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Abstract
Differentiable architecture search (DARTS) is a
prevailing NAS solution to identify architectures.
Based on the continuous relaxation of the architec-
ture space, DARTS learns a differentiable archi-
tecture weight and largely reduces the search cost.
However, its stability has been challenged for
yielding deteriorating architectures as the search
proceeds. We find that the precipitous validation
loss landscape, which leads to a dramatic perfor-
mance drop when distilling the final architecture,
is an essential factor that causes instability. Based
on this observation, we propose a perturbation-
based regularization - SmoothDARTS (SDARTS),
to smooth the loss landscape and improve the gen-
eralizability of DARTS-based methods. In par-
ticular, our new formulations stabilize DARTS-
based methods by either random smoothing or
adversarial attack. The search trajectory on NAS-
Bench-1Shot1 demonstrates the effectiveness of
our approach and due to the improved stability, we
achieve performance gain across various search
spaces on 4 datasets. Furthermore, we mathemat-
ically show that SDARTS implicitly regularizes
the Hessian norm of the validation loss, which
accounts for a smoother loss landscape and im-
proved performance.

1. Introduction
Neural architecture search (NAS) has emerged as a rational
next step to automate the trial and error paradigm of architec-
ture design. It is straightforward to search by reinforcement
learning (Zoph & Le, 2017; Zoph et al., 2018; Zhong et al.,
2018) and evolutionary algorithm (Stanley & Miikkulainen,
2002; Miikkulainen et al., 2019; Real et al., 2017; Liu et al.,
2017) due to the discrete nature of the architecture space.

1Department of Computer Science, UCLA. Correspondence to:
Xiangning Chen <xiangning@cs.ucla.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

However, these methods usually require massive computa-
tion resources. Recently, a variety of approaches are pro-
posed to reduce the search cost including one-shot architec-
ture search (Pham et al., 2018; Bender et al., 2018; Brock
et al., 2018), performance estimation (Klein et al., 2017;
Bowen Baker, 2018) and network morphisms (Elsken et al.,
2019; Cai et al., 2018a;b). For example, one-shot architec-
ture search methods construct a super-network covering all
candidate architectures, where sub-networks with shared
components also share the corresponding weights. Then the
super-network is trained only once, which is much more effi-
cient. Based on this weight-sharing technique, DARTS (Liu
et al., 2019) further builds a continuous mixture architecture
and relaxes the categorical architecture search problem to
learning a differentiable architecture weight A.

Despite being computationally efficient, the stability and
generalizability of DARTS have been challenged recently.
Many (Zela et al., 2020a; Yu et al., 2020) have observed that
although the validation accuracy of the mixture architecture
keeps growing, the performance of the derived architecture
collapses when evaluation. Such instability makes DARTS
converge to distorted architectures. For instance, parameter-
free operations such as skip connection usually dominate
the generated architecture (Zela et al., 2020a), and DARTS
has a preference towards wide and shallow structures (Shu
et al., 2020). To alleviate this issue, Zela et al. (2020a) pro-
pose to early stop the search process based on handcrafted
criteria. However, the inherent instability starts from the
very beginning and early stopping is a compromise without
actually improving the search algorithm.

An important source of such instability is the final pro-
jection step to derive the actual discrete architecture from
the continuous mixture architecture. There is often a huge
performance drop in this projection step, so the validation
accuracy of the mixture architecture, which is optimized by
DARTS, may not be correlated with the final validation ac-
curacy. As shown in Figure 1(a), DARTS often converges to
a sharp region, so small perturbations will dramatically de-
crease the validation accuracy, let alone the projection step.
Moreover, the sharp cone in the landscape illustrates that
the network weight w is almost only applicable to the cur-
rent architecture weight A. Similarly, Bender et al. (2018)
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(a) DARTS (b) SDARTS-RS (c) SDARTS-ADV

Figure 1: The landscape of validation accuracy regarding the architecture weight A on CIFAR-10. The X-axis is the gradient
direction ∇ALvalid, while the Y-axis is another random orthogonal direction (best viewed in color).

also discovers that the shared weight w of the one-shot net-
work is sensitive and only works for a few sub-networks.
This empirically prevents DARTS from fully exploring the
architecture space.

To address these problems, we propose two novel formula-
tions. Intuitively, the optimization of A is based on w that
performs well on nearby configurations rather than exactly
the current one. This leads to smoother landscapes as shown
in Figure 1(b, c). Our contributions are as follows:

• We present SmoothDARTS (SDARTS) to overcome
the instability and lack of generalizability of DARTS.
Instead of assuming the shared weight w as the mini-
mizer with respect to the current architecture weight
A, we formulate w as the minimizer of the Randomly
Smoothed function, defined as the expected loss within
the neighborhood of currentA. The resulting approach,
called SDARTS-RS, requires scarcely additional com-
putational cost but is surprisingly effective. We also
propose a stronger formulation that forces w to min-
imize the worst-case loss around a neighborhood of
A, which can be solved by ADVersarial training. The
resulting algorithm, called SDARTS-ADV, leads to
even better stability and improved performance.

• Mathematically, we show that the performance drop
caused by discretization is highly related to the norm
of Hessian regarding the architecture weight A, which
is also mentioned empirically in (Zela et al., 2020a).
Furthermore, we show that both our regularization
techniques are implicitly minimizing this term, which
explains why our methods can significantly improve
DARTS throughout various settings.

