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Abstract—5G and open radio access networks (Open RANs) will
result in vendor-neutral hardware deployment that will require
additional diligence towards managing security risks. This new
paradigm will allow the same network infrastructure to support
virtual network slices for transmit different waveforms, such as
5G New Radio, LTE, WiFi, at different times. In this multi-
vendor, multi-protocol/waveform setting, we propose an additional
physical layer authentication method that detects a specific emitter
through a technique called as RF fingerprinting. Our deep
learning approach uses convolutional neural networks augmented
with triplet loss, where examples of similar/dissimilar signal
samples are shown to the classifier over the training duration.
We demonstrate the feasibility of RF fingerprinting base stations
over the large-scale over-the-air experimental POWDER platform
in Salt Lake City, Utah, USA. Using real world datasets, we show
how our approach overcomes the challenges posed by changing
channel conditions and protocol choices with 99.86% detection
accuracy for different training and testing days.

I. INTRODUCTION

The advent of 5G and mobile edge computing (MEC)
paradigm have enabled network slicing where a number of
different protocols and waveforms can be transmitted by the
same base station (BS). An interesting case arises when the
BS hardware is also shared among different vendors, as seen
in Open RANs. With the inevitable opening up of hardware
access and interfaces, it is necessary to carefully consider
the need for additional forms of authentication that can be
performed at the client without introducing any overhead of
signaling and spectrum use. We propose trust metric based on
a method called Radio Frequency (RF) fingerprinting, which
learns discriminative features introduced by the transmitter’s
processing chain on the signals that pass through it. The
overarching idea is for the client to continuously monitor the
signals from the BS and match its known fingerprint with the
broadcast ID.

e Problem. Protocols like 5G New Radio, LTE, and WiFi
have different standards-defined authentication mechanisms.
Yet, when network slicing is implemented in an Open RAN
architecture, not only can the waveform change over time,
but the BS functionality can also virtually migrate from one
hardware/software defined radio (SDR) to another. This raises
many new issues in the context of frust towards a BS that a
node is associated with. This can arise from simple miscon-
figurations or intentional variations, for example, as shown in
Fig. 1, where a new vendor accesses network infrastructure at
BS 4 and 5, with false advertising of a different BS ID. Thus,
with SDR-enabled open-source implementation of standards,
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Fig. 1: Using RF fingerprinting to detect cases where certain BS (in
orange) transmit incorrect IDs, i.e., spoofing BS 1 and 2. Such viola-
tions must be detected irrespective of the waveform being transmitted.
there is need for vigilance to thwart attacks like forced cell-
outage, false signaling, wrong identification, incorrect bidding,
battery drain, advertising fake BSs among others [1, 2].
Although there exist several security schemes at upper-
layers of the protocol stack to authenticate BSs, they involve
operations at the central cloud. This may not be suitable
for ultra-low latency networks, besides imposing additional
resource requirements [3]. Instead, we propose a trust met-
ric based on the probability of correctly classifying the BS
using IQ samples of signals available at the physical layer,
which can be directly undertaken at the associated clients.
The trust metric builds upon traditional RF fingerprinting,
where devices can be uniquely identified solely with raw 1Q
samples. A number of gain/phase/frequency offsets and non-
linear distortions commonly known as fingerprints are induced
by process variations during manufacturing. Given the inherent
randomness of wireless channels, a single sequence of IQ
samples may not be enough to establish the credibility or frust
in identifying a BS. In contrast, in accordance with the law of
large numbers, we empirically determine the low-trust ranges
to request more data samples from the BS for the purpose
of a trustworthy classification. In the process, we acquire
enough data for a reliable classification while considering the
randomness of wireless channels.
e Challenges in RF Fingerprinting for Open RAN. Our prior
work explored demonstrating RF fingerprinting on datasets
collected from WiFi devices when training and testing sets are
carved out from a large shuffled collection of IQ samples [4, 5].
Our investigations uncovered the significant impact of the
wireless channel in the classification accuracy, which results in
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Fig. 2: POWDER Experimental Flow

a massive drop (close to 50% in some cases) when the dataset
for testing is collected on a different day from that of training,
majorly due to unpredictable channel variations [6—8]. Thus,
the issue of trust cannot be resolved unless we show that the
classification accuracy is not susceptible to changing channel
conditions spanning days. Furthermore, the RF fingerprinting
method should not be impacted by the protocol chosen by the
vendor, i.e., the classification outcome should be unchanged if
a cellular waveform or WiFi waveform are used at any given
BS. Finally, no RF Fingerprinting performance has ever been
demonstrated on a large-scale experimental testbed that permits
repeatable experiments. For this reason, we have chosen to
utilize a dataset collected from the POWDER testbed in Salt
Lake City [9], which is a joint NSF-industry funded and
publicly accessible experimental platform spanning 6 square
kilometers, to demonstrate the feasibility of deploying our
trust-building concept at-scale.

