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Abstract— We study fundamental theoretical aspects of prob-
abilistic roadmaps (PRM) in the finite time (non-asymptotic)
regime. In particular, we investigate how completeness and
optimality guarantees of the approach are influenced by the
underlying deterministic sampling distribution X and connec-
tion radius 7 > 0. We develop the notion of (9, €)-completeness
of the parameters X, , which indicates that for every motion-
planning problem of clearance at least § > 0, PRM using X, »
returns a solution no longer than 1+ € times the shortest §-clear
path. Leveraging the concept of e-nets, we characterize in terms
of lower and upper bounds the number of samples needed to
guarantee (4, €)-completeness. This is in contrast with previous
work which mostly considered the asymptotic regime in which
the number of samples tends to infinity. In practice, we propose
a sampling distribution inspired by e-nets that achieves nearly
the same coverage as grids while using fewer samples.

I. INTRODUCTION

The Probabilistic Roadmap Method (PRM) [1] is one of
the most widely used sampling-based technique for motion
planning. PRM generates a graph approximation of the full
free space of the problem, by generating a set of configura-
tion samples and connecting nearby samples when it is pos-
sible to move between configurations without collision using
straight-line paths. PRM is particularly suitable in multi-
query settings, where the workspace environment needs to
be preprocessed to answer multiple queries consisting of
different start and goal points. Recently PRM has been ap-
plied to challenging robotic settings, including manipulation
planning [2], inspection planning and coverage [3], task
planning [4], and multi-robot motion planning [5], [6]. PRM
is instrumental in many modern single-query planners, which
implicitly maintain a PRM graph and return a solution that
minimizes the path’s cost [7], [8], [9], [10], [11].

Extensive study of PRM’s theoretical properties quickly
followed its inception. The first question that occupied the
research community was whether PRM guarantees to find a
solution if one exists [12], [13], [14], and later on the quality
of the returned solution. Several works have established the
magnitude of the connection radius r sufficient to guarantee
the convergence of the solution returned by PRM to an opti-
mal solution [7], [15], [16]. However, the majority of works
addressing those two questions consider in their analysis the
(somewhat unrealistic) asymptotic regime, where the number
of samples n tends to infinity. The question of what are the
smallest values of n,r to guarantee a high-quality solution
in practice, i.e., when n is fixed, remains open.

Statement of Contributions: In this work we make progress
toward addressing the aforementioned question. In particular,
we study how the sample set X, and its cardinality n, as well
as the size of the connection radius r, affect completeness
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and optimality guarantees of PRM. We develop the notion of
(6, €)-completeness of the parameters X', r, which indicates
that for every motion-planning problem of clearance § > 0,
PRM using X, r returns a solution no longer than 1 + € times
the shortest path with at least § clearance from the obstacles.

The concept of e-nets [17] plays a key role in our contri-
butions in both the theory and application. From a theoretical
perspective, we leverage properties of e-nets to characterize
in terms of lower and upper bounds the sample size and
connection radius needed to guarantee (0, €)-completeness.
This is in contrast with previous work which mostly con-
sidered the asymptotic regime in which the number of
samples tends to infinity. From an application perspective,
we leverage properties of e-nets via a template method to
produce sample sets that efficiently cover the workspace. We
observe empirically that these sample sets offer nearly the
same coverage as grids while using fewer samples. Grids
are an important baseline because they are used widely
in practice and offer better coverage (i.e., dispersion) than
uniform random sampling [18]. The increased efficiency
provided by the template method over grids can improve the
runtime of PRM and related algorithms. An extended version
the paper provides additional information and missing proofs
[19] .

This paper is organized as follows. Related work is sur-
veyed in Section II. Preliminaries are discussed in Section III.
Section IV presents the main theoretical contributions and
Section V presents proof sketches for some of the results.
Numerical experiments comparing the efficiency of our e-net
based template method to grids are presented in Section VI.
We summarize our work and discuss future directions in
Section VII.

II. RELATED WORK

We provide a literature review of results concerning the
theoretical properties of PRM. The majority of results apply to
the setting of a Euclidean configuration spaces, and samples
that are generated in a uniform and random fashion.

