
Multi-Agent Path Finding with Mutex Propagation

Han Zhang1, Jiaoyang Li1, Pavel Surynek2, Sven Koenig1, T. K. Satish Kumar1

1University of Southern California, 2Czech Technical University
{zhan645, jiaoyanl}@usc.edu, pavel.surynek@fit.cvut.cz, skoenig@usc.edu, tkskwork@gmail.com

Abstract

Mutex propagation is a form of efficient constraint propaga-
tion popularly used in AI planning to tightly approximate the
reachable states from a given state. We utilize this idea in the
context of Multi-Agent Path Finding (MAPF). When adapted
to MAPF, mutex propagation provides stronger constraints
for conflict resolution in Conflict-Based Search (CBS), a pop-
ular optimal MAPF algorithm, and provides it with the ability
to identify and reason with symmetries in MAPF. While ex-
isting work identifies a limited form of symmetries using rect-
angle reasoning and requires the manual design of symmetry-
breaking constraints, mutex propagation is more general and
allows for the automated design of symmetry-breaking con-
straints. Our experimental results show that CBS with mutex
propagation is capable of outperforming CBSH with rectan-
gle reasoning, a state-of-the-art variant of CBS, with respect
to runtime and success rate.

1 Introduction

The Multi-Agent Path Finding (MAPF) problem is a gener-
alization of the single-agent path finding problem to multi-
ple agents. Each agent is required to move from a given start
vertex to a given goal vertex on a given graph while avoid-
ing conflicts with other agents. A conflict happens when two
agents stay at the same vertex or traverse the same edge in
opposite directions at the same time. Common objectives for
the MAPF problem include minimizing the sum of the path
costs and the makespan. Under both objectives, the MAPF
problem arises in many real-world application domains, in-
cluding automated warehouse robots (Wurman, D’Andrea,
and Mountz 2008) and aircraft-towing vehicles (Morris et
al. 2016).

Conflict-Based Search (CBS) (Sharon et al. 2015) is a
popular algorithm for solving the MAPF problem optimally
for both objectives, which is known to be NP-hard (Yu and
LaValle 2013; Ma et al. 2016). CBS is a two-level MAPF
algorithm that starts with an individual minimum-cost path
for each agent. On the high level, CBS maintains a Con-
straint Tree (CT) and lazily resolves conflicts between pairs
of agents by adding spatio-temporal constraints to prohibit

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one of the agents from occupying the conflicting vertex or
traversing the conflicting edge at the conflicting timestep.
On the low level, CBS finds individual minimum-cost paths
for each agent that satisfy the spatio-temporal constraints
specified by the high-level node. CBS expands high-level
nodes in a best-first order and returns a set of paths as
solution when they are conflict-free. Many improvements
to CBS have been made, such as adding conflict-selection
strategies (Boyarski et al. 2015) and heuristic guidance (Li
et al. 2019a).

In this paper, we utilize a well-known technique, called
mutex propagation, from AI planning.1 It is a form of
constraint propagation that corresponds to directed 3-
consistency, which in turn is a truncated form of path con-
sistency (Weld 1999). Like all constraint propagation tech-
niques, it makes implicit constraints explicit, and it does so
efficiently. In AI planning, mutex propagation is applied to
the planning graph (Blum and Furst 1997) to tightly ap-
proximate the set of all reachable states from a given state
in polynomial time (Weld 1999). It has successfully been
used to design reachability heuristics for state-space plan-
ners (Nguyen and Kambhampati 2000), design heuristics for
plan-space planners that make them competitive with state-
space planners (Nguyen and Kambhampati 2001) and im-
prove SAT-based planners (Kautz and Selman 1996).2

Elements of the planning graph idea have reappeared in
MAPF research in the form of Multi-valued Decision Di-
agrams (MDDs) (Boyarski et al. 2015). MDDs are con-
structed for each agent individually and essentially capture
reachability information for them. However, they do not cap-
ture reachability information for groups of agents. On the
other hand, building joint MDDs for groups of agents is
computationally prohibitive because the joint space grows
exponentially with the number of agents. Knowing that mu-
tex propagation alleviates this dilemma in AI planning, we
seek to transfer this technique to MAPF, particularly in the
CBS framework.

