδ,

where dGM(X ,r) (xstart, xgoal) denotes the length of the short-

est path from start to goal in the graph GM(X , r), and OPTδ

is the length of the shortest δ-clear solution to M.

Note that ε =∞ corresponds to the case where finding a

feasible path is the only objective.

IV. SAMPLE COMPLEXITY OF PRM

Our main objective is to study the sample complexity of

PRM. For a clearance level δ > 0 and a stretch tolerance

ε > 0, we wish to find comprehensive conditions on when

a sample set X and connection radius r are (δ, ε)-complete.

The properties of ε-nets are central to our contributions to

this goal, as well as our experimental results in Section VI.

We focus on deterministic sampling but mention that our

techniques can be used to derive results for i.i.d. sampling

procedures as well, which show a poorer performance of

i.i.d. sampling, in line with the findings of [18]. As required

by our main objective, all of our results are presented in the

finite-sample, non-asymptotic setting.



Algorithm 1: Build-Net

1 Input: Set A, cover radius ε > 0;

2 Output: An ε-net B for A;

3 B ← ∅;
4 while A \ ∪b∈BB2(y, ε) 6= ∅ do

5 Find y ∈ A \ ∪b∈BB2(b, ε);
6 B ← B ∪ {y};
7 return B. ;

Algorithm 2: Epsilon Net Sampling (ENS)

1 Input: Sample size n, workspace dimension d,

stretch tolerance ε > 0, δ clearance parameter;

2 Output: Sample set X and connection radius r;

3 α← ε√
1+ε2

;

4 nδ ← min

{
√
πd

(√
2d
πe ·

1−(2−α)δ
αδ

)d

, n

}
;

5 δmin←
√

2d
πe

(√
πd
nδ

) 1
d

[
α−(2− α)

√
2d
πe

(√
πd
nδ

) 1
d

]−1

;

6 r ← 2
(
α+
√
1− α2

)
δmin;

7 X ← Build-Net([δmin, 1− δmin]
d, δmin);

8 return (X , r).

We will prove sufficient conditions on sample complexity

in a constructive way by exhibiting algorithms that achieve

the conditions. To this end, the Epsilon Net Sampling

(ENS) procedure presented in Algorithm 2 will be used to

certify the sufficient conditions. ENS leverages properties of

ε-nets to determine a connection radius r and net resolution

δmin. It then calls as a subroutine the Build-Net algorithm,

which constructs a δmin-net of the configuration space by

including points until a δmin-net is obtained, while ensuring

that all points included are at pairwise distance at least δmin.

In the next section, we will prove the efficacy of ENS which

in turn gives sufficient conditions on the complexity of PRM.

A. Main Results

The following theorem provides a necessary condition on

the size of a sample set X and radius r to be (δ, ε)-complete.

Theorem 1 (Necessary Conditions). Let X ⊂ [0, 1]d be a
set of n points and let δ > 0. If (X , r) is (δ,∞)-complete
then

n >

√

e

2

(

1− 2δ

1− 2δ

)

2
(

√

d− 1

2πe
· (1− 2δ)

δ

)d

and r > (1− 2δ)
(√

πd
)

1/d
√

d

2πe

(

1

n

)

1/d

.

In particular, any sample set smaller than the lower bound,

regardless of r and how the points are chosen, cannot be

(δ,∞)-complete. Next, we focus our efforts in finding (X , r)
with size and radius comparable to the lower bound from

Theorem 1, for which (δ, ε)-completeness is guaranteed. The

following theorem leverages ENS to achieve this goal.

Theorem 2 (Sufficient Conditions). Let ε > 0, δ > 0. If

n >
√
πd

(

√

2d

πe
· 1− (2− α)δ

αδ

)d

and

r > 2

(

1 +
1

ε

)

(√
πd
)

1/d
√

d

2πe

(

1

n

)

1/d

where α = ε√
1+ε2

, then ENS(n, d, δ) is (δ, ε)-complete.

See Section V for proof sketches of the sample size results

from Theorems 1 and 2. See [19] for the full proofs.

B. Discussion

A few comments are in order. The connection radius

condition in Theorem 2 generalizes the works of [15]

and [18] to finite sample settings. Concretely, choosing ε =
(log n)−1/d achieves asymptotic optimality with a radius

r = γ
(

logn
n

)1/d

, recovering the result of [15]. This is

because ε→ 0 as n→∞, and the minimum δ satisfying the

sample size condition in Theorem 2 goes to zero as n→∞.

More generally, for any diverging function f(n), choosing

ε = 1
f(n) recovers the asymptotic optimality condition r =

γf(n)n−1/d from [18].