The the study of asymptotic optimality in sampling-based
planning was initiated in [15]. This paper proves that if

logn

r>y ( o
of the solution returned by PRM converges asymptotically
almost surely (a.a.s.), as the number of samples n — oo, to
length cost of the robust optimal solution. Such a connection
radius leads to a graph of size ©(nlogn), in contrast to
a size of ©(n?) induced by a constant radius (as in [1]).
Subsequent work managed to further reduce the constant
v [7], [20]. A recent paper [16] establishes the existence
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of a critical connection radius 7* =~/ (1) /% where ~' is
constant: if 7 < r* then PRM is guaranteed to fail (even when

n — 00), and if 7 > r* then it is guaranteed to converge

, for some constant v > 0, then the length



a.a.s. to a near-optimal solution. A finite-time analysis of
PRM, providing probabilistic bounds for achieving a given
stretch factor 1 4 ¢ for a fixed number of samples n and a
specific connection radius of the aforementioned form was
established in [21], [22]. An algorithm has stretch factor [ if
it produces a solution whose length is no more than 3 times
the length of the optimal solution.

The aforementioned results assume a uniform random
sampling scheme. A recent work [18] establishes that us-
ing a low-dispersion deterministic sampling scheme (e.g.,
Halton and Sukharev sequences), asymptotic optimality is

achieved with a radius as small as f(n) (%)1/ ‘. for any

lim,, o f(n) = 0.

Two recent works [23], [24] consider non-Euclidean sys-
tems and develop sufficient conditions for asymptotic opti-
mality with uniform random sampling.

III. PRELIMINARIES

We provide several basic definitions. Given two points
x,y € R?, denote by ||z —yll, = (Z,‘;:l lzs — ;")
the /,, distance between them. When p = 2 we obtain the
standard Euclidean distance. We denote the d-dimensional
¢, ball with radius r > 0 centered at = € R? as B,(z,7) :=
{y : ||z — y|l, < r}. For a Euclidean set X, co (X’) denotes
its convex hull and vol(&X) to denote its volume.

A. Motion planning

Denote by C the configuration space of the robot, which,
by rescaling we will assume is [0, 1]¢ throughout this paper.
The free space F C C denotes all collision-free configura-
tions. A motion-planning problem is then specified by the
tuple (F, Zsart, Leoar). The objective is to find a (continuous)
path p : [0,1] — [0, 1] that a) moves the robot from the start
to goal location, i.e. p(0) = Zsart, P(1) = Zgou and b) avoids
collisions with obstacles, i.e. p(t) € F for all ¢t € [0, 1].

We measure the quality of a path p by its length ¢(p).
A crucial property of paths in sampling-based planning
is the notion of clearance. A motion-planning problem
(F, Zstart, Tgoa1) has d-clearance if there exists a path p :
[07 1] - [Oa l]d with p(O) = Tstart» p(l) = Zgoal and
Usepo,1) B2(p(t),0) C F.

B. Probabilistic Roadmaps

We provide a formal definition of the Probabilistic
Roadmaps Method (PRM). For a given motion-planning
problem M := (F, Tstart, Tgoa), PRM generates a graph Gy,
whose vertices and edges represent collision-free config-
urations and straight-line paths connecting configurations,
respectively.

The PRM graph induced by M, X, r is denoted by
Gm(X,r) = (V,E). The vertices V are all collision-free
configurations in X' U{Zar, Tgou }- The (undirected) edges E
connect between every pair of vertices u,v € V such that (i)
the distance between them is at most r, and (ii) the straight-
line path between them is entirely collision free. Formally,

V= (X @] {mslartyxgoal}) N ]:,
E:={(u,v) €V xV:|lu—vl|, <rco({u,v}) CF}.

C. Sampling distributions

The choice of sample set X’ has significant implications
on the properties of Gaq(X,r). We discuss two types of
sample sets, namely e-nets and grids, that are particularly
useful for PRM. We use sample set and sample distribution
interchangeably when referring to X.