• The proposed methods consistently improve DARTS-
based methods and can match or improve state-of-the-
art results on various search spaces of CIFAR-10, Im-
ageNet, and Penn Treebank. Besides, extensive ex-

periments show that our methods outperform other
regularization approaches on 3 datasets across 4 search
spaces. Our code is available at https://github.
com/xiangning-chen/SmoothDARTS.

c_{k-2}
0sep_conv_3x3

1

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_5x5 2
skip_connect

3sep_conv_3x3
dil_conv_3x3

c_{k}

sep_conv_3x3

(a) SDARTS-RS

c_{k-2}

0
sep_conv_3x3

1skip_connect
2sep_conv_5x5

3skip_connect

c_{k-1}
sep_conv_3x3
sep_conv_3x3

c_{k}dil_conv_3x3

dil_conv_3x3

(b) SDARTS-ADV

Figure 2: Normal cells discovered by SDARTS-RS and
SDARTS-ADV on CIFAR-10.

2. Background and Related Work
2.1. Differentiable Architecture Search

Similar to prior work (Zoph et al., 2018), DARTS only
searches for the architecture of cells, which are stacked to
compose the full network. Within a cell, there are N nodes
organized as a DAG (Figure 2), where every node x(i) is a
latent representation and every edge (i, j) is associated with
a certain operation o(i,j). It is inherently difficult to perform
an efficient search since the choice of operation on every
edge is discrete. As a solution, DARTS constructs a mixed
operation ō(i,j) on every edge:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)

o′
)
o(x),

where O is the candidate operation corpus and α(i,j)
o de-

notes the corresponding architecture weight for operation o
on edge (i, j). Therefore, the original categorical choice per
edge is parameterized by a vector α(i,j) with dimension |O|.
And the architecture search is relaxed to learning a continu-
ous architecture weight A = [α(i,j)]. With such relaxation,

https://github.com/xiangning-chen/SmoothDARTS
https://github.com/xiangning-chen/SmoothDARTS
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DARTS formulates a bi-level optimization objective:

min
A
Lval(w

∗(A), A), s.t. w∗ = arg min
w
Ltrain(w,A). (1)

Then, A and w are updated via gradient descent alternately,
where w∗ is approximated by the current or one-step for-
ward w. DARTS sets up a wave in the NAS community and
many approaches are springing up to make further improve-
ments (Xie et al., 2019; Dong & Yang, 2019; Yao et al.,
2020b; Chen et al., 2019; Xu et al., 2020; He et al., 2020;
Yao et al., 2020a). For instance, PC-DARTS (Xu et al.,
2020) evaluates only a random proportion of channels dur-
ing search, which can largely reduce the memory overhead.
P-DARTS (Chen et al., 2019) attempts to narrow the gap
between search and evaluation by progressively increasing
the depth of the mixture architecture. Our regularization
can be easily applied to these DARTS variants and bring
consistent improvements.

Stabilize DARTS. After search, DARTS simply prunes
out operations on every edge except the one with the largest
architecture weight when evaluation. Under such perturba-
tion, its stability and generalizability have been widely chal-
lenged (Zela et al., 2020a; Li & Talwalkar, 2019). Zela et al.
(2020a) empirically points out that the dominate eigenvalue
λAmax of the Hessian matrix∇2

ALvalid is highly correlated
with the stability. They also present an early stopping crite-
rion (DARTS-ES) to prevent λAmax from exploding. Besides,
partial channel connection (Xu et al., 2020), ScheduledDrop-
Path (Zoph et al., 2018) and L2 regularization on w are also
shown to improve the stability of DARTS.

NAS-Bench-1Shot1. NAS-Bench-1Shot1 is a benchmark
architecture dataset (Zela et al., 2020b) covering 3 search
spaces based on CIFAR-10. It provides a mapping between
the continuous space of differentiable NAS and discrete
space in NAS-Bench-101 (Ying et al., 2019) - the first archi-
tecture dataset proposed to lower the entry barrier of NAS.
By querying in NAS-Bench-1Shot1, researchers can obtain
necessary quantities for a specific architecture (e.g. test
accuracy) in milliseconds. Using this benchmark, we track
the anytime test error of various NAS algorithms, which
allows us to compare their stability.

2.2. Adversarial Robustness

In this paper, we claim that DARTS should be robust against
the perturbation on the architecture weight A. Similarly, the
topic of adversarial robustness aims to overcome the vulner-
ability of neural networks against contrived input perturba-
tion (Szegedy et al., 2014). Random smoothing (Lecuyer
et al., 2019; Cohen et al., 2019) is a popular method to
improve model robustness. Another effective approach is
adversarial training (Goodfellow et al., 2015; Madry et al.,
2018b), which intuitively optimizes the worst-case training

loss. In addition to gaining robustness, adversarial training
has also been shown to improve the performance of image
classification (Xie et al., 2020) and GAN training (Liu &
Hsieh, 2019). To the best of our knowledge, we are the first
to apply this idea to stabilize the searching of NAS.

3. Proposed method
3.1. Motivation

During the DARTS search procedure, a continuous architec-
ture weight A is used, but it has to be projected to derive
the discrete architecture eventually. There is often a huge
performance drop in the projection stage, and thus a good
mixture architecture does not imply a good final architecture.
Therefore, although DARTS can consistently reduce the val-
idation error of the mixture architecture, the validation error
after projection is very unstable and could even blow up, as
shown in Figure 3 and 4.