Theorem 2 provides several other additions to the motion

planning literature. It provides guarantees on the stretch

factor achievable with finite n, which are not specified in

the aforementioned works. This result is actionable in the

sense that for a given δ and ε, it provides a sample size and

distribution guaranteed to find a solution with the desired

quality. Conversely, Theorem 2 can be used to certify of

hardness (or as a non-existence proof [26], [27]): for any

n, δ > 0 satisfying the condition in Theorem 2, if there

does not exist a feasible path in GM(X , r) where (X , r) =
ENS(n, d, δ), then M has clearance strictly less than δ.

We discuss the implications of our results on the sample

complexity of PRM. For small dimensions, i.e., d 6 4,

Theorem 2 shows that O(δ−d) samples are sufficient for

(δ,∞)-completeness, since ε = ∞ corresponds to α = 1.

Conversely, Theorem 1 shows that this sample complexity is

essentially optimal (up to a multiplicative constant factor) in

the sense that every (δ,∞)-complete (X , r) must have |X | =
Ω(δ−d). In high dimensions, the ratio between the sufficient

and necessary conditions on sample size is Ω(2d
√
d). Thus

when d is no longer a small constant, there is a significant

gap between the achievability result of Theorem 2 to the

lower bound on sample complexity given by Theorem 1.

Evaluating the Bounds: To give a sense of the sample size

conditions specified by Theorems 1 and 2, Table I evaluates

bounds for n = |X | with respect various values of δ, d, ε.
From this we observe a poor scaling with clearance level

δ, implying that PRM with classical sampling methods is

likely not the right tool for high dimensional, low clearance

motion-planning problems with low error tolerance (i.e.,

where success must be guaranteed). For example, if M is

a maze in d = 5 dimensions with path width 0.01 (i.e.

clearance δ = 0.005), then by Theorem 1, at least 9.2 · 109
samples are needed to ensure that PRM will find a solution

to the maze. A graph this size is beyond what can be stored

by modern computers.



TABLE I: Sample Complexity Examples

δ d Thm. 1 LB Thm. 2 UB
ε = ∞ ε = 1 ε = 0.25

0.25 4 0 252 669 22737
0.25 5 0 1430 4837 3.9 · 105

0.25 6 0 8781 37930 7.5 · 106

0.1 4 82 20411 7.15 · 104 4.2 · 106

0.1 5 570 3.48 · 105 1.66 · 106 2.6 · 108

0.1 6 4313 6.41 · 106 4.19 · 107 1.8 · 1010

0.05 4 2983 4.1 · 105 1.52 · 106 9.9 · 107

0.05 5 46201 1.46 · 107 7.62 · 107 1.4 · 1010

0.05 6 7.86 · 105 5.67 · 108 4.13 · 109 2.2 · 1012

The story is more optimistic for larger values of δ (i.e.,

problems with higher clearance) and lower dimensions.

When δ = 0.25, a feasible solution can be guaranteed (see

ε = ∞) with 8000 samples. For d = 4, δ = 0.1, a feasible

solution can be guaranteed with 20, 000 samples. In fact, a

stretch factor of 2 (see ε = 1) can be guaranteed in δ = 0.25
clearance with a similar sample size on the order of 104.

Theorem 2 reveals that, with the right sampling scheme,

PRM is guaranteed to find a solution efficiently and can do

so in real time. For smaller clearance levels like δ = 0.1, a

solution can be guaranteed with somewhere between 105 and

106 samples, depending on the dimension. A solution with

stretch factor 2 can be guaranteed by inflating the sample size

by an additional factor of 10. This is no longer acceptable

for real-time applications, but is still manageable for offline

preprocessing if the environment will be queried many times,

allowing for a cheap amortized cost.

While many practical robotic systems are high dimen-

sional, i.e., d > 6, some application instances naturally

admit decoupling of the degrees of freedom of the system,

which induces lower-dimensional configuration subspaces.

For instance, manipulation problems (see, e.g., [2]) can be

typically decomposed into a sequence of tasks where the

manipulator is driving toward an object (while fixing its

arms), then moves an arm towards the object, and finally

grasps it by actuating its fingers. Additionally, in some set-

tings prior knowledge about the structure of the environment

or a lower-dimensional space can inform sampling in the

full configuration space, which can lead to more informative

sampling distributions [28], [29], [30], [31]. Therefore, while

PRM with classical sampling methods may not be the right

tool for solving an entire motion planning problem, it can

still be useful for solving subtasks in heirarchical task models

or covering latent spaces efficiently.

C. Implications for Grid Sampling

The achievability result from Theorem 2 is obtained by

using ENS. In this section we provide sufficient conditions

on sample size for PRM to be (δ, ε)-complete when using grid

sampling. Such a result serves as a benchmark for the pro-

posed sampling algorithm ENS, and may be of independent

interest as grids are commonly used in motion planning.