We show that mutex propagation is beneficial in the CBS
framework for its ability to identify and reason about sym-
metries. While existing work identifies a limited form of

1Mutex is short for mutual exclusion.
2SAT is short for the Boolean satisfiability problem.

in Figure 1) as it needs to check all combinations of paths
whose SoC is less than the SoC of an optimal solution,
which can lead to a large number of node expansions.

We extend the definition of cardinal conflicts as follows:
agents ai and aj have a cardinal conflict within costs (li, lj)
in a CT node iff there does not exist a pair of conflict-free
paths for these two agents with costs li and lj , respectively,
that satisfy all constraints of the CT node. The definition
of cardinal conflicts is identical to the definition of cardinal
conflicts within costs (l?i , l

?
j).

Cardinal rectangle conflicts and barrier constraints:
In four-neighbor grid maps, two agents have a cardinal rect-
angle conflict in a CT node iff (1) all individual minimum-
cost paths of both agents cross the same rectangular area; (2)
the earliest possible timesteps of both agents reaching each
vertex inside the rectangular area are equal; and (3) the di-
rections of both agents moving through the rectangular area
are same in both dimensions. Then, any pair of individual
minimum-cost paths of both agents has at least one con-
flict. A barrier constraint is a set of vertex constraints that
prohibits one or the other of the two agents from leaving
the rectangular area on an individual minimum-cost path.
Li et al. (2019c) proved that using barrier constraints to re-
solve cardinal rectangle conflicts guarantees the optimality
and completeness of CBS.

Example 1. Consider the example in Figure 1a. Agents
a1 and a2 have a cardinal rectangle conflict, and any
pair of their individual minimum-cost paths has at least
one vertex conflict in the yellow rectangular area. In
any optimal solution, one or the other of the two
agents needs to wait for one timestep, and the opti-
mal SoC is 11. The barrier constraint for agent a1 is
{〈a1, 2, C2〉, 〈a1, 3, C3〉, 〈a1, 4, C4〉}, and the barrier con-
straint for agent a2 is {〈a2, 3, B4〉, 〈a2, 4, C4〉}.

2.3 Multi-Valued Decision Diagrams (MDDs)

A Multi-valued Decision Diagram (MDD) (Sharon et al.

2015; 2013) MDD
l
i for agent ai in a CT node is a (l + 1)-

level directed acyclic graph that consists of all paths of cost l
for agent ai that satisfy all constraints of the CT node. We as-
sume that l is not smaller than the individual minimum cost
of agent ai. The nodes of MDD

l
i at level t correspond to

all possible vertices of agent ai at timestep t in these paths.

At level 0, MDD
l
i has a single source node corresponding

to agent ai occupying its start vertex si at timestep 0. At

level l, MDD
l
i has a single sink node corresponding to agent

ai occupying its goal vertex gi at timestep l. For an MDD

node n of MDD
l
i, we use n.level to denote the timestep of

n and n.loc to denote the vertex of n. For a directed MDD
edge e = 〈n, n′〉 of MDD

l
i, we define e.level = n.level,

e.from = n and e.to = n′. We use MDD i when the num-
ber of levels of the MDD is not important to the discussion.

3 Mutexes and Mutex Propagation

In this section, we explain the original idea of mutex propa-
gation on planning graphs and generalize it to mutex propa-
gation on MDDs for MAPF.

3.1 Mutex Propagation on Planning Graphs

Planning graphs (Weld 1999) contain two types of nodes,
proposition nodes and action nodes, arranged into levels.
Even-numbered levels contain only proposition nodes, while
odd-numbered levels contain only action nodes. The zeroth
level represents the start state. An edge connects a proposi-
tion node to an action node at the next level iff the proposi-
tion is a precondition of that action. An edge also connects
an action node to a proposition node at the next level iff the
proposition is made true by that action. The planning graph
represents the effects of parallel actions, but it does so very
loosely. To better approximate the set of reachable states,
mutex propagation is done on the planning graph using the
following rules:

• Two action nodes at level i are mutex iff (1) the effect of
one action is the negation of the effect of the other ac-
tion; (2) one action deletes the precondition of the other
action; or (3) there exists a precondition of one action and
a precondition of the other action that are mutex at level
i− 1.

