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Abstract

In deep neural nets, lower level embedding layers account for a large portion of
the total number of parameters. Tikhonov regularization, graph-based regular-
ization, and hard parameter sharing are approaches that introduce explicit biases
into training in a hope to reduce statistical complexity. Alternatively, we propose
stochastic shared embeddings (SSE), a data-driven approach to regularizing embed-
ding layers, which stochastically transitions between embeddings during stochastic
gradient descent (SGD). Because SSE integrates seamlessly with existing SGD
algorithms, it can be used with only minor modifications when training large scale
neural networks. We develop two versions of SSE: SSE-Graph using knowledge
graphs of embeddings; SSE-SE using no prior information. We provide theoretical
guarantees for our method and show its empirical effectiveness on 6 distinct tasks,
from simple neural networks with one hidden layer in recommender systems, to
the transformer and BERT in natural languages. We find that when used along
with widely-used regularization methods such as weight decay and dropout, our
proposed SSE can further reduce overfitting, which often leads to more favorable
generalization results.

1 Introduction

Recently, embedding representations have been widely used in almost all AI-related fields, from
feature maps [13] in computer vision, to word embeddings [15, 20] in natural language processing,
to user/item embeddings [17, 10] in recommender systems. Usually, the embeddings are high-
dimensional vectors. Take language models for example, in GPT [22] and Bert-Base model [3],
768-dimensional vectors are used to represent words. Bert-Large model utilizes 1024-dimensional
vectors and GPT-2 [23] may have used even higher dimensions in their unreleased large models.
In recommender systems, things are slightly different: the dimension of user/item embeddings are
usually set to be reasonably small, 50 or 100, but the number of users and items is on a much bigger
scale. Contrast this with the fact that the size of word vocabulary that normally ranges from 50,000
to 150,000, the number of users and items can be millions or even billions in large-scale real-world
commercial recommender systems [1].
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Given the massive number of parameters in modern neural networks with embedding layers, mitigat-
ing over-parameterization can play an important role in preventing over-fitting in deep learning. We
propose a regularization method, Stochastic Shared Embeddings (SSE), that uses prior information
about similarities between embeddings, such as semantically and grammatically related words in
natural languages or real-world users who share social relationships. Critically, SSE progresses by
stochastically transitioning between embeddings as opposed to a more brute-force regularization such
as graph-based Laplacian regularization and ridge regularization. Thus, SSE integrates seamlessly
with existing stochastic optimization methods and the resulting regularization is data-driven.

We will begin the paper with the mathematical formulation of the problem, propose SSE, and provide
the motivations behind SSE. We provide a theoretical analysis of SSE that can be compared with
excess risk bounds based on empirical Rademacher complexity. We then conducted experiments
for a total of 6 tasks from simple neural networks with one hidden layer in recommender systems,
to the transformer and BERT in natural languages and find that when used along with widely-used
regularization methods such as weight decay and dropout, our proposed methods can further reduce
over-fitting, which often leads to more favorable generalization results.

2 Related Work

Regularization techniques are used to control model complexity and avoid over-fitting. `2 regulariza-
tion [8] is the most widely used approach and has been used in many matrix factorization models
in recommender systems; `1 regularization [29] is used when a sparse model is preferred. For deep
neural networks, it has been shown that `p regularizations are often too weak, while dropout [7, 27]
is more effective in practice. There are many other regularization techniques, including parameter
sharing [5], max-norm regularization [26], gradient clipping [19], etc.

Our proposed SSE-graph is very different from graph Laplacian regularization [2], in which the
distances of any two embeddings connected over the graph are directly penalized. Hard parameter
sharing uses one embedding to replace all distinct embeddings in the same group, which inevitably
introduces a significant bias. Soft parameter sharing [18] is similar to the graph Laplacian, penalizing
the l2 distances between any two embeddings. These methods have no dependence on the loss, while
the proposed SSE-graph method is data-driven in that the loss influences the effect of regularization.
Unlike graph Laplacian regularization, hard and soft parameter sharing, our method is stochastic by
nature. This allows our model to enjoy similar advantages as dropout [27].