Definition 1 (e-nets). A set B C R? is a e-net for a set
A c RY if for every a € A, there exists a b € B so that
lla—bll <e

As far as motion planning is concerned, e-nets are good
candidates for deterministic sampling schemes since by def-
inition they have uniformly dense coverage over the entire
space. The low dispersion sequences mentioned in [18] (i.e.
Sukharev Grids) are special cases of e-nets, and we will
show that studying these objects in full generality leads to
improved covering efficiency. Minimal e-nets, i.e. nets with
the smallest possible cardinality, are then good candidates
for efficiently covering the entire space. We will make these
intuitions formal in the coming sections. Grids have long
seen use as sample sets in motion planning [25], so we
use grids as benchmarks against which we compare the
performance of sample sets inspired by e-nets. We define a
Sukharev grid of [0, 1]¢ with spacing w to be the following
collection of points:

X; 1 1 3
Xeria(w) = {:p cR?: w + 5 S {1,27 e E}Vz} .

See Section I'V-C for a detailed comparison between grid
sampling and e-net sampling.

D. Completeness as a Benchmark

We will use the following benchmark to measure the
quality of samples set X and a connection radius.

Definition 2 ((J, €)-completeness). Given a samples set X
and a connection radius r, we say that the pair (X,r) is
(6, €)-complete if for every d-clear M it holds that

dGM (x,r) (Zstarta mgoal) < (1 + E) : OPT(;,

where dg ,, (x,r) (Tstart; Tgoal) denotes the length of the short-
est path from start to goal in the graph G (X, 7), and OPT
is the length of the shortest j-clear solution to M.

Note that € = oo corresponds to the case where finding a
feasible path is the only objective.

IV. SAMPLE COMPLEXITY OF PRM

Our main objective is to study the sample complexity of
PRM. For a clearance level § > 0 and a stretch tolerance
€ > 0, we wish to find comprehensive conditions on when
a sample set X' and connection radius r are (9, €)-complete.
The properties of e-nets are central to our contributions to
this goal, as well as our experimental results in Section VI.

We focus on deterministic sampling but mention that our
techniques can be used to derive results for i.i.d. sampling
procedures as well, which show a poorer performance of
ii.d. sampling, in line with the findings of [18]. As required
by our main objective, all of our results are presented in the
finite-sample, non-asymptotic setting.



Algorithm 1: Build-Net

1 Input: Set A, cover radius € > 0;
2 Output: An e-net B for A,

3 B« 0

4 while A\ UpepBa(y,€) # 0 do

5

6

7

Find y € A\ UpepBa(b,€);
B+ Bu{y};
return . ;

Algorithm 2: Epsilon Net Sampling (ENS)

1 Input: Sample size n, workspace dimension d,
stretch tolerance € > 0, J clearance parameter;
2 Output: Sample set X and connection radius 7;

€ .
3 o< Tres

ng < min {\/ﬁ (\/g l(iﬁa)é>d,n};
b () oo ()]

e ng

r 4 2 (a+ V1= 0a2) min;
7 X + Build-Net ([0min, 1
8 return (X, r).

N
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Ul

=)
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We will prove sufficient conditions on sample complexity
in a constructive way by exhibiting algorithms that achieve
the conditions. To this end, the Epsilon Net Sampling
(ENS) procedure presented in Algorithm 2 will be used to
certify the sufficient conditions. ENS leverages properties of
e-nets to determine a connection radius r and net resolution
Omin- It then calls as a subroutine the Bui 1d—Net algorithm,
which constructs a Jpi,-net of the configuration space by
including points until a d,,-net is obtained, while ensuring
that all points included are at pairwise distance at least dpy,.
In the next section, we will prove the efficacy of ENS which
in turn gives sufficient conditions on the complexity of PRM.

A. Main Results

The following theorem provides a necessary condition on
the size of a sample set X’ and radius 7 to be (9, €)-complete.