• Two proposition nodes at level i are mutex iff (1) one
proposition is the negation of the other proposition or (2)
all actions at level i − 1 that achieve one proposition are
pairwise mutex with all actions at level i− 1 that achieve
the other proposition.

In the context of MAPF, MDDs are directed and lev-
eled data structures that resemble planning graphs. However,
each action has a single precondition because each agent at
each timestep can either wait at its current vertex u or tra-
verse some edge 〈u, v〉, both with the single precondition of
the agent being at vertex u at that timestep. Therefore, there
is no necessity to represent the action layers explicitly, and
a collection of MDDs built individually for each agent can
be seen as a special case of a planning graph. Similarly, the
mutex propagation rules can also be simplified in the case of
MDDs, as explained in Section 3.2, resulting in the follow-
ing semantics. If two MDD nodes ni of MDD i and nj of
MDDj at level t are mutex, then there do not exist conflict-
free sub-paths that move agents ai and aj from their start
vertices at timestep 0 to the vertices ni.loc and nj .loc at
timestep t. Since mutex propagation can be done in polyno-
mial time, the set of reachable vertices can be efficiently and
tightly approximated, from which useful information can be
derived for symmetry breaking and guiding the high-level
search of CBS.

3.2 Mutex Propagation on MDDs

We define two types of initial mutexes that correspond to
vertex and edge conflicts in MAPF, respectively:

• Two MDD nodes ni and nj are initial mutex iff ni and nj

are from MDDs for different agents, ni.level = nj .level
and ni.loc = nj .loc.

• Two MDD edges ei = 〈ni, n
′

i〉 and ej = 〈nj , n
′

j〉 are
initial mutex iff ei and ej are from MDDs for different
agents, ei.level = ej .level, ni.loc = n′

j .loc and nj .loc =
n′

i.loc.

A2

A3

B2

A4

B3

B4

B1

B2

C1

B3

C2 C3

D2

D3

D4

B5

C5

C2

C3

C4

B4

C4

Initial Mutexes Propagated Mutexes a

Figure 2: Shows the MDDs for agents a1 and a2 on the rect-
angle conflict of Figure 1a along with the mutexes between
their nodes. Initial mutexes are represented with blue dashed
arcs, and propagated mutexes are represented with red solid
arcs.

Example 2. Figure 2 shows the MDDs for agents a1 and
a2 on the rectangle conflict of Figure 1a. The label of each
MDD node is its vertex. Initial mutexes are represented with
blue dashed arcs.

At level 1, MDD nodes B2 of MDD1 and B2 of MDD2 are
initial mutex and thus connected by a blue dashed arc be-
cause both agents staying at vertex B2 at timestep 1 causes
a vertex conflict.

We define two types of propagated mutexes that express
our mutex propagation rules:

1. Forward propagation for MDD nodes: Two MDD
nodes ni and nj are propagated mutex iff ni and nj are
from MDDs for different agents, ni.level = nj .level and
all pairs of MDD edges ei and ej with ei.to = ni and
ej .to = nj are either initial mutex or propagated mutex.

2. Forward propagation for MDD edges: Two MDD
edges ei and ej are propagated mutex iff ei and ej are
from MDDs for different agents, ei.level = ej .level and
MDD nodes ei.from and ej .from are either initial mu-
tex or propagated mutex.

Example 3. Propagated mutexes between MDD nodes in
Figure 2 are represented with red solid arcs. As MDD nodes
B2 of MDD1 and B2 of MDD2 are initial mutex, the MDD
edges from B2 to C2 of MDD1 and from B2 to B3 of MDD2

are propagated mutex. At level 2, MDD nodes C2 of MDD1

and B3 of MDD2 have only one incoming MDD edge each,
namely, MDD edges from B2 to C2 of MDD1 and from B2
to B3 of MDD2. Thus, MDD nodes C2 of MDD1 and B3 of
MDD2 at level 2 are propagated mutex and connected by a
red solid arc.