Corollary 1 (Sufficient Conditions for Grid Sampling).
Take r to satisfy the connection radius condition given in

Theorem 2. Then
(
Xgrid

(
2αδ√

d

)
, r
)

is (δ, ε)-complete and

∣

∣

∣

∣

Xgrid

(

2αδ√
d

)∣

∣

∣

∣

=

(√
d

2
· 1− 2δ

αδ

)d

, where α =
ε√

1 + ε2
.

See [19] for a proof of corollary 1.

One natural comparison to make then is between the qual-

ity of coverage offered by grids versus ε-net approaches like

Build-Net. A high resolution grid is in fact an example

of an ε-net. There is, however, one key distinction between

a grid and general ε-nets. Technically, a grid is a covering of

the space using `∞ balls, whereas ε-nets provide coverings

via `2 balls. Grids obtain their status as ε-nets through norm

equivalence, i.e. ||x||∞ 6 ||x||2 6
√
d ||x||∞ ∀x ∈ R

d. The

`2 norm is more prevalent than `∞ in the motion planning

literature as δ-clearance and connection radius conditions are

both stated with respect to Euclidean distance. It stands to

reason that general ε-nets would provide a more efficient

sampling strategy for motion planning problems and algo-

rithms that are specified by `2 distance. Corollary 1 providing

a worse (i.e. larger) sufficient condition than Theorem 2

corroborates this intution. Furthermore, in this section we

show that, under the condition ε <
√

πe
8 − 1 ≈ 0.033, there

exist ε-nets that are asymptotically (as ε→ 0, d→∞) more

efficient than grids when it comes to covering the space with

`2 balls.

Lemma 1 (Net size and Grid size). Xgrid(w) is an ε-net if

and only if w 6
2ε√
d

, thus the smallest grid that is also

an ε-net is Xgrid

(
2ε√
d

)
. If X is an ε-net obtained from

Build-Net([0, 1]d, ε), then we have

|X |
∣

∣

∣
Xgrid

(

2ε
√
d

)∣

∣

∣

6
√
πd

(
√
8 (1 + ε)√

πe

)d

.

See [19] for a proof of Lemma 1. When ε <
√

πe
8 − 1

we have
√
8(1+ε)√

πe
< 1, hence the ratio given by Lemma 1

goes to zero as d → ∞. We can then conclude that there

exist ε-nets that are more efficient than grids for high di-

mensional problems. For lower dimensions, the upper bound

from Lemma 1 is larger than 1. We suspect however, that

the bound is loose in this regime and that ε-nets remain

competitive with grids even for small dimensions. To test our

hypothesis, we conduct an empirical comparison between ε-
net inspired sample sets and grids in Section VI.

For some intuition as to why ε-nets provide more effi-

cient coverage than grids in high dimensions, we note that

Algorithm 1 returns an ε-net X whose points are pairwise

at distance at least ε. The grid on the other hand, has

spacing at most 2ε√
d

. The shrinkage factor of O
(

1√
d

)
is

precisely from the error in approximating `2 by `∞. Since

the minimum separation in the grid is smaller, the balls

in ∪x∈Xgrid(2ε/
√
d)B2(x, ε) overlap more than the balls in

∪x∈XB2(x, ε) and thus lead to less efficient coverage.

V. PROOF SKETCHES

In this section we sketch the proofs of the sample size

conditions in Theorems 1 and 2. To set the stage, we first

discuss the cardinality of minimal ε-nets, which play a key

role in the proofs. The following result provides upper and

lower bounds on the size of minimal nets.

Theorem 3 (Cardinality of ε-nets). Let A ⊂ R
d be a set.





Fig. 2: Left: A grid of width 8 in d = 2 dimensions can be represented
by repeating a grid of width 2 a total of 16 times. Right: More generally,
any T := (x1, x2, x3) which forms an ε-net of [0, 1

4
]2 can be replicated

16 times to attain an ε-net of [0, 1]2.

since scaling it and replicating it appropriately can create

ε-nets of arbitrary resolution and size. Since rescaling and

replication are compuationally cheap, the sample sets can be

computed online so long as the templates are precomputed.

Due to this versatility, it is acceptable for the computation

of these templates to be done offline.

With this in mind our goal is to find templates of small

cardinality for a large range of problem dimensions. Our

benchmark will be a grid with spacing w := 2ε√
d

, since we

showed in Lemma 1 that a grid is an ε-net if and only if its

spacing is at most w. The cube [0, kw]d is covered by a grid

of spacing w with exactly kd points. See Fig. 2 for a 2D

example. Thus our goal is to find a ε-net of [0, kw]d with

fewer than kd points. This problem is homogeneous in ε, so

by re-scaling, this is equivalent to finding a
√
d

2k -net of [0, 1]d

using fewer than kd points. Moreover, since grids themselves

are periodic, the ratio of sizes of the sample set obtained by

repeating T to the grid will also be |T | /kd.