This phenomenon has been discussed in several recent pa-
pers (Zela et al., 2020a; Liang et al., 2019), and Zela et al.
(2020a) empirically finds that the instability is related to the
norm of Hessian∇2

ALvalid. To verify this phenomenon, we
plot the validation accuracy landscape of DARTS in Figure
1(a), which is extremely sharp – small perturbation on A
can hugely reduce the validation accuracy from over 90% to
less than 10%. This also undermines DARTS’ exploration
ability: A can only change slightly at each iteration because
the current w only works within a small local region.

3.2. Proposed Formulation

To address this issue, intuitively we want to force the land-
scape of Lval(w̄(A), A+∆) to be more smooth with respect
to the perturbation ∆. This leads to the following two ver-
sions of SDARTS by redefining w̄(A):

min
A
Lval(w̄(A), A), s.t. (2)

SDARTS-RS: w̄(A) = arg min
w
Eδ∼U[−ε,ε]Ltrain(w,A+ δ)

SDARTS-ADV: w̄(A) = arg min
w

max
‖δ‖≤ε

Ltrain(w,A+ δ),

where U[−ε,ε] represents the uniform distribution between
−ε and ε. The main idea is that instead of using w that
only performs well on the current A, we replace it by the w̄
defined in (2) that performs well within a neighborhood of
A. This forces our algorithms to focus on (w̄, A) pairs with
smooth loss landscapes. For SDARTS-RS, we set w̄ as the
minimizer of the expected loss under small random perturba-
tion bounded by ε. This is related to the idea of randomized
smoothing, which randomly averages the neighborhood of
a given function in order to obtain a smoother and robust
predictor (Cohen et al., 2019; Lecuyer et al., 2019; Liu et al.,
2018b; 2020; Li et al., 2019). On the other hand, we set w̄



Stabilizing Differentiable Architecture Search via Perturbation-based Regularization

Algorithm 1 Training of SDARTS

Generate a mixed operation ō(i,j) for every edge (i, j)
while not converged do

Update architecture A by descending ∇ALval(w,A)
Compute δ based on equation (3) or (4)
Update weight w by descending∇wLtrain(w,A+ δ)

end while

to minimize the worst-case training loss under small per-
turbation of ε for SDARTS-ADV. This is based on the idea
of adversarial training, which is a widely used technique in
adversarial defense (Goodfellow et al., 2015; Madry et al.,
2018a).

3.3. Search Algorithms

The optimization algorithm for solving the proposed for-
mulations is described in Algorithm 1. Similar to DARTS,
our algorithm is based on alternating minimization between
A and w. For SDARTS-RS, w̄ is the minimizer of the ex-
pected loss altered by a randomly chosen δ, which can be
optimized by SGD directly. We sample the following δ and
add it to A before running a single step of SGD on w 1:

δ ∼ U[−ε,ε]. (3)

This approach is very simple (adding only one line of the
code) and efficient (doesn’t introduce any overhead), and
we find that it is quite effective to improve the stability. As
shown in Figure 1(b), the sharp cone disappears and the
landscape becomes much smoother, which maintains high
validation accuracy under perturbation on A.

For SDARTS-ADV, we consider the worst-case loss under
certain perturbation level, which is a stronger requirement
than the expected loss in SDARTS-RS. The resulting land-
scape is even smoother as illustrated in Figure 1(c). In this
case, updating w̄ needs to solve a min-max optimization
problem beforehand. We employ the widely used multi-step
projected gradient descent (PGD) on the negative training
loss to iteratively compute δ:

δn+1 = P(δn + lr ∗ ∇δnLtrain(w,A+ δn)) (4)

where P denotes the projection onto the chosen norm ball
(e.g. clipping in the case of the `∞ norm) and lr denotes
the learning rate.

In the next section, we will mathematically explain why
SDARTS-RS and SDARTS-ADV improve the stability and
generalizability of DARTS.

1We use uniform random for simplicity, while in practice this
approach works also with other random perturbations, such as
Gaussian.

4. Implicit Regularization on Hessian Matrix
It has been empirically pointed out in (Zela et al., 2020a) that
the dominant eigenvalue of∇2

ALval(w,A) (spectral norm of
Hessian) is highly correlated with the generalization quality
of DARTS solutions. In standard DARTS training, the Hes-
sian norm usually blows up, which leads to deteriorating
(test) performance of the solutions. In Figure 5, we plot
this Hessian norm during the training procedure and find
that the proposed methods, including both SDARTS-RS and
SDARTS-ADV, consistently reduce the Hessian norms dur-
ing the training procedure. In the following, we first explain
why the spectral norm of Hessian is correlated with the so-
lution quality, and then formally show that our algorithms
can implicitly control the Hessian norm.

Why is Hessian norm correlated with solution quality?
Assume (w∗, A∗) is the optimal solution of (1) in the con-
tinuous space while Ā is the discrete solution by projecting
A∗ to the simplex. Based on Taylor expansion and assume
∇ALval(w

∗, A∗) = 0 due to optimality condition, we have

Lval(w
∗, Ā)=Lval(w

∗, A∗)+
1

2
(Ā−A∗)T H̄(Ā−A∗), (5)

where H̄ =
∫ Ā
A∗
∇2
ALval(w

∗, A)dA is the average Hessian.
If we assume that Hessian is stable in a local region, then
the quantity of C = ‖∇2

ALval(w
∗, A∗)‖‖Ā − A∗‖2 can

approximately bound the performance drop when project-
ing A∗ to Ā with a fixed w∗. After fine tuning, Lval(w̄, Ā)
where w̄ is the optimal weight corresponding to Ā is ex-
pected to be even smaller than Lval(w

∗, Ā), if the training
and validation losses are highly correlated. Therefore, the
performance of Lval(w̄, Ā), which is the quantity we care,
will also be bounded by C. Note that the bound could be
quite loose since it assumes the network weight remains
unchanged when switching from A∗ to Ā. A more precise
bound can be computed by viewing g(A) = Lval(w

∗(A), A)
as a function only paramterized by A, and then calculate its
derivative/Hessian by implicit function theory.