Theorem 1 (Necessary Conditions). Let X C [0,1]¢ be a
set of n points and let § > 0. If (X,r) is (9, 00)-complete

then
295 \2( [d=1 (1-2\"
ns ¢ (1 -1 (1-26)
2 1-26 ore 5

and 1 > (1 — 26) (\/ﬁ)ud 4 (1)1/d.

2me \n

In particular, any sample set smaller than the lower bound,
regardless of r and how the points are chosen, cannot be
(9, 00)-complete. Next, we focus our efforts in finding (X, )
with size and radius comparable to the lower bound from
Theorem 1, for which (J, €)-completeness is guaranteed. The
following theorem leverages ENS to achieve this goal.

Theorem 2 (Sufficient Conditions). Let € > 0,0 > 0. If

n>m<\/i71—<25—a>6> »
7"22(14_%) (m)l/d\/gaiy/d

A= then ENS(n,d,d) is (0, €)-complete.

See Section V for proof sketches of the sample size results
from Theorems | and 2. See [19] for the full proofs.

where o =

B. Discussion

A few comments are in order. The connection radius
condition in Theorem 2 generalizes the works of [15]
and [18] to finite sample settings. Concretely, choosing € =
(logn)~'/? achieves asymptotic optimality with a radius

n
because ¢ — 0 as n — oo, and the minimum ¢ satisfying the
sample size condition in Theorem 2 goes to zero as n — co.
More generally, for any diverging function f(n), choosing
L) recovers the asymptotic optimality condition r =
v f(n)n=/¢ from [18].

Theorem 2 provides several other additions to the motion
planning literature. It provides guarantees on the stretch
factor achievable with finite n, which are not specified in
the aforementioned works. This result is actionable in the
sense that for a given § and e, it provides a sample size and
distribution guaranteed to find a solution with the desired
quality. Conversely, Theorem 2 can be used to certify of
hardness (or as a non-existence proof [26], [27]): for any
n,d > 0 satisfying the condition in Theorem 2, if there
does not exist a feasible path in G (X, r) where (X,r) =
ENS(n,d,d), then M has clearance strictly less than J.

We discuss the implications of our results on the sample
complexity of PRM. For small dimensions, ie., d < 4,
Theorem 2 shows that O(6~¢) samples are sufficient for
(6, 00)-completeness, since ¢ = oo corresponds to o = 1.
Conversely, Theorem 1 shows that this sample complexity is
essentially optimal (up to a multiplicative constant factor) in
the sense that every (4, co)-complete (X, ) must have | X'| =
Q(6~9). In high dimensions, the ratio between the sufficient
and necessary conditions on sample size is (2%/d). Thus
when d is no longer a small constant, there is a significant
gap between the achievability result of Theorem 2 to the
lower bound on sample complexity given by Theorem 1.

d
r o= (log") , recovering the result of [15]. This is

€ =

Evaluating the Bounds: To give a sense of the sample size
conditions specified by Theorems 1 and 2, Table I evaluates
bounds for n = |X| with respect various values of ¢, d, e.

From this we observe a poor scaling with clearance level
0, implying that PRM with classical sampling methods is
likely not the right tool for high dimensional, low clearance
motion-planning problems with low error tolerance (i.e.,
where success must be guaranteed). For example, if M is
a maze in d = 5 dimensions with path width 0.01 (i.e.
clearance § = 0.005), then by Theorem 1, at least 9.2 - 10°
samples are needed to ensure that PRM will find a solution
to the maze. A graph this size is beyond what can be stored
by modern computers.



TABLE I: Sample Complexity Examples

5 d | Thm. I LB Thm. 2 UB
€= 00 e=1 e =0.25

025 4 0 252 669 22737
025 5 0 1430 4837 3.9.10°
025 6 0 8781 37930 7.5-10°
01 4 82 20411 7.15 - 10% 4.2-10°
01 5 570 3.48-.10°  1.66-10° 2.6 - 108
0.1 6 4313 6.41-10° 4.19-107 1.8-100
0.05 4 2983 4.1-10° 1.52 - 10° 9.9-107
0.05 5 46201 1.46-107  7.62-107 1.4-10%
0.05 6 | 7.86-10° | 5.67-108 4.13-10° 2.2-10%°