Interestingly, in the original BERT model’s pre-training stage [3], a variant of SSE-SE is already
implicitly used for token embeddings but for a different reason. In [3], the authors masked 15%
of words and 10% of the time replaced the [mask] token with a random token. In the next section,
we discuss how SSE-SE differs from this heuristic. Another closely related technique to ours is
the label smoothing [28], which is widely used in the computer vision community. We find that in
the classification setting if we apply SSE-SE to one-hot encodings associated with output yi only,
our SSE-SE is closely related to the label smoothing, which can be treated as a special case of our
proposed method.

3 Stochastic Shared Embeddings

Throughout this paper, the network input xi and label yi will be encoded into indices ji1, . . . , jiM
which are elements of I1 ⇥ . . . IM , the index sets of embedding tables. A typical choice is that
the indices are the encoding of a dictionary for words in natural language applications, or user and
item tables in recommendation systems. Each index, jl, within the lth table, is associated with
an embedding El[jl] which is a trainable vector in Rdl . The embeddings associated with label yi
are usually non-trainable one-hot vectors corresponding to label look-up tables while embeddings
associated with input xi are trainable embedding vectors for embedding look-up tables. In natural
language applications, we appropriately modify this framework to accommodate sequences such as
sentences.

The loss function can be written as the functions of embeddings:

Rn(⇥) =
X

i

`(xi, yi|⇥) =
X

i

`(E1[j
i
1], . . . , EM [jiM ]|⇥), (1)

2



Algorithm 1 SSE-Graph for Neural Networks with Embeddings
1: Input: input xi, label yi, backpropagate T steps, mini-batch size m, knowledge graphs on

embeddings {E1, . . . , EM}
2: Define pl(., .|�) based on knowledge graphs on embeddings, l = 1, . . . ,M
3: for t = 1 to T do
4: Sample one mini-batch {x1, . . . , xm}
5: for i = 1 to m do
6: Identify the set of embeddings Si = {E1[ji1], . . . , EM [jiM ]} for input xi and label yi
7: for each embedding El[jil ] 2 Si do
8: Replace El[jil ] with El[kl], where kl ⇠ pl(jil , .|�)
9: end for

10: end for
11: Forward and backward pass with the new embeddings
12: end for
13: Return embeddings {E1, . . . , EM}, and neural network parameters ⇥

Figure 1: SSE-Graph described in Algorithm 1 and Figure 2 can be viewed as adding exponentially
many distinct reordering layers above the embedding layer. A modified backpropagation procedure
in Algorithm 1 is used to train exponentially many such neural networks at the same time.

where yi is the label and ⇥ encompasses all trainable parameters including the embeddings, {El[jl] :
jl 2 Il}. The loss function ` is a mapping from embedding spaces to the reals. For text input, each
El[jil ] is a word embedding vector in the input sentence or document. For recommender systems,
usually there are two embedding look-up tables: one for users and one for items [6]. So the objective
function, such as mean squared loss or some ranking losses, will comprise both user and item
embeddings for each input. We can more succinctly write the matrix of all embeddings for the ith
sample as E[ji] = (E1[ji1], . . . , EM [jiM ]) where ji = (ji1, . . . , j

i
M ) 2 I . By an abuse of notation we

write the loss as a function of the embedding matrix, `(E[ji]|⇥).

Suppose that we have access to knowledge graphs [16, 14] over embeddings, and we have a prior
belief that two embeddings will share information and replacing one with the other should not incur
a significant change in the loss distribution. For example, if two movies are both comedies and
they are starred by the same actors, it is very likely that for the same user, replacing one comedy
movie with the other comedy movie will result in little change in the loss distribution. In stochastic
optimization, we can replace the loss gradient for one movie’s embedding with the other similar
movie’s embedding, and this will not significantly bias the gradient if the prior belief is accurate. On
the other hand, if this exchange is stochastic, then it will act to smooth the gradient steps in the long
run, thus regularizing the gradient updates.

3.1 General SSE with Knowledge Graphs: SSE-Graph

Instead of optimizing objective function Rn(⇥) in (1), SSE-Graph described in Algorithm 1, Figure 1,
and Figure 2 is approximately optimizing the objective function below:

Sn(⇥) =
X

i

X

k2I
p(ji,k|�)`(E[k]|⇥), (2)

where p(j,k|�) is the transition probability (with parameters �) of exchanging the encoding vector
j 2 I with a new encoding vector k 2 I in the Cartesian product index set of all embedding tables.
When there is a single embedding table (M = 1) then there are no hard restrictions on the transition
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Figure 2: Illustration of how SSE-Graph algorithm in Figure 1 works for a simple neural network.

probabilities, p(., .), but when there are multiple tables (M > 1) then we will enforce that p(., .)
takes a tensor product form (see (4)). When we are assuming that there is only a single embedding
table (M = 1) we will not bold j, E[j] and suppress their indices.