Figure 3: Anytime test error (mean ± std) of DARTS, ex-
plicit Hessian regularization, SDARTS-RS and SDARTS-
ADV on NAS-Bench-1Shot1 (best viewed in color).
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Controlling spectral norm of Hessian is non-trivial.
With the observation that the solution quality of DARTS
is related to ‖∇2

ALval(w
∗, A∗)‖, an immediate thought is

to explicitly control this quantity during the optimization
procedure. To implement this idea, we add an auxiliary
term - the finite difference estimation of Hessian matrix
(∇ALval(A+ ε)−∇ALval(A− ε))/2ε to the loss function
when updating A. However, this requires much additional
memory to build a computational graph of the gradient, and
Figure 3 suggests that it takes some effect compared with
DARTS but is worse than both SDARTS-RS and SDARTS-
ADV. One potential reason is the high dimensionality –
there are too many directions of ε to choose from and we
can only randomly sample a subset of them at each iteration.

Why can SDARTS-RS implicitly control Hessian?
In SDARTS-RS, the objective function becomes

Eδ∼U[−ε,ε]L(w,A+ δ)

≈Eδ∼U[−ε,ε]

[
L(w,A) + δ∇AL(w,A) +

1

2
δT∇2

AL(w,A)δ

]
(6)

=L(w,A) +
ε2

6
Tr
{
∇2
AL(w,A)

}
,

where the second term in (6) is canceled out since E[δ] = 0
and the off-diagonal elements of the third term becomes
0 after taking the expectation on δ. The update of w in
SDARTS-RS can thus implicitly controls the trace norm
of ∇2

AL(w,A). If the matrix is close to PSD, this is
approximately regularizing the (positive) eigenvalues of
∇2
ALval(w,A). Therefore, we observe that SDARTS-RS

reduces the Hessian norm through its training procedure.

Why can SDARTS-ADV implicitly control Hessian?
SDARTS-ADV ensures that the validation loss is small un-
der the worst-case perturbation of A. If we assume the
Hessian matrix is roughly constant within ε-ball, then adver-
sarial training implicitly minimizes

min
A:‖A−A∗‖≤ε

L(w,A) (7)

≈L(w,A∗) +
1

2
max
‖∆‖≤ε

∆TH∆ (8)

when the perturbation is in `2 norm, the second term
becomes the 1

2ε
2‖H‖, and when the perturbation is in

`∞ norm, the second term is bounded by ε2‖H‖. Thus
SDARTS-ADV also approximately minimizes the norm of
Hessian. In addition, notice that from (7) to (8) we assume
the gradient is 0, which is the property holds only for A∗.
In the intermediate steps for a general A, the stability under
perturbation will not only be related to Hessian but also gra-
dient, and in SDARTS-ADV we can still implicitly control
the landscape to be smooth by minimizing the first-order
term in the Taylor expansion of (7).

5. Experiments
In this section, we first track the anytime performance of
our methods on NAS-Bench-1Shot1 in Section 5.1, which
demonstrates their superior stability and generalizability.
Then we perform experiments on the widely used CNN cell
space with CIFAR-10 (Section 5.2) and ImageNet (Section
5.3). We also show our results on RNN cell space with PTB
(Section 5.4). In Section 5.5, we present a detailed compari-
son between our methods and other popular regularization
techniques. At last, we examine the generated architectures
and illustrate that our methods mitigate the bias for certain
operations and connection patterns in Section 5.6.

5.1. Experiments on NAS-Bench-1Shot1

Settings. NAS-Bench-1Shot1 consists of 3 search spaces
based on CIFAR-10, which contains 6,240, 29,160 and
363,648 architectures respectively. The macro architecture
in all spaces is constructed by 3 stacked blocks, with a max-
pooling operation in between as the DownSampler. Each
block contains 3 stacked cells and the micro architecture of
each cell is represented as a DAG. Apart from the operation
on every edge, the search algorithm also needs to determine
the topology of edges connecting input, output nodes and
the choice blocks. We refer to their paper (Zela et al., 2020b)
for details of the search spaces.

We make a comparison between our methods with other
popular NAS algorithms on all 3 search spaces. Descrip-
tions of the compared baselines can be found in Appendix
7.1. We run every NAS algorithm for 100 epochs (twice of
the default DARTS setting) to allow a thorough and compre-
hensive analysis on search stability and generalizability. Hy-
perparameter settings for 5 baselines are set as their defaults.
For both SDARTS-RS and SDARTS-ADV, the perturbation
on A is performed after the softmax layer. We initialize the
norm ball ε as 0.03 and linearly increase it to 0.3 in all our
experiments. The random perturbation δ in SDARTS-RS
is sampled uniformly between −ε and ε, and we use the
7-step PGD attack under `∞ norm ball to obtain the δ in
SDARTS-ADV. Other settings are the same as DARTS.