e Approach and Contributions. To combat the adversarial
impact of the wireless channel, we leverage neural networks
with triplet-loss functions. This method has seen success in
learning semantic similarity [10, 11] but, so far has not been
applied in the RF domain. We collect datasets from the same
set of BSs that emit standards-compliant WiFi, LTE, and 5G
New Radio (NR) waveforms to show the protocol-agnostic
nature of our approach. Our implementation on POWDER is
also an early demonstrator of how the PAWR platform can be
utilized by the research community for advanced 5G research.
To support independent investigations beyond this work, we
make the dataset publicly accessible [12].

Our results demonstrate an accuracy of 99.86% irrespective
of the training/testing time gap, for the over-the-air datasets
collected on POWDER, which not only significantly advances
the state-of-the-art in RF Fingerprinting, but also demonstrates
the potential benefit in building trust for future Open RAN
networks.

II. EXPERIMENTAL SETUP ON POWDER
A. POWDER Platform

The POWDER platform supports wireless and mobility re-
lated experiments at a community-wide scale and is composed
of SDRs and open-source software stacks. Our experimentation
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Fig. 3: Topological map of POWDER network. A central controller
records raw 1Q samples from each of the 4 BSs.

on POWDER utilizes the available hardware resources of BSs,
user endpoints, and MEC.

A BS is composed of a USRP X310 SDR with MIMO
capabilities and multi-band antennas that can operate from 1.6
GHz to 6 GHz. Although there are a total of 8 BSs deployed
on the rooftop of campus buildings and connected to a central
aggregation point via 10 Gigabit Ethernet links, we use 4 of
them at a time in this work. POWDER employs USRP B210
SDRs for the fixed end points and they are capable of operating
from 698 MHz to 6 GHz. Compute hosts for the SDRs are
Intel Core 17-8559U based computers with 32 GB RAM and
250 GB storage. In addition, there are 19 edge-compute nodes
with the number of cores ranging from 12-16, RAM 192-768
GB, storage up to TBs, all connected with high-speed backhaul
links. Fig. 2 abstracts how the protocol/programming blocks are
arranged in POWDER. As a user, we instantiate an experiment
with a ‘profile’ that encapsulates the hardware resources and
software modules that execute on the reserved SDR/compute
resources. POWDER allows programming the profiles with
commonly available tools like Python and MATLAB.

B. Experiment Setup

We study the performance of our RF fingerprinting approach
using IQ samples collected from the experimental setup shown
in Fig. 3. A fixed end-point USRP B210 is the receiver that
wishes to authenticate and associate with an available BS.
Thus, it collects the IQ samples and runs the inference step for
verifying the BS ID. All transmitter BSs are bit-similar USRP
X310 radios (random payload but same address fields). The BS
emits one of the following waveforms — WiFi (IEEE 802.11ac),
3GPP 4G LTE and 5G NR standards-compliant frames that
are generated through MATLAB WLAN, LTE or 5G toolbox,
respectively. We have a central controller equipped with a B210
SDR that captures transmitted frames from 4 surrounding BSs
(Fig. 3). The incoming signals are sampled at 5 MS/s at center
frequency of 2.685 GHz for WiFi and 7.68 MS/s sampling rate
at center frequency of 2.685 GHz for LTE and 5G NR.

The distance between BSs and between the central controller
varies from 300 meters to 1 kilometer. As this is a real-
world deployment with human activity and terrain variations,
there are several line-of-sight (LOS) and Non-LOS components
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Fig. 4: Classification with baseline CNN vs triplet network. In the
triplet network, raw IQ samples are fed into the model. First, an
embedding Fy(x) of these triplets is obtained, which are passed
through the classification network with weights 6.

for the transmission links that results in considerable channel
variation over days. On any given day, we collect 5 sets
of 3 million IQ samples per BS at the controller, each set
separated in time by ~10 seconds. We then repeat this entire
data collection process on a different day. Each stream of 1Q
samples is split into sequences of 512 samples, which we
refer as a “slice”. The dataset collected on the first day is
subsequently divided into 80% for training, 10% for validation
and 10% for test. The data collected on a day different than
training is fully used for testing purposes.

III. LEARNING TO IDENTIFY BASE STATION FINGERPRINTS

In this section, we first analyze the detection accuracy under
unseen channel conditions with the baseline CNN shown in
Fig. 4. Using the outcomes from this study, we formulate
a triplet loss approach that results in an improvement of
21.94%. The key idea here is that triplet network reinforces
the embedding separation among classes prior to the final
classification step.