In the single embedding table case, M = 1, there are many ways to define transition probability from
j to k. One simple and effective way is to use a random walk (with random restart and self-loops) on
a knowledge graph G, i.e. when embedding j is connected with k but not with l, we can set the ratio
of p(j, k|�) and p(j, l|�) to be a constant greater than 1. In more formal notation, we have

j ⇠ k, j 6⇠ l �! p(j, k|�)/p(j, l|�) = ⇢, (3)

where ⇢ > 1 and is a tuning parameter. It is motivated by the fact that embeddings connected with
each other in knowledge graphs should bear more resemblance and thus be more likely replaced by
each other. Also, we let p(j, j|�) = 1� p0, where p0 is called the SSE probability and embedding
retainment probability is 1� p0. We treat both p0 and ⇢ as tuning hyper-parameters in experiments.
With (3) and

P
k p(j, k|�) = 1, we can derive transition probabilities between any two embeddings

to fill out the transition probability table.

When there are multiple embedding tables, M > 1, then we will force that the transition from j to k
can be thought of as independent transitions from jl to kl within embedding table l (and index set Il).
Each table may have its own knowledge graph, resulting in its own transition probabilities pl(., .).
The more general form of the SSE-graph objective is given below:

Sn(⇥) =
X

i

X

k1,...,kM

p1(j
i
1, k1|�) · · · pM (jiM , kM |�)`(E1[k1], . . . , EM [kM ]|⇥), (4)

Intuitively, this SSE objective could reduce the variance of the estimator.

Optimizing (4) with SGD or its variants (Adagrad [4], Adam [12]) is simple. We just need to randomly
switch each original embedding tensor E[ji] with another embedding tensor E[k] randomly sampled
according to the transition probability (see Algorithm 1). This is equivalent to have a randomized
embedding look-up layer as shown in Figure 1.

We can also accommodate sequences of embeddings, which commonly occur in natural language
application, by considering (jil,1, kl,1), . . . , (j

i
l,ni

l
, kl,ni

l
) instead of (jil , kl) for l-th embedding table in

(4), where 1  l  M and ni
l is the number of embeddings in table l that are associated with (xi, yi).

When there is more than one embedding look-up table, we sometimes prefer to use different p0 and ⇢
for different look-up tables in (3) and the SSE probability constraint. For example, in recommender
systems, we would use pu, ⇢u for user embedding table and pi, ⇢i for item embedding table.
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Figure 3: Projecting 50-dimensional embeddings obtained by training a simple neural network
without SSE (Left), and with SSE-Graph (Center) , SSE-SE (Right) into 3D space using PCA.

We find that SSE with knowledge graphs, i.e., SSE-Graph, can force similar embeddings to cluster
when compared to the original neural network without SSE-Graph. In Figure 3, one can easily see
that more embeddings tend to cluster into 2 singularities after applying SSE-Graph when embeddings
are projected into 3D spaces using PCA. Interestingly, a similar phenomenon occurs when assuming
the knowledge graph is a complete graph, which we would introduce as SSE-SE below.

3.2 Simplified SSE with Complete Graph: SSE-SE

One clear limitation of applying the SSE-Graph is that not every dataset comes with good-quality
knowledge graphs on embeddings. For those cases, we could assume there is a complete graph over
all embeddings so there is a small transition probability between every pair of different embeddings:

p(j, k|�) = p0
N � 1

, 81  k 6= j  N, (5)

where N is the size of the embedding table. The SGD procedure in Algorithm 1 can still be applied
and we call this algorithm SSE-SE (Stochastic Shared Embeddings - Simple and Easy). It is worth
noting that SSE-Graph and SSE-SE are applied to embeddings associated with not only input xi but
also those with output yi. Unless there are considerably many more embeddings than data points and
model is significantly overfitting, normally p0 = 0.01 gives reasonably good results.