The story is more optimistic for larger values of § (i.e.,
problems with higher clearance) and lower dimensions.
When § = 0.25, a feasible solution can be guaranteed (see
€ = oo) with 8000 samples. For d = 4,§ = 0.1, a feasible
solution can be guaranteed with 20,000 samples. In fact, a
stretch factor of 2 (see ¢ = 1) can be guaranteed in 6 = 0.25
clearance with a similar sample size on the order of 10
Theorem 2 reveals that, with the right sampling scheme,
PRM is guaranteed to find a solution efficiently and can do
so in real time. For smaller clearance levels like 6 = 0.1, a
solution can be guaranteed with somewhere between 10° and
10% samples, depending on the dimension. A solution with
stretch factor 2 can be guaranteed by inflating the sample size
by an additional factor of 10. This is no longer acceptable
for real-time applications, but is still manageable for offline
preprocessing if the environment will be queried many times,
allowing for a cheap amortized cost.

While many practical robotic systems are high dimen-
sional, i.e., d > 6, some application instances naturally
admit decoupling of the degrees of freedom of the system,
which induces lower-dimensional configuration subspaces.
For instance, manipulation problems (see, e.g., [2]) can be
typically decomposed into a sequence of tasks where the
manipulator is driving toward an object (while fixing its
arms), then moves an arm towards the object, and finally
grasps it by actuating its fingers. Additionally, in some set-
tings prior knowledge about the structure of the environment
or a lower-dimensional space can inform sampling in the
full configuration space, which can lead to more informative
sampling distributions [28], [29], [30], [31]. Therefore, while
PRM with classical sampling methods may not be the right
tool for solving an entire motion planning problem, it can
still be useful for solving subtasks in heirarchical task models
or covering latent spaces efficiently.

C. Implications for Grid Sampling

The achievability result from Theorem 2 is obtained by
using ENS. In this section we provide sufficient conditions
on sample size for PRM to be (§, €)-complete when using grid
sampling. Such a result serves as a benchmark for the pro-
posed sampling algorithm ENS, and may be of independent
interest as grids are commonly used in motion planning.
Corollary 1 (Sufficient Conditions for Grid Sampling).
Take r to satisfy the connection radius condition given in

Theorem 2. Then (Xg,id <@) 77“) is (0, €)-complete and

Vd

d
X<2706>‘— ﬁ.l_% where o = ————
grid \/& - 2 ad ) - /714—62.

See [19] for a proof of corollary I.

One natural comparison to make then is between the qual-
ity of coverage offered by grids versus e-net approaches like
Build-Net. A high resolution grid is in fact an example
of an e-net. There is, however, one key distinction between
a grid and general e-nets. Technically, a grid is a covering of
the space using {, balls, whereas e-nets provide coverings
via {5 balls. Grids obtain their status as e-nets through norm
equivalence, i.e. ||z||, < ||z]|, < Vd||z||, Yz € R The
{5 norm is more prevalent than £, in the motion planning
literature as d-clearance and connection radius conditions are
both stated with respect to Euclidean distance. It stands to
reason that general e-nets would provide a more efficient
sampling strategy for motion planning problems and algo-
rithms that are specified by ¢ distance. Corollary 1 providing
a worse (i.e. larger) sufficient condition than Theorem 2
corroborates this intution. Furthermore, in this section we
show that, under the condition € < \/%T — 1~ 0.033, there
exist e-nets that are asymptotically (as € — 0,d — o) more
efficient than grids when it comes to covering the space with
{5 balls.

Lemma 1 (Net size and Grid size). X,.q(w) is an e-net if
and only if w < %, thus the smallest grid that is also

an e-net is Xgig (% . If X is an e-net obtained from

Build-Net([0,1]%€), then we have

X g (VB
(] )

See [19] for a proof of Lemma 1. When € < 1/% -1

we have % < 1, hence the ratio given by Lemma 1

goes to zero as d — oo. We can then conclude that there
exist e-nets that are more efficient than grids for high di-
mensional problems. For lower dimensions, the upper bound
from Lemma 1 is larger than 1. We suspect however, that
the bound is loose in this regime and that e-nets remain
competitive with grids even for small dimensions. To test our
hypothesis, we conduct an empirical comparison between e-
net inspired sample sets and grids in Section VI.