A. Results using baseline CNN

Our preliminary evaluation with only WiFi waveform aims
to demonstrate the adverse effect of the wireless channel on
the accuracy of RF fingerprinting. This occurs when there is
a time gap between the training and testing phase, suggesting
that the learned features are not purely that of the transmitter,
but also the channel plays a discriminative role. These studies
motivate our enhancements proposed later in Sec. III-B.

e Classifier architecture: Our baseline CNN architecture
consists of eight layers, with four convolutional layers and
four fully connected (or dense) layers. The input to our CNN
is a windowed sequence of raw IQ samples with length 512,
referred as a slice. Each complex value is represented as two-
dimensional real values (i.e., I and Q are two real value
streams), which results in the dimension of our input data
growing to 2 x 512. This is then fed to the main CNN building
block, which we refer to as Fy4 as shown in Fig. 4. The first
two convolutional layers have 40 filters with size 1 x 7 and
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Fig. 5: Accuracy of BS detection with baseline CNN when a) trained
and tested on the same day gives overall accuracy of 99.98%; b)
trained and tested on different days, the overall accuracy drops to
76.24%. BS1 is confused with the other three BSs when tested on
another day, despite near-perfect accuracy when tested on the same
day.
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Fig. 6: 2D featu(rae) visualization with t-SNE plots v(vlljl)en baseline CNN
is a) trained and tested on the same day; b) trained and tested on
different days.

1 x 5, respectively, which learn a 7-sample variation in time
over the I or Q dimensions separately. On the other hand, the
next two convolutional layers have 40 filters of size 2 X 7 and
2 x5 that learn variations over both I and Q dimensions jointly.
Each convolutional layer (except the last one) is followed by a
Max Pooling layer that reduces the dimensionality of the output
feature maps of the preceding convolutional layer, while re-
taining the most important information. The last convolutional
layer is followed by a set of 3 Fully Connected (Fc) layers,
composed of 1024, 256 and d neurons, respectively, and a
Softmax classifier layer. The use of parameter d is justified
later in Sec. III-B. We use PyTorch for our implementation
and the choice of hyperparameters, such as filter size, number
of filters in the convolutional layers and the depth of the CNN
are chosen carefully through cross-validation. We chose Adam
optimizer with a learning rate of le~* and a weight decay of
le=4.

e Classification Accuracy: Fig. 5a shows the near-perfect
classification accuracy of 4 BSs, when the baseline CNN is
trained and tested with data collected on the same day. In
an at-scale deployment, however, we are likely to observe
environmental changes on a daily basis. These changes have a
considerable impact on received IQ samples, at times distorting
the samples such that the classifier no longer correctly identifies
the BS. As we show next, classification performance degrades
severely when classifiers are trained on raw IQ samples on
a given day and then tested on IQ samples obtained on a



different day. Fig. 5b shows the classification accuracy for
the same setup on a different day, where we observe the
overall classification accuracy drops to 76.24%. From the
confusion matrix, we infer that BS1 is mainly confused with
the remaining BSs.

e t-Distributed Stochastic Neighbor Embedding (t-SNE):
t-SNE is widely used to reduce high-dimensional data into a
lower dimensional space. We use it to visualize the internal
representation of input samples that neural networks have
learned during the training phase, giving an idea of the feature
space that hidden layers (in particular, the layer (Fc, d), which
we refer to as an embedding layer) for mapping input samples.

We leverage t-SNE to reveal the reasons behind the poor
performance of the baseline CNN in detecting BSs on different
days. The bi-dimensional similarity map helps to visualize
the embedding features that are obtained from the last fully
connected layer (embedding layer). We randomly select 2000
samples for each BS from the test set, pass them through
the trained CNN while keeping track of each sample output
at the embedding layer. After collecting these intermediate
representations, we use t-SNE to visualize their similarities and
project them onto a 2-D plane. First, we show the outputs
for the above mentioned experiments for a scenario, when
baseline CNN is trained and tested on the same day as shown
in Fig. 6a. We infer that IQ samples collected on the same days
for all 4 BSs are clearly separable and encoded successfully
by the CNN, resulting in near-perfect classification accuracy.
Similarly, we plot t-SNE representation for the second scenario
when baseline CNN is trained and tested on different days, as
shown in Fig. 6b. This plot confirms that IQ samples collected
on different days get mapped into more similar, non-linear
intermediate representations by the neural network, leading
to incorrect classification of the transmitting BS. This effect
explains the poor results seen in the confusion matrix shown
in Fig. 5b.