Interestingly, we found that the SSE-SE framework is related to several techniques used in practice.
For example, BERT pre-training unintentionally applied a method similar to SSE-SE to input xi by
replacing the masked word with a random word. This would implicitly introduce an SSE layer for
input xi in Figure 1, because now embeddings associated with input xi be stochastically mapped
according to (5). The main difference between this and SSE-SE is that it merely augments the input
once, while SSE introduces randomization at every iteration, and we can also accommodate label
embeddings. In experimental Section 4.4, we will show that SSE-SE would improve original BERT
pre-training procedure as well as fine-tuning procedure.

3.3 Theoretical Guarantees

We explain why SSE can reduce the variance of estimators and thus leads to better generalization
performance. For simplicity, we consider the SSE-graph objective (2) where there is no transition
associated with the label yi, and only the embeddings associated with the input xi undergo a transition.
When this is the case, we can think of the loss as a function of the xi embedding and the label,
`(E[ji], yi; ⇥). We take this approach because it is more straightforward to compare our resulting
theory to existing excess risk bounds.

The SSE objective in the case of only input transitions can be written as,

Sn(⇥) =
X

i

X

k

p(ji,k) · `(E[k], yi|⇥), (6)

and there may be some constraint on ⇥. Let ⇥̂ denote the minimizer of Sn subject to this constraint.
We will show in the subsequent theory that minimizing Sn will get us close to a minimizer of
S(⇥) = ESn(⇥), and that under some conditions this will get us close to the Bayes risk. We will use
the standard definitions of empirical and true risk, Rn(⇥) =

P
i `(xi, yi|⇥) and R(⇥) = ERn(⇥).

Our results depend on the following decomposition of the risk. By optimality of ⇥̂,
R(⇥̂) = Sn(⇥̂) + [R(⇥̂)� S(⇥̂)] + [S(⇥̂)� Sn(⇥̂)]  Sn(⇥

⇤) +B(⇥̂) + E(⇥̂) (7)
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Table 1: Compare SSE-Graph and SSE-SE against ALS-MF with Graph Laplacian Regularization.
The pu and pi are the SSE probabilities for user and item embedding tables respectively, as in (5).
Definitions of ⇢u and ⇢i can be found in (3). Movielens10m does not have user graphs.

Movielens1m Movielens10m
Model RMSE ⇢u ⇢i pu pi RMSE ⇢u ⇢i pu pi

SGD-MF 1.0984 - - - - 1.9490 - - - -
Graph Laplacian + ALS-MF 1.0464 - - - - 1.9755 - - - -

SSE-Graph + SGD-MF 1.0145 500 200 0.005 0.005 1.9019 1 500 0.01 0.01
SSE-SE + SGD-MF 1.0150 1 1 0.005 0.005 1.9085 1 1 0.01 0.01

where B(⇥) = |R(⇥)�S(⇥)|, and E(⇥) = |S(⇥)�Sn(⇥)|. We can think of B(⇥) as representing
the bias due to SSE, and E(⇥) as an SSE form of excess risk. Then by another application of similar
bounds,

R(⇥̂)  R(⇥⇤) +B(⇥̂) +B(⇥⇤) + E(⇥̂) + E(⇥⇤). (8)
The high level idea behind the following results is that when the SSE protocol reflects the underlying
distribution of the data, then the bias term B(⇥) is small, and if the SSE transitions are well mixing
then the SSE excess risk E(⇥) will be of smaller order than the standard Rademacher complexity.
This will result in a small excess risk.
Theorem 1. Consider SSE-graph with only input transitions. Let L(E[ji]) = EY |X=xi`(E[ji], Y |⇥)
be the expected loss conditional on input xi

and e(E[ji], y|⇥) = `(E[ji], y|⇥)� L(E[ji]|⇥) be the

residual loss. Define the conditional and residual SSE empirical Rademacher complexities to be

⇢L,n = E� sup
⇥

�����
X

i

�i

X

k

p(ji,k) · L(E[k]|⇥)

����� , (9)

⇢e,n = E� sup
⇥

�����
X

i

�i

X

k

p(ji,k) · e(E[k], yi; ⇥)

����� , (10)

(11)

respectively where � is a Rademacher ±1 random vectors in Rn
. Then we can decompose the SSE

empirical risk into

E sup
⇥

|Sn(⇥)� S(⇥)|  2E[⇢L,n + ⇢e,n]. (12)

Remark 1. The transition probabilities in (9), (10) act to smooth the empirical Rademacher com-

plexity. To see this, notice that we can write the inner term of (9) as (P�)>L, where we have

vectorized �i, L(xi; ⇥) and formed the transition matrix P . Transition matrices are contractive and

will induce dependencies between the Rademacher random variables, thereby stochastically reducing

the supremum. In the case of no label noise, namely that Y |X is a point mass, e(x, y; ⇥) = 0, and

⇢e,n = 0. The use of L as opposed to the losses, `, will also make ⇢L,n of smaller order than the

standard empirical Rademacher complexity. We demonstrate this with a partial simulation of ⇢L,n on

the Movielens1m dataset in Figure 5 of the Appendix.