For some intuition as to why e-nets provide more effi-
cient coverage than grids in high dimensions, we note that
Algorithm | returns an e-net X whose points are pairwise

at distance at least €. The grid on the other hand, has

spacing at most %.
precisely from the error in approximating /5 by /... Since
the minimum separation in the grid is smaller, the balls
in Uy 2 vayBz(z,€) overlap more than the balls in

Uzex Ba(z, €) and thus lead to less efficient coverage.

. 1 .
The shrinkage factor of O (ﬁ) 1s

V. PROOF SKETCHES

In this section we sketch the proofs of the sample size
conditions in Theorems 1 and 2. To set the stage, we first
discuss the cardinality of minimal e-nets, which play a key
role in the proofs. The following result provides upper and
lower bounds on the size of minimal nets.

Theorem 3 (Cardinality of e-nets). Let A C R? be a set.



1) Every e-net of A nglst have cardinality at least

vol(A)m< il)

27e €

2) There exists a e-net of A with cardinality at most
vol (A ® By (1, £)) v/ (,/3{5) .

Where A ® B = {a+b:a€ A be B} denotes the
Minkowski sum of the sets A and 5. See [32] for a proof
of Theorem 3. The Build-Net procedure outlined by
Algorithm 1 is one particular way to generate an e-net with
property 2 of Theorem 3.

A. Proof Sketch for Theorem 1
The outline for the proof sketch is as follows. (1) Suppose
the sample set {z;};_, has size n < V7d(/52 15—5‘6)‘1.

2me

(2) By part 1 of Theorem 3, {z;},_, cannot be a 2§-net
of [25,1 — 25]%. (3) This means that there exists some
y so that {z;} ; N Ba(y,20) = (. Furthermore, since
y € [20,1 — 20]%, we have Bs(y,26) C [0,1]¢. (4) Con-
sider the motion planning problem M := (F, Zstart, Tooal ):
The black dot is y, Tgurt = Yy —
de1, Tgoa = Y+deq ({ei}?zl are
the standard basis vectors for
R?.) are depicted by the green
and blue dots respectively, and
the obstacle set F := {y} U
{z ||z —yl||, = 26} is shown
in black. This problem is J-
clear, and a solution trajectory
is shown in pink. There is,
however, no way to reach Tguq
from Zgue in Gaq. This is because the obstacle {y}
blocks the edge between Ty and the Tgea, and the shell
{z : ||z — y||, = 26} blocks any edges from {Zgtari, Zeoa } tO
{x;}!_,, since the points {z;}.__, are outside of Ba(y, 26).
Thus, the nodes i, Tgoal Will have no neighbors in G o4.
We conclude that, regardless of the value of r, no sample

set of size n < V7wd(4/ %Clg—gm)d can be (d, 00)-complete

in [0, 1]%. The proof of Theorem 1 uses this idea but packs
the space using a torus instead of a ball. Since a similar
argument can be done using the torus, and the torus used
has smaller volume than the ball, more tori can be packed,
leading to a larger lower bound.

B. Proof Sketch for Theorem 2

Suppose M is a dpin-clearance motion planning problem
for some i, > 0. It then has a shortest dm,-clear solution
path p. Consider points {pj};”:l on the path p so that

consecutive points are at 2v/1 — 28, euclidean distance
apart. See Fig. 1 for an illustration. Foreach 1 < 7 < m—1,
by dmin-clearance the balls of radius dmin centered at p;, pj11
are collision free. This is illustrated by the blue region in
Fig. 1. If we have a collection of samples X which forms
a admpp-net of the space, then we are guaranteed that there
are zj,z;41 € X that are within admin distance of p; and
pj+1 respectively. This is illustrated by the green regions.
The condition on n given in the statement of Theorem 2
in conjunction with Theorem 3 guarantees the existence of