To search for 100 epochs on a single NVIDIA GTX 1080 Ti
GPU, ENAS (Pham et al., 2018), DARTS (Liu et al., 2019),
GDAS (Dong & Yang, 2019), NASP (Yao et al., 2020b),
and PC-DARTS (Xu et al., 2020) require 10.5h, 8h, 4.5h,
5h, and 6h respectively. Extra time of SDARTS-RS is just
for the random sample, so its search time is approximately
the same with DARTS, which is 8h. SDARTS-ADV needs
extra steps of forward and backward propagation to perform
the adversarial attack, so it spends 16h. Notice that this
can be largely reduced by setting the PGD attack step as 1
(Goodfellow et al., 2015), which brings little performance
decrease according to our experiments.
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(a) Space 1 (b) Space 2 (c) Space 3

Figure 4: Anytime test error on NAS-Bench-1Shot1 (best viewed in color).

(a) Space 1 (b) Space 2 (c) Space 3

Figure 5: Trajectory (mean ± std) of the Hessian norm on NAS-Bench-1Shot1 (best viewed in color).

Results. We plot the anytime test error averaged from 6
independent runs in Figure 4. Also, the trajectory (mean ±
std) of the spectral norm of ∇2

ALvalid is shown in Figure
5. Note that ENAS is not included in Figure 5 since it does
not have the architecture weight A. We provide our detailed
analysis below.

• DARTS (Liu et al., 2019) generates architectures with
deteriorating performance when the search epoch be-
comes large, which is in accordance with the observa-
tions in (Zela et al., 2020a). The single-path modifica-
tions (GDAS (Dong & Yang, 2019), NASP (Yao et al.,
2020b)) take some effects, e.g. GDAS prevents to
find worse architectures and remains stable. However,
GDAS suffers premature convergence to sub-optimal
architectures, and NASP is only effective for the first
few search epochs before its performance starts to fluc-
tuate like ENAS. PC-DARTS is the best baseline on
Space 1 and 3, but it also suffers degenerate perfor-
mance on Space 2.

• SDARTS-RS outperforms all 5 baselines on 3 search
spaces. It better explores the architecture space and
meanwhile overcomes the instability issue in DARTS.
SDARTS-ADV achieves even better performance by
forcing w to minimize the worst-case loss around a

neighborhood of A. Its anytime test error continues
to decrease when the search epoch is larger than 80,
which does not occur for any other method.

• As explained in Section 4, the spectral norm λAmax of
Hessian ∇2

ALvalid has strong correlation with the sta-
bility and solution quality. Large λAmax leads to poor
generalizability and stability. In agreement with the
theoretical analysis in Section 4, both SDARTS-RS and
SDARTS-ADV anneal λAmax to a low level through-
out the search procedure. In comparison, λAmax in all
baselines continue to increase and they even enlarge
beyond 10 times after 100 search epochs. Though
GDAS (Dong & Yang, 2019) has the lowest λAmax at
the beginning, it suffers the largest growth rate. The
partial channel connection introduced in PC-DARTS
(Xu et al., 2020) can not regularize the Hessian norm
either, thus PC-DARTS has a similar λAmax trajectory
to DARTS and NASP, which match their comparably
unstable performance.

5.2. Experiments on CIFAR-10

Settings. We employ SDARTS-RS and SDARTS-ADV to
search CNN cells on CIFAR-10 following the search space
(with 7 possible operations) in DARTS (Liu et al., 2019).
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Table 1: Comparison with state-of-the-art image classifiers on CIFAR-10.

Architecture Mean Test Error
(%)

Params
(M)

Search Cost
(GPU days)

Search
Method

DenseNet-BC (Huang et al., 2017)? 3.46 25.6 - manual
NASNet-A (Zoph et al., 2018) 2.65 3.3 2000 RL
AmoebaNet-A (Real et al., 2019) 3.34± 0.06 3.2 3150 evolution
AmoebaNet-B (Real et al., 2019) 2.55± 0.05 2.8 3150 evolution
PNAS (Liu et al., 2018a)? 3.41± 0.09 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
NAONet (Luo et al., 2018) 3.53 3.1 0.4 NAO
DARTS (1st) (Liu et al., 2019) 3.00± 0.14 3.3 0.4 gradient
DARTS (2nd) (Liu et al., 2019) 2.76± 0.09 3.3 1 gradient
SNAS (moderate) (Xie et al., 2019) 2.85± 0.02 2.8 1.5 gradient
GDAS (Dong & Yang, 2019) 2.93 3.4 0.3 gradient
BayesNAS (Zhou et al., 2019) 2.81± 0.04 3.4 0.2 gradient
ProxylessNAS (Cai et al., 2019)† 2.08 - 4.0 gradient
NASP (Yao et al., 2020b) 2.83± 0.09 3.3 0.1 gradient
P-DARTS (Chen et al., 2019) 2.50 3.4 0.3 gradient
PC-DARTS (Xu et al., 2020) 2.57± 0.07 3.6 0.1 gradient
R-DARTS(L2) (Zela et al., 2020a) 2.95± 0.21 - 1.6 gradient
SDARTS-RS 2.67± 0.03 3.4 0.4‡ gradient
SDARTS-ADV 2.61± 0.02 3.3 1.3‡ gradient
PC-DARTS-RS 2.54± 0.04 3.4 0.1‡ gradient
PC-DARTS-ADV 2.49± 0.04 3.5 0.4‡ gradient
P-DARTS-RS 2.50± 0.03 3.4 0.3‡ gradient
P-DARTS-ADV 2.48± 0.02 3.4 1.1‡ gradient
? Obtained without cutout augmentation.
† Obtained on a different space with PyramidNet (Han et al., 2017) as the backbone.
‡ Recorded on a single GTX 1080Ti GPU.