Theorem 2. Let the SSE-bias be defined as

B = sup
⇥

�����E
"
X

i

X

k

p(ji,k) ·
�
`(E[k], yi|⇥)� `(E[ji], yi|⇥)

�
#����� .

Suppose that 0  `(., .; ⇥)  b for some b > 0, then

P
n
R(⇥̂) > R(⇥⇤) + 2B + 4E[⇢L,n + ⇢e,n] +

p
nu

o
 e�

u2

2b2 .

Remark 2. The price for ‘smoothing’ the Rademacher complexity in Theorem 1 is that SSE may

introduce a bias. This will be particularly prominent when the SSE transitions have little to do with

the underlying distribution of Y,X . On the other extreme, suppose that p(j,k) is non-zero over a

neighborhood Nj of j, and that for data x0, y0 with encoding k 2 Nj, x0, y0 is identically distributed

with xi, yi, then B = 0. In all likelihood, the SSE transition probabilities will not be supported over

neighborhoods of iid random pairs, but with a well chosen SSE protocol the neighborhoods contain

approximately iid pairs and B is small.
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Table 2: SSE-SE outperforms Dropout for Neural Networks with One Hidden Layer such as Matrix
Factorization Algorithm regardless of dimensionality we use. ps is the SSE probability for both user
and item embedding tables and pd is the dropout probability.

Douban Movielens10m Netflix
Model RMSE pd ps RMSE pd ps RMSE pd ps

MF 0.7339 - - 0.8851 - - 0.8941 - -
Dropout + MF 0.7296 0.1 - 0.8813 0.1 - 0.8897 0.1 -
SSE-SE + MF 0.7201 - 0.008 0.8715 - 0.008 0.8842 - 0.008

SSE-SE + Dropout + MF 0.7185 0.1 0.005 0.8678 0.1 0.005 0.8790 0.1 0.005

Table 3: SSE-SE outperforms dropout for Neural Networks with One Hidden Layer such as Bayesian
Personalized Ranking Algorithm regardless of dimensionality we use. We report the metric precision
for top k recommendations as P@k.

Movielens1m Yahoo Music Foursquare
Model P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

SQL-Rank (2018) 0.7369 0.6717 0.6183 0.4551 0.3614 0.3069 0.0583 0.0194 0.0170
BPR 0.6977 0.6568 0.6257 0.3971 0.3295 0.2806 0.0437 0.0189 0.0143

Dropout + BPR 0.7031 0.6548 0.6273 0.4080 0.3315 0.2847 0.0437 0.0184 0.0146
SSE-SE + BPR 0.7254 0.6813 0.6469 0.4297 0.3498 0.3005 0.0609 0.0262 0.0155

4 Experiments

We have conducted extensive experiments on 6 tasks, including 3 recommendation tasks (explicit
feedback, implicit feedback and sequential recommendation) and 3 NLP tasks (neural machine
translation, BERT pre-training, and BERT fine-tuning for sentiment classification) and found that our
proposed SSE can effectively improve generalization performances on a wide variety of tasks. Note
that the details about datasets and parameter settings can be found in the appendix.

4.1 Neural Networks with One Hidden Layer (Matrix Factorization and BPR)

Matrix Factorization Algorithm (MF) [17] and Bayesian Personalized Ranking Algorithm (BPR)
[25] can be viewed as neural networks with one hidden layer (latent features) and are quite popular in
recommendation tasks. MF uses the squared loss designed for explicit feedback data while BPR uses
the pairwise ranking loss designed for implicit feedback data.