- 24/1 - a?6;
V1 - a®6mn
min
aémml @iy l{zémin

Pj Pj+1

2(11 +4/1- o? )5,“,“

Fig. 1: A visualization of the proof technique of Theorem 2 in 2 dimensions.

such a X. The spacing 2v/1 — a?d,,;, was chosen so that
the convex hull of the green set, depicted as the union of
the green and voilet regions, is entirely contained in the
blue, collision free region. This means that any line segment
joining a point in the left green ball to a point in the right
green ball is collision-free. Therefore, for each j, the line
segment joining z; to z;41 is collision-free for every 1 < j <
m— 1. Furthermore, by triangle inequality, the length of these
segments can be at most 2 (a +V1-— a2) Omin. Thus, if we

choose r to be this value, then the edges {(zj,ZjJrl)};.';1
will all be in the graph Gaq(X,7). Since p is a solution
path, we can choose the first and last samples p; = Ty
and p,, = Tgoa. Therefore the path that concatenates these
edges will be a collision-free path from the start to the goal
in the graph G a((X, ). Finally, to bound the length of this

path, note that the length of the path from p; to p;j4q is
I[pj — pj+1lly = 2V 1 — @26min. Thus,

HZj 7Zj+1||2 2<a+ 1_(!2) Omin 14 o 1+
< = = €
[lp; — pi+all, 2v1 — a?6min V1—a?

where the last equality is due to the definition of «. Since
each piece of the path defined by {2;} ", is not more than
1 4 € times its corresponding piece in p, this gives a path

whose total length is at most 1 + ¢ times the length of p.

VI. EXPERIMENTS

In this section we demonstrate the improved efficiency
of sampling methods that are based on e-nets, compared to
grids. While Lemma | shows that e-nets are provably more
efficient than grids asymptotically as d — oo, it does not
address the comparison in low dimensions when d is small.
To make an empirical comparison in the non-asymptotic
regime, we numerically construct sample sets based on e-
nets and compare their size and coverage quality to grids.

A. A Sampling Procedure via Templating

When € is small, it is computationally expensive to find
a cover of the space with balls of radius e. To alleviate this
computational burden, we make the following observation.
Suppose 7 is a e-net of [0,m~1]¢ for some m € N. Since
[0,1]¢ is can be written as a union of m? translations of
[0,m~1]?, the union of the analogous m? translates of 7T~
gives an e-net of [0, 1]d. Grids are in fact one example of
e-nets with this periodic structure. See Fig. 2 for an example
in d = 2 dimensions. If instead we want an €/2 net, we can
replicate 37 a total of (2m)? times. We call T a template,



Fig. 2: Left: A grid of width 8 in d = 2 dimensions can be represented
by repeating a grid of width 2 a total of 16 times. Right: More generally,
any T := (x1, 2, x3) which forms an e-net of [0, %}2 can be replicated
16 times to attain an e-net of [0, 1)2.

since scaling it and replicating it appropriately can create
e-nets of arbitrary resolution and size. Since rescaling and
replication are compuationally cheap, the sample sets can be
computed online so long as the templates are precomputed.
Due to this versatility, it is acceptable for the computation
of these templates to be done offline.

With this in mind our goal is to find templates of small
cardinality for a large range of problem dimensions. Our
benchmark will be a grid with spacing w := 2—2, since we
showed in Lemma 1 that a grid is an e-net if and only if its
spacing is at most w. The cube [0, kw]? is covered by a grid
of spacing w with exactly k¢ points. See Fig. 2 for a 2D
example. Thus our goal is to find a e-net of [0, kw]? with
fewer than k¢ points. This problem is homogeneous in €, so
by re-scaling, this is equivalent to finding a T@—net of [0, 1]¢
using fewer than k¢ points. Moreover, since grids themselves
are periodic, the ratio of sizes of the sample set obtained by

repeating 7 to the grid will also be |7 /k<.
Certifying that 7 is a g—g—net of [0,1]? is nontrivial be-
cause there are infinitely many conditions to satisfy. Instead

we sample a large collection of points V uniformly at random

from [0,1]¢, and obtain a ‘Q/E-Het of those points via the

output of Build-Net(V ﬁ). The resulting set of points

" 2k
7T may not be a %—net of [0, 1]% since it is only certified to

be a e-net of the set of densely sampled points. We say a point

is uncovered by 7 if its nearest neighbor in 7 is at distance
more than %. We verify using Monte Carlo simulation that

only a negligible fraction of [0, 1]¢ is uncovered.