The macro architecture is obtained by stacking convolution
cells for 8 times, and every cell contains N = 7 nodes
(2 input nodes, 4 intermediate nodes, and 1 output nodes).
Other detailed settings for searching and evaluation can
be found in Appendix 7.2, which are the same as DARTS
(Liu et al., 2019). To further demonstrate the effectiveness
of the proposed regularization, we also test our methods
on popular DARTS variants PC-DARTS (Xu et al., 2020)
(shown as PC-DARTS-RS and PC-DARTS-ADV) and P-
DARTS (Chen et al., 2019) (shown as P-DARTS-RS and
P-DARTS-ADV).

Results. Table 1 summarizes the comparison of our meth-
ods with state-of-the-art algorithms, and the searched nor-
mal cells are visualized in Figure 2. Compared with
the original DARTS, the random smoothing regularization
(SDARTS-RS) decreases the test error from 3.00% to 2.67%,
and the adversarial regularization (SDARTS-ADV) further
decreases it to 2.61%. When applying to PC-DARTS and P-
DARTS, both regularization techniques achieve consistent
performance gain and obtain highly competitive results. We
also reduces the variance of the search result.

5.3. Experiments on ImageNet

Settings. We test the transferability of our discovered cells
on ImageNet. Here the network is constructed by 14 cells

and 48 initial channels. We train the network for 250 epochs
by an SGD optimizer with an annealing learning rate ini-
tialized as 0.5, a momentum of 0.9, and a weight decay of
3× 10−5. Similar to previous works (Xu et al., 2020; Chen
et al., 2019), we also employ label smoothing and auxiliary
loss tower to enhance the training.

Results. As shown in Table 2, both SDARTS-RS and
SDARTS-ADV outperform DARTS by a large margin.
Moreover, both regularization methods achieve improved ac-
curacy when applying to PC-DARTS and P-DARTS, which
demonstrates their generalizability and effectiveness on
large-scale tasks. Our best run achieves a top1/5 test error of
24.2%/7.2%, ranking top amongst popular NAS methods.

5.4. Experiments on PTB

Settings. Besides searching for CNN cells, our methods
are applicable to various scenarios such as identifying RNN
cells. Following DARTS (Liu et al., 2019), the RNN search
space based on PTB contains 5 candidate functions, tanh,
relu, sigmoid, identity and zero. The macro architecture of
the RNN network is comprised of only a single cell con-
sisting of N = 12 nodes. The first intermediate node is
manually fixed and the rest nodes are determined by the
search algorithm. When searching, we train the RNN net-
work for 50 epochs with sequence length as 35. During
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Table 2: Comparison with state-of-the-art image classifiers
on ImageNet in the mobile setting.

Architecture Test Error(%)
top-1 top-5

Inception-v1 (Szegedy et al., 2015) 30.1 10.1
MobileNet (Howard et al., 2017) 29.4 10.5
ShuffleNet (v1) (Zhang et al., 2018) 26.4 10.2
ShuffleNet (v2) (Ma et al., 2018) 25.1 10.1
NASNet-A (Zoph et al., 2018) 26.0 8.4
AmoebaNet-C (Real et al., 2019) 24.3 7.6
PNAS (Liu et al., 2018a) 25.8 8.1
MnasNet-92 (Tan et al., 2019) 25.2 8.0
DARTS (Liu et al., 2019) 26.7 8.7
SNAS (mild) (Xie et al., 2019) 27.3 9.2
GDAS (Dong & Yang, 2019) 26.0 8.5
ProxylessNAS (GPU) (Cai et al., 2019) 24.9 7.5
NASP (Yao et al., 2020b) 27.2 9.1
P-DARTS (Chen et al., 2019) 24.4 7.4
PC-DARTS (Xu et al., 2020) 25.1 7.8
SDARTS-RS 25.6 8.2
SDARTS-ADV 25.2 7.8
PC-DARTS-RS 24.7 7.5
PC-DARTS-ADV 24.3 7.4
P-DARTS-RS 24.4 7.4
P-DARTS-ADV 24.2 7.2

evaluation, the final architecture is trained by an SGD opti-
mizer, where the batch size is set as 64 and the learning rate
is fixed as 20. These settings are the same as DARTS.

Results. The results are shown in Table 3. SDARTS-RS
achieves a validation perplexity of 58.7 and a test perplexity
of 56.4. Meanwhile, SDARTS-ADV achieves a validation
perplexity of 58.3 and a test perplexity of 56.1. We outper-
form other NAS methods with similar model size, which
demonstrates the effectiveness of our methods for the RNN
space. LSTM + SE (Yang et al., 2018) obtains better re-
sults than us, but it benefits from a handcrafted ensemble
structure.

Table 3: Comparison with state-of-the-art language models
on PTB (lower perplexity is better).

Architecture Perplexity(%) Params
(M)valid test

LSTM + SE (Yang et al., 2018)? 58.1 56.0 22
NAS (Zoph & Le, 2017) - 64.0 25
ENAS (Pham et al., 2018) 60.8 58.6 24
DARTS (1st) (Liu et al., 2019) 60.2 57.6 23
DARTS (2nd) (Liu et al., 2019)† 58.1 55.7 23
GDAS (Dong & Yang, 2019) 59.8 57.5 23
NASP (Yao et al., 2020b) 59.9 57.3 23
SDARTS-RS 58.7 56.4 23
SDARTS-ADV 58.3 56.1 23
? LSTM + SE represents LSTM with 15 softmax experts.
† We achieve 58.5 for validation and 56.2 for test when training

the architecture found by DARTS (2nd) ourselves.