First, we conduct experiments on two explicit feedback datasets: Movielens1m and Movielens10m.
For these datasets, we can construct graphs based on actors/actresses starring the movies. We compare
SSE-graph and the popular Graph Laplacian Regularization (GLR) method [24] in Table 1. The
results show that SSE-graph consistently outperforms GLR. This indicates that our SSE-Graph has
greater potentials over graph Laplacian regularization as we do not explicitly penalize the distances
across embeddings, but rather we implicitly penalize the effects of similar embeddings on the loss.
Furthermore, we show that even without existing knowledge graphs of embeddings, our SSE-SE
performs only slightly worse than SSE-Graph but still much better than GLR and MF.

In general, SSE-SE is a good alternative when graph information is not available. We then show
that our proposed SSE-SE can be used together with standard regularization techniques such as
dropout and weight decay to improve recommendation results regardless of the loss functions and
dimensionality of embeddings. This is evident in Table 2 and Table 3. With the help of SSE-SE, BPR
can perform better than the state-of-art listwise approach SQL-Rank [32] in most cases. We include
the optimal SSE parameters in the table for references and leave out other experiment details to the
appendix. In the rest of the paper, we would mostly focus on SSE-SE as we do not have high-quality
graphs of embeddings on most datasets.

4.2 Transformer Encoder Model for Sequential Recommendation

SASRec [11] is the state-of-the-arts algorithm for sequential recommendation task. It applies the
transformer model [30], where a sequence of items purchased by a user can be viewed as a sentence in
transformer, and next item prediction is equivalent to next word prediction in the language model. In
Table 4, we perform SSE-SE on input embeddings (px = 0.1, py = 0), output embeddings (px = 0.1,
py = 0) and both embeddings (px = py = 0.1), and observe that all of them significantly improve
over state-of-the-art SASRec (px = py = 0). The regularization effects of SSE-SE is even more
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Table 4: SSE-SE has two tuning parameters: probability px to replace embeddings associated with
input xi and probability py to replace embeddings associated with output yi. We use the dropout
probability of 0.1, weight decay of 1e�5, and learning rate of 1e�3 for all experiments.

Movielens1m Dimension # of Blocks SSE-SE Parameters
Model NDCG@10 Hit Ratio@10 d b px py

SASRec 0.5941 0.8182 100 2 - -
SASRec 0.5996 0.8272 100 6 - -

SSE-SE + SASRec 0.6092 0.8250 100 2 0.1 0
SSE-SE + SASRec 0.6085 0.8293 100 2 0 0.1
SSE-SE + SASRec 0.6200 0.8315 100 2 0.1 0.1

SSE-SE + SASRec 0.6265 0.8364 100 6 0.1 0.1

Table 5: Our proposed SSE-SE helps the Transformer achieve better BLEU scores on English-to-
German in 10 out of 11 newstest data between 2008 and 2018.

Test BLEU
Model 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Transformer 21.0 20.7 22.7 20.6 20.6 25.3 26.2 28.4 32.1 27.2 38.8
SSE-SE + Transformer 21.4 21.1 23.0 21.0 20.8 25.2 27.2 29.2 33.1 27.9 39.9

obvious when we increase the number of self-attention blocks from 2 to 6, as this will lead to a more
sophisticated model with many more parameters. This leads to the model overfitting terribly even
with dropout and weight decay. We can see in Table 4 that when both methods use dropout and
weight decay, SSE-SE + SASRec is doing much better than SASRec without SSE-SE.

4.3 Neural Machine Translation

We use the transformer model [30] as the backbone for our experiments. The baseline model is the
standard 6-layer transformer architecture and we apply SSE-SE to both encoder, and decoder by
replacing corresponding vocabularies’ embeddings in the source and target sentences. We trained on
the standard WMT 2014 English to German dataset which consists of roughly 4.5 million parallel
sentence pairs and tested on WMT 2008 to 2018 news-test sets. We use the OpenNMT implementation
in our experiments. We use the same dropout rate of 0.1 and label smoothing value of 0.1 for the
baseline model and our SSE-enhanced model. The only difference between the two models is whether
or not we use our proposed SSE-SE with p0 = 0.01 in (5) for both encoder and decoder embedding
layers. We evaluate both models’ performances on the test datasets using BLEU scores [21].

We summarize our results in Table 5 and find that SSE-SE helps improving accuracy and BLEU
scores on both dev and test sets in 10 out of 11 years from 2008 to 2018. In particular, on the last 5
years’ test sets from 2014 to 2018, the transformer model with SSE-SE improves BLEU scores by
0.92 on average when compared to the baseline model without SSE-SE.