B. Triplet Network

Given a neural network with parameters ¢ (Ey), output size
d, and an input z, we consider E, € R? an embedding of
input x into a d-dimensional Euclidean space. The triplet loss
[10] is designed to enforce class separation into the embedding
space. Typically, the triplet loss is trained on series of triplets
x4, 2 2N, where 24 is the anchor, ¥ is the positive and 2
the negative. Then, the loss function is designed to minimize
the distance between z#* and x*, which belong to the same
class, while maximizing the distance from 24 to 2, which

belong to different classes. The triplet loss is formulated as:

N
Lip = max(zi:HE(zs(ﬂU?) — Ey(z])I” - 1)

15 (i) = Es(a)I]” + a,0)

where « represents a margin enforced between the positive
and negative pairs. While this work generates the triplets
randomly during training time, may other methods are pro-
posed [10], which we will explore in future work.
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Fig. 7: Accuracy of BS detection with triplet network when a)
trained and tested on the same day is 99.98%; b) trained and tested
on different days is 92.97%. Notice the improvement in detection
accuracy for BS, BS1, as shown in the confusion matrices.
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Fig. 8: 2D feature visualization with t-SNE plots when the triplet
network is a) trained and tested on the same day; b) trained and
tested on different days. We observe clear feature demarcation for all
the four classes in the 2D feature visualization with t-SNE plots.

Normalized t-SNE Feature 1

We aim to leverage the learned embeddings by minimizing
(1) for the classification task. Intuitively, given a large set
of 1Q samples from different devices that have been effected
by different channel conditions, we would expect the learned
representation to isolate such channel distortions and group
each class based on residual features that will facilitate the
classification. For that purpose, we connect the output of the
embedding network (Fy4) with a classification network with
parameters 6 (Cy). Then, we define a combined loss function
in order to ensure class separation while achieving successful
classification.

£T = £tr + ['ce (2)

where L. is the categorical cross-entropy. In Fig. 4 we show
a summary of the overall approach.

IV. ACCURACY IMPROVEMENT WITH TRIPLET NETWORK

In this section, we present the performance of triplet network
showing that identification accuracy does not degrade despite
varying wireless channel conditions.

e Classification Accuracy: Fig. 7a shows the confusion
matrix for the triplet network when it is trained and tested
with WiFi transmissions emitted by BSs on the same day. We
observe an overall accuracy of 99.98%. In Fig. 7b, we plot the
confusion matrix for of the classification accuracy obtained
from the same trained model but tested on a different day.
This time, although the overall accuracy reduces marginally to
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92.97%, unlike baseline CNN, there is no significant degrada-
tion in the classification accuracy because results for BS1 are
not impacted (row 1 of the confusion matrices).

e t-Distributed Stochastic Neighbor Embedding (t-SNE):
Similar to baseline CNN, we analyze the feature maps learned
by the triplet network using t-SNE visualization plots. Fig. 8a
plots the t-SNE representation for the triplet network when it is
trained and tested on the same day; whereas Fig. 8b plots when
the triplet network is trained and tested on different days. In
both plots, we observe clear feature demarcation for all the four
classes in the 2D feature visualization with t-SNE. This clearly
indicates triplet network is able to learn more discriminating
features than baseline CNN, resulting in better classification
accuracy.

While the approach introduced in this section represents a
meaningful improvement on the RF fingerprinting classification
accuracy, a measure of trust is needed to quantify the certainty
of each decision, which we present in the following section.

V. QUANTIFYING ‘TRUST’ IN A BASE STATION

We next formulate an algorithm that returns a quantitative
measure of trust in a BS while it advertises its ID. For
this purpose, we propose a three step approach based on the
softmax score values. In classification tasks, neural networks
typically use a softmax activation function in the final layer,
which can be expressed as:

exp z;
Sl exp 2

where z is an input of dimension K. The softmax function
normalizes a series of inputs into a probability distribution 7r,
where each value 7; is proportional to the exponential of the
input z;. Thus, given a classification task with K classes, the
softmax values reported at the last layer of the neural network
represent the probability of the input to belong to any of the
K classes, where the class with the highest probability 7,4,
will be chosen.

In Fig. 9, we analyze the distribution of the 7 values for each
class (mmnqz) both for the correctly and incorrectly classified
inputs. As expected, we see that the majority of the correctly
classified cases obtained a m,,,, value very close to 1. On
the other hand, the distribution of scores in the incorrectly
classified cases are scattered with 265% higher variance and
0.118 lower mean. Based on this analysis, we consider three
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Fig. 10: Trust Algorithm. The controller leverages the triplet network
in conjunction with majority votes for incoming slices to detect trust
level of a BS. A BS with partial trust is requested for more slices to
further establish trust.