B. Numerical Results

We created templates 7 using the procedure described
in the previous section for various values of dimension d
and k. We recorded the size of the resulting template and
the empirical estimate p on the volume of uncovered space.
For each trial, p was computed via Monte Carlo with 10
million samples. The ratio between |7 | and the size of the
grid benchmark, k%, is denoted as p. An efficient sample set
T will lead to a small value of p. Table II summarizes the
results of this experiment.

C. Discussion

From Table II we see that the relative efficiency compared
to the grid, p, improves as the dimension grows. This
observation is consistent with the asymptotic implications of
Lemma 1. For all dimensions, the value of p is on the order of

TABLE II: Template sizes for various dimensions

k=2 k=3
d 1177 p D 7] p D
4] 15 093 3.7-1072 7 095 1.4-10772
5 27 0.84 33-1072 | 189 0.77 5.7-1073
6 | 57 0.8 5.5-103 | 457 0.63 24-10-3
71105 082 3.1-10°° | 1078 050 1.4-10"3
8 [ 173 0.68 1.6-10~3 [ 2477 0.38 6.4 101
91291 058 1.3-1073 [ 5650 0.29 2.6-10—1
103, which means that the templates are %—nets of almost

the entire space. Notice that the achieved value of p is better
when k& = 3 than when k£ = 2 across all tested dimensions.
This is because the Build-Net procedure does not exploit
the fact that 7 will be used in a periodic manner. Simply put,
there are covering inefficiencies at the boundaries when tem-
plates are used in a periodic manner. When covering [0, 1]¢
with larger templates, there are fewer boundaries between
individual template replicas, and thus fewer instances where
this boundary inefficiency exists. This reveals a natural trade-
off between computation and sample efficiency. Indeed, the
cover radius 2—‘/3 is a decreasing function of k, meaning it is
more difficult computationally to find templates for larger k.
Thus using small & is computationally cheap, but as Table 11
shows, the quality of the template is worse than what would
be obtained for larger k. Looking at the extremes, k = 1
corresponds to the grid, and k = g corresponds to finding
an e-net of [0,1]% without exploiting templates or periodic
translation in any way.

VII. CONCLUSION AND FUTURE WORK

We made progress in the characterization of sample com-
plexity of PRM. We provided lower bounds on the sample size
that is necessary for (J,¢)-complete sampling algorithms.
We then complemented the lower bound with achievability
results by analyzing e-net and grid based sampling schemes.
These sampling schemes are then showed to attain, up to
constant factors, the optimal sample complexity for lower
dimensional problems. Through numerical experiments we
exhibited an e-net inspired sampling strategy, termed tem-
plating, that offers nearly the same coverage quality as grids
while using significantly fewer samples.

There are several interesting directions for future research.
First, the gap between the sufficient and necessary conditions
for (J,¢)-completeness is dimension dependent. In high
dimensions, the characterization is no longer tight, and the
precise dependence of sample complexity on dimension is
not yet known. In fact, the gap in our results is due to the
gap in characterization of e-net sizes in Theorem 3, thus
closing that gap would have implications for our results.
Second, while the templates proposed in our experiments
show nearly the same coverage quality as grids, they may
not be true e-nets since they are only certified to be an e-net
of a large subset of the space. While we showed empirically
that the volume of uncovered points is typically on the order
of 1073, we wish to build templates that are certifiably e-nets
for the whole space while retaining reduced size observed
in our experiments. Since Build-Net is used in both our
theoretical and experimental results, a better algorithm for
constructing e-nets would improve results both in theory and
practice.
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