4.4 BERT for Sentiment Classification

BERT’s model architecture [3] is a multi-layer bidirectional Transformer encoder based on the
Transformer model in neural machine translation. Despite SSE-SE can be used for both pre-training
and fine-tuning stages of BERT, we want to mainly focus on pre-training as fine-tuning bears
more similarity to the previous section. We use SSE probability of 0.015 for embeddings (one-
hot encodings) associated with labels and SSE probability of 0.015 for embeddings (word-piece
embeddings) associated with inputs. One thing worth noting is that even in the original BERT model’s
pre-training stage, SSE-SE is already implicitly used for token embeddings. In original BERT model,
the authors masked 15% of words for a maximum of 80 words in sequences of maximum length of
512 and 10% of the time replaced the [mask] token with a random token. That is roughly equivalent
to SSE probability of 0.015 for replacing input word-piece embeddings.

We continue to pre-train Google pre-trained BERT model on our crawled IMDB movie reviews with
and without SSE-SE and compare downstream tasks performances. In Table 6, we find that SSE-SE
pre-trained BERT base model helps us achieve the state-of-the-art results for the IMDB sentiment
classification task, which is better than the previous best in [9]. We report test set accuracy of 0.9542
after fine-tuning for one epoch only. For the similar SST-2 sentiment classification task in Table 7, we
also find that SSE-SE can improve BERT pre-trains better. Our SSE-SE pre-trained model achieves
94.3% accuracy on SST-2 test set after 3 epochs of fine-tuning while the standard pre-trained BERT
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Table 6: Our proposed SSE-SE applied in the pre-training stage on our crawled IMDB data improves
the generalization ability of pre-trained IMDB model and helps the BERT-Base model outperform
current SOTA results on the IMDB Sentiment Task after fine-tuning.

IMDB Test Set
Model AUC Accuracy F1 Score

ULMFiT [9] - 0.9540 -

Google Pre-trained Model + Fine-tuning 0.9415 0.9415 0.9419
Pre-training + Fine-tuning 0.9518 0.9518 0.9523

(SSE-SE + Pre-training) + Fine-tuning 0.9542 0.9542 0.9545

Table 7: SSE-SE pre-trained BERT-Base models on IMDB datasets turn out working better on the
new unseen SST-2 Task as well.

SST-2 Dev Set SST-2 Test Set
Model AUC Accuracy F1 Score Accuracy (%)

Google Pre-trained + Fine-tuning 0.9230 0.9232 0.9253 93.6
Pre-training + Fine-tuning 0.9265 0.9266 0.9281 93.8

(SSE-SE + Pre-training) + Fine-tuning 0.9276 0.9278 0.9295 94.3
(SSE-SE + Pre-training) + (SSE-SE + Fine-tuning) 0.9323 0.9323 0.9336 94.5

model only reports 93.8 after fine-tuning. Furthermore, we show that SSE-SE with SSE probability
0.01 can also improve dev and test accuracy in the fine-tuning stage. If we are using SSE-SE for both
pre-training and fine-tuning stage of the BERT base model, we can achieve 94.5% accuracy on the
SST-2 test set, approaching the 94.9% accuracy by the BERT large model. We are optimistic that our
SSE-SE can be applied to BERT large model as well in the future.

4.5 Speed and Convergence Comparisons.

In Figure 4, it is clear to see that our one-hidden-layer neural networks with SSE-SE are achieving
much better generalization results than their respective standalone versions. One can also easily spot
that SSE-version algorithms converge at much faster speeds with the same learning rate.

5 Conclusion

We have proposed Stochastic Shared Embeddings, which is a data-driven approach to regularization,
that stands in contrast to brute force regularization such as Laplacian and ridge regularization. Our
theory is a first step towards explaining the regularization effect of SSE, particularly, by ‘smoothing’
the Rademacher complexity. The extensive experimentation demonstrates that SSE can be fruitfully
integrated into existing deep learning applications.

Acknowledgement. Hsieh acknowledges the support of NSF IIS-1719097, Intel faculty award,
Google Cloud and Nvidia.

Figure 4: Compare Training Speed of Simple Neural Networks with One Hidden Layer, i.e. MF and
BPR, with and without SSE-SE.
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