Certifying that T is a
√
d

2k -net of [0, 1]d is nontrivial be-

cause there are infinitely many conditions to satisfy. Instead

we sample a large collection of points V uniformly at random

from [0, 1]d, and obtain a
√
d

2k -net of those points via the

output of Build-Net(V,
√
d

2k ). The resulting set of points

T may not be a
√
d

2k -net of [0, 1]d since it is only certified to

be a ε-net of the set of densely sampled points. We say a point

is uncovered by T if its nearest neighbor in T is at distance

more than
√
d

2k . We verify using Monte Carlo simulation that

only a negligible fraction of [0, 1]d is uncovered.

B. Numerical Results

We created templates T using the procedure described

in the previous section for various values of dimension d
and k. We recorded the size of the resulting template and

the empirical estimate p̂ on the volume of uncovered space.

For each trial, p̂ was computed via Monte Carlo with 10

million samples. The ratio between |T | and the size of the

grid benchmark, kd, is denoted as ρ. An efficient sample set

T will lead to a small value of ρ. Table II summarizes the

results of this experiment.

C. Discussion

From Table II we see that the relative efficiency compared

to the grid, ρ, improves as the dimension grows. This

observation is consistent with the asymptotic implications of

Lemma 1. For all dimensions, the value of p̂ is on the order of

TABLE II: Template sizes for various dimensions

k = 2 k = 3
d |T | ρ p̂ |T | ρ p̂

4 15 0.93 3.7 · 10−2 77 0.95 1.4 · 10−2

5 27 0.84 3.3 · 10−2 189 0.77 5.7 · 10−3

6 57 0.89 5.5 · 10−3 457 0.63 2.4 · 10−3

7 105 0.82 3.1 · 10−3 1078 0.50 1.4 · 10−3

8 173 0.68 1.6 · 10−3 2477 0.38 6.4 · 10−4

9 291 0.58 1.3 · 10−3 5650 0.29 2.6 · 10−4

10−3, which means that the templates are
√
d

2k -nets of almost

the entire space. Notice that the achieved value of ρ is better

when k = 3 than when k = 2 across all tested dimensions.

This is because the Build-Net procedure does not exploit

the fact that T will be used in a periodic manner. Simply put,

there are covering inefficiencies at the boundaries when tem-

plates are used in a periodic manner. When covering [0, 1]d

with larger templates, there are fewer boundaries between

individual template replicas, and thus fewer instances where

this boundary inefficiency exists. This reveals a natural trade-

off between computation and sample efficiency. Indeed, the

cover radius
√
d

2k is a decreasing function of k, meaning it is

more difficult computationally to find templates for larger k.

Thus using small k is computationally cheap, but as Table II

shows, the quality of the template is worse than what would

be obtained for larger k. Looking at the extremes, k = 1

corresponds to the grid, and k =
√
d

2ε corresponds to finding

an ε-net of [0, 1]d without exploiting templates or periodic

translation in any way.

VII. CONCLUSION AND FUTURE WORK

We made progress in the characterization of sample com-

plexity of PRM. We provided lower bounds on the sample size

that is necessary for (δ, ε)-complete sampling algorithms.

We then complemented the lower bound with achievability

results by analyzing ε-net and grid based sampling schemes.

These sampling schemes are then showed to attain, up to

constant factors, the optimal sample complexity for lower

dimensional problems. Through numerical experiments we

exhibited an ε-net inspired sampling strategy, termed tem-

plating, that offers nearly the same coverage quality as grids

while using significantly fewer samples.

There are several interesting directions for future research.

First, the gap between the sufficient and necessary conditions

for (δ, ε)-completeness is dimension dependent. In high

dimensions, the characterization is no longer tight, and the

precise dependence of sample complexity on dimension is

not yet known. In fact, the gap in our results is due to the

gap in characterization of ε-net sizes in Theorem 3, thus

closing that gap would have implications for our results.

Second, while the templates proposed in our experiments

show nearly the same coverage quality as grids, they may

not be true ε-nets since they are only certified to be an ε-net

of a large subset of the space. While we showed empirically

that the volume of uncovered points is typically on the order

of 10−3, we wish to build templates that are certifiably ε-nets

for the whole space while retaining reduced size observed

in our experiments. Since Build-Net is used in both our

theoretical and experimental results, a better algorithm for

constructing ε-nets would improve results both in theory and

practice.
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