5.5. Comparison with Other Regularization

Our methods can be viewed as a way to regularize DARTS
(implicitly regularize the Hessian norm of validation loss).
In this section, we compare SDARTS-RS and SDARTS-
ADV with other popular regularization techniques. The
compared baselines are 1) partial channel connection (PC-
DARTS (Xu et al., 2020)); 2) ScheduledDropPath (Zoph
et al., 2018) (R-DARTS(DP)); 3) L2 regularization on w
(R-DARTS(L2)); 3) early stopping (DARTS-ES (Zela et al.,
2020a)). Descriptions of the compared regularization base-
lines are shown in Appendix 7.1.

Settings. We perform a thorough comparison on 4 simpli-
fied search spaces proposed in (Zela et al., 2020a) across
3 datasets (CIFAR-10, CIFAR-100, and SVHN). All sim-
plified search spaces only contain a portion of candidate
operations (details are shown in Appendix 7.3). Following
(Zela et al., 2020a), we use 20 cells with 36 initial chan-
nels for CIFAR-10, and 8 cells with 16 initial channels for
CIFAR-100 and SVHN. The rest settings are the same with
Section 5.2. Results in Table 4 are obtained by running every
method 4 independent times and pick the final architecture
based on the validation accuracy (retrain from scratch for a
few epochs).

Results. Our methods achieve consistent performance
gain compared with baselines. SDARTS-ADV is the best
method for 11 out of 12 benchmarks and we take over
both first and second places for 9 benchmarks. In particu-
lar, SDARTS-ADV outperforms DARTS, R-DARTS(L2),
DARTS-ES, R-DARTS(DP), and PC-DARTS by 31.1%,
11.5%, 11.4%, 10.9%, and 5.3% on average.

5.6. Examine the Searched Architectures

As pointed out in (Zela et al., 2020a; Shu et al., 2020),
DARTS tends to fall into distorted architectures that con-
verge faster, which is another manifestation of its instability.
So here we examine the generated architectures and see
whether our methods can overcome such bias.

5.6.1. PROPORTION OF PARAMETER-FREE OPERATIONS

Many (Zela et al., 2020a; Liang et al., 2019) have found
out that parameter-free operations such as skip connection
dominate the generated architecture. Though makes archi-
tectures converge faster, excessive parameter-free opera-
tions can largely reduce the model’s representation capa-
bility and bring out low test accuracy. As illustrated in
Table 5, we also find similar phenomenon when searching
by DARTS on 4 simplified search spaces in Section 5.5.
The proportion of parameter-free operations even becomes
100% on S1 and S3, and DARTS can not distinguish the
harmful noise operation on S4. PC-DARTS achieves some
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Table 4: Comparison with popular regularization techniques (test error (%)).
The best method is boldface and underlined while the second best is boldface.

Dataset Space DARTS PC-DARTS DARTS-ES R-DARTS(DP) R-DARTS(L2) SDARTS-RS SDARTS-ADV

C10

S1 3.84 3.11 3.01 3.11 2.78 2.78 2.73
S2 4.85 3.02 3.26 3.48 3.31 2.75 2.65
S3 3.34 2.51 2.74 2.93 2.51 2.53 2.49
S4 7.20 3.02 3.71 3.58 3.56 2.93 2.87

C100

S1 29.46 24.69 28.37 25.93 24.25 23.51 22.33
S2 26.05 22.48 23.25 22.30 22.44 22.28 20.56
S3 28.90 21.69 23.73 22.36 23.99 21.09 21.08
S4 22.85 21.50 21.26 22.18 21.94 21.46 21.25

SVHN

S1 4.58 2.47 2.72 2.55 4.79 2.35 2.29
S2 3.53 2.42 2.60 2.52 2.51 2.39 2.35
S3 3.41 2.41 2.50 2.49 2.48 2.36 2.40
S4 3.05 2.43 2.51 2.61 2.50 2.46 2.42

improvements but is not enough since noise still appears.
DARTS-ES reveals its effectiveness on S2 and S4 but fails
on S3 since all operations found are skip connection. We do
not show R-DARTS(DP) and R-DARTS(L2) here because
their discovered cells are not released. In comparison, both
SDARTS-RS and SDARTS-ADV succeed in controlling the
portion of parameter-free operations on all search spaces.

5.6.2. CONNECTION PATTERN

Shu et al. (2020) demonstrates that DARTS favors wide and
shallow cells since they often have smoother loss landscape
and faster convergence speed. However, these cells may
not generalize better than their narrower and deeper vari-
ants (Shu et al., 2020). Follow their definitions (suppose
every intermediate node has width c, detailed definitions
are shown in Appendix 7.4), the best cell generated by our
methods on CNN standard space (Section 5.2) has width 3c
and depth 4. In contrast, ENAS has width 5c and depth 2,
DARTS has width 3.5c and depth 3, PC-DARTS has width
4c and depth 2. Consequently, we succeed in mitigating the
bias of connection pattern.

Table 5: Proportion of parameter-free operations in normal
cells found on CIFAR-10.