Tmae ranges — (@) < 80%, (b) 80% and 99%, and (c) >
99%. As shown in Fig. 10, each range here corresponds to a
trust category — (a) No Trust, (b) Partial Trust, (c) Trusted.
In case (a), since classification confidence is very low, the
BS is deemed to be not trustworthy the receiver should re-
establish trust with fresh beacon exchanges and standards-
defined authentication steps. In case (c), the classification
confidence is close to 100% and thus, the end result from the
classification is a trusted BS.

However, case (b), needs careful consideration — we present
an approach to consider different slices of frames coming in
from a transmitter, passing through different channel condi-
tions. Then, a classification decision is obtained for each of
the slices independently, and later combined into a majority
voting approach. The class that has most slices voting for it is
chosen as the final outcome. The number of slices will depend
on factors pertaining to randomness of wireless channels.

We demonstrate in Fig. 11a that the Softmax score of one
of the BSs drops over time due to various factors involved
with Open RANs. As identified above, trust of a BS can be
established if more frames from the BS are received in time for
classification. As shown in Fig. 11b, an accuracy of near-100%
is achieved as the number of slices increases while considering
the majority voting approach.

o Multi-Waveform Identification while Establishing Trust:
Fig. 12 shows the results in identifying BSs irrespective of
the transmit waveforms (WiFi, LTE or 5G NR) emitted by
those BSs. Ideally, we would like the trust establishment to
perform equally well irrespective of the waveform choice.
While our approach does maintain a minimum classification
accuracy of 92.97% for a single waveform, it establishes
trust for the BS identified in Fig. 11a with slices received
from multiple consecutive transmissions. Considering such a
case, the accuracy of BS1 increases from 74% to 99% for
slices taken from 10 consecutive transmissions. In the multi-
waveform scenario where any jumbled mix of IQ samples
from WiFi/LTE/5G waveforms are fed to the classifier (with
a separate mixed training dataset for these three waveforms),
we see an increase in the accuracy, since a greater variety
of channel conditions are involved in the training process.
However, both single and multi-waveform scenarios converge
to similar accuracy values using the trust algorithm from
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Fig. 12: Classification accuracy of single and multiple waveforms
for different number of slices considered to establish trust. Accuracy
increases with the number of slices considered, irrespective of training
and testing day.

Fig. 10. We note that these results are from different datasets
collected on separate training and testing days, which confirms
the robustness of our proposed approach for unseen channels.

VI. RELATED WORK

RF fingerprinting has so far been limited to theory, simu-
lations, and small-scale lab experiments. We briefly describe
recent experimental results below. [13] uses RF fingerprinting
on GSM waveforms with a probability-based thresholding
scheme to differentiate between a rogue and a legitimate BS.
The hardware used is prior generation USRP N210 SDRs with
Flex900 daughter boards, GSM900 frequency range (935MHz
to 960MHz for downlink). Unlike USRP X310s used in our
study, the N210s have large intrinsic impairments (IQ im-
balance, DC offsets) that make them easier to differentiate.
Moreover, this work is majorly based on feature extraction
from PHY transmissions (signal processing features) and thus,
it requires an extensive domain knowledge. The work also uses
a dataset collected in a controlled lab environment. For the
outdoor evaluation, the authors deploy a single rogue BS and
the distance between the receiver and the rogue BS varies
from 20 m to 210 m. Another similar work that employs
RF fingerprinting for physical layer authentication is presented
in [14]. Again, the authors perform an SDR based evaluation
in a laboratory environment, where the two radios were placed
20 feet apart within LOS. The authors in [3] propose a fin-

gerprinting based authentication scheme for handover scenario
in 5G heterogenous networks, which is evaluated with Matlab
simulations. In contrast, our work establishes a trust metric for
a BS irrespective of the protocol of transmission and the day of
testing. Moreover, we perform real-world data collection on the
POWDER PAWR platform, and release the dataset for public
use.
VII. CONCLUSION

We presented the first-of-its-kind RF fingerprinting evalu-
ation on the POWDER PAWR platform to demonstrate how
to build trust in future 5G networks. Our approach of in-
corporating the triplet loss with the deep CNN shows an
improvement in detection accuracy to 92.97% for a single slice
and achieve a total accuracy of 99.86% for 10 slices using
majority voting. Importantly, our approach for establishing
trust between BSs shows the RF fingerprinting works well
for unseen channels/days, and this will result in mitigating
deployment barriers for trusted Open RANS.
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