Space DARTS PC-DARTS DARTS-ES SDARTS-RS SDARTS-ADV
S1 1.0 0.5 0.375 0.125 0.125
S2 0.875 0.75 0.25 0.375 0.125
S3 1.0 0.125 1.0 0.125 0.125
S4 0.625 0.125 0.0 0.0 0.0

6. Conclusion
We introduce SmoothDARTS (SDARTS), a perturbation-
based regularization to improve the stability and general-
izability of differentiable architecture search. Specifically,
the regularization is carried out with random smoothing or
adversarial attack. SDARTS possesses a much smoother
landscape and has the theoretical guarantee to regularize the
Hessian norm of the validation loss. Extensive experiments
illustrate the effectiveness of SDARTS and we outperform
various regularization techniques.
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7. Appendix
7.1. Descriptions of compared baselines

• ENAS (Pham et al., 2018) first trains the shared pa-
rameter of a one-shot network. For the search phase, it
samples sub-networks and use the validation error as
the reward signal to update an RNN controller follow-
ing REINFORCE (Williams, 1992) rule. Finally, they
sample several architectures guided by the trained con-
troller and derive the one with the highest validation
accuracy.

• DARTS (Liu et al., 2019) builds a mixture architec-
ture similar to ENAS. The difference is that it relaxes
the discrete architecture space to a continuous and dif-
ferentiable representation by assigning a weight α to
every operation. The network weight w and α are then
updated via gradient descent alternately based on the
training set and the validation set respectively. For
evaluation, DARTS prunes out all operations except
the one with the largest α on every edge, which leaves
the final architecture.

• GDAS (Dong & Yang, 2019) uses the Gumbel-
Softmax trick to activate only one operation for every
edge during search, similar technique is also applied in
SNAS (Xie et al., 2019). This trick reduces the mem-
ory cost during search meanwhile keeps the property
of differentiability.

• NASP (Yao et al., 2020b) is another modification of
DARTS via the proximal algorithm. A discrete ver-
sion of architecture weight Ā is computed every search
epoch by applying a proximal operation to the continu-
ous A. Then the gradient of Ā is utilized to update its
corresponding A after backpropagation.

• PC-DARTS (Xu et al., 2020) evaluates only a random
proportion of the channels. This partial channel con-
nection not only accelerates search but also serves as a
regularization that controls the bias towards parameter-
free operations, as explained by the author.

• R-DARTS(DP) (Zela et al., 2020a) runs DARTS with
different intensity of ScheduledDropPath regulariza-
tion (Zoph et al., 2018) and picks the final architecture
according to the performance on the validation set. In
ScheduledDropPath, each path in the cell is dropped
out with a probability that increases linearly over the
training procedure.

• R-DARTS(L2) (Zela et al., 2020a) runs DARTS with
different amounts of L2 regularization and selects the
final architecture in the same way with R-DARTS(DP).
Specifically, the L2 regularization is applied on the
inner loop (i.e. network weight w) of the bi-level opti-
mization problem.

• DARTS-ES (Zela et al., 2020a) early stops the search
procedure of DARTS if the increase of λAmax (the
dominate eigenvalue of Hessian ∇2

ALvalid) exceeds
a threshold. This prevents λAmax, which is highly corre-
lated with the stability and generalizability of DARTS,
from exploding.

7.2. Training details on CNN standard space

For the search phase, we train the mixture architecture for 50
epochs, with the 50K CIFAR-10 dataset be equally split into
training and validation set. Following (Liu et al., 2019), the
network weightw is optimized on the training set by an SGD
optimizer with momentum as 0.9 and weight decay as 3×
10−4, where the learning rate is annealed from 0.025 to 1e-3
following a cosine schedule. Meanwhile, we use an Adam
optimizer with learning rate 3e-4 and weight decay 1e-3 to
learn the architecture weight A on the validation set. For the
evaluation phase, the macro structure consists of 20 cells and
the initial number of channels is set as 36. We train the final
architecture by 600 epochs using the SGD optimizer with a
learning rate cosine scheduled from 0.025 to 0, a momentum
of 0.9 and a weight decay of 3e-4. The drop probability of
ScheduledDropPath increases linearly from 0 to 0.2, and
the auxiliary tower (Zoph & Le, 2017) is employed with a
weight of 0.4. We also utilize CutOut (DeVries & Taylor,
2017) as the data augmentation technique and report the
result (mean ± std) of 4 independent runs with different
random seeds.

7.3. Micro architecture of 4 simplified search spaces

The first space S1 contains 2 popular operators per edge as
shown in Figure 6, S2 restricts the set of candidate opera-
tions on every edge as {3× 3 separable convolution, skip
connection}, the operation set in S3 is {3 × 3 separable
convolution, skip connection, zero}, and S4 simplifies the
set as {3× 3 separable convolution, noise}.

7.4. Definitions of cell width and height

Specifically, the depth of a cell is the number of connections
on the longest path from input nodes to the output node.
While the width of a cell is computed by adding the width of
all intermediate nodes that are directly connected to the input
nodes, where the width of a node is defined as the channel
number for convolutions and the feature dimension for linear
operations (In (Shu et al., 2020), they assume the width of
every intermediate node is c for simplicity). In particular, if
an intermediate node is partially connected to input nodes
(i.e. has connections to other intermediate nodes), its width
is deducted by the percentage of intermediate nodes it is
connected to when computing the cell width.
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(a) Normal cell

(b) Reduction cell

Figure 6: Micro cell architecture of S1.