We define two MDD nodes or two MDD edges to be mu-
tex iff they are initial mutex or propagated mutex. We use Al-
gorithm 1 to find all mutexes between two MDDs. The algo-
rithm is similar to AC-3 (Mackworth 1977). The pseudocode
is only for illustrating the general idea and is not intended to
be efficient. We add all initial mutexes to a queue and check
all mutexes in the order of their levels for whether the mutex
can be propagated. The propagated mutexes are then added

Algorithm 1: GENERATE-MUTEX: Determine all
mutexes between two MDDs.

Input : Two MDDs MDD i and MDDj .
Output: A set of mutexes M .

1 queue← all initial mutexes between MDD i and MDDj ;
2 M ← ∅;
3 while queue is not empty do
4 m← pop a mutex from queue with the smallest level,

breaking ties in favor of node mutexes;
5 Add m to M ;
6 if m is a node mutex then
7 〈ni, nj〉 ← m;
8 foreach ei such that ei.from = ni do
9 foreach ej such that ej .from = nj do

10 Add 〈ei, ej〉 to queue;
11 end

12 end

13 else // m is an edge mutex
14 〈ei, ej〉 ← m;
15 ni ← ei.to;
16 nj ← ej .to;
17 is propagated mutex← True;

18 foreach e′i such that e′i.to = ni do

19 foreach e′j such that e′j .to = nj do

20 if 〈e′i, e
′

j〉 is not in M then
21 is propagated mutex← False;

22 end

23 end
24 if is propagated mutex then
25 Add 〈ni, nj〉 to queue;

26 end

27 end
28 return M ;

to the queue. At the same level, we first check mutexes be-
tween MDD nodes and then mutexes between MDD edges.

Property 1. If two MDD nodes ni of MDD i and nj of
MDDj with ni.level = nj .level = l are mutex, then there
does not exist a pair of conflict-free sub-paths pi and pj for
agents ai and aj , respectively, such that pi begins at si at
timestep zero and reaches ni.loc at timestep l and pj begins
at sj at timestep zero and reaches nj .loc at timestep l.

Proof. The property is trivially true if ni and nj are initial
mutex. For a proof of the property by contradiction if ni

and nj are propagated mutex, assume that there exist two
such sub-paths pi and pj that are conflict-free. Define ni,t

as the MDD node that corresponds to the vertex of agent
ai at timestep t when it follows pi. Similarly, define nj,t as
the MDD node that corresponds to the vertex of agent aj at
timestep t when it follows pj . By definition, ni,0.loc = si,
nj,0.loc = sj , ni,l = ni and nj,l = nj . Using induction,
we now prove the contradiction that ni and nj are not prop-
agated mutex. In the base case, ni,0 and nj,0 are not mutex
because si 6= sj , given that pi and pj are conflict-free. As-
sume that ni,t and nj,t are not propagated mutex for timestep
t < l. ni,t and nj,t are not initial mutex because pi and pj
are conflict-free. We define MDD edge ei as 〈ni,t, ni,t+1〉
and MDD edge ej as 〈nj,t, nj,t+1〉. ei and ej are not initial

Algorithm 2: CLASSIFY-CONFLICT: Determine
whether agents ai and aj have a cardinal conflict
within costs (li, lj).

Input : Two MDDs MDD
li
i and MDD

lj
j with li ≤ lj .

Output: The conflict type between agents ai and aj , which
is PC, AC or NC.

1 N
′

j ←MDD nodes in level li of MDD
lj
j that are not

mutex with the sink node of MDD
li
i ;

2 if N
′

j = ∅ then
3 return PC;

4 foreach nj ∈ N ′

j do

5 if there exists a sub-path in MDD
lj
j from nj to its sink

node without traversing any MDD node with vertex
gi then

6 return NC;

7 end
8 return AC;

mutex because pi and pj are conflict-free. ei and ej are not
propagated mutex either because their source MDD nodes
ni,t and nj,t are not mutex. This implies that ni,t+1 and
nj,t+1 are not propagated mutex. By induction, ni and nj

are not propagated mutex, which contradicts the assump-
tion.

Property 2. If two MDD nodes ni of MDD i and nj of
MDDj with ni.level = nj .level = l are not mutex, then
there exists a pair of conflict-free sub-paths pi and pj for
agents ai and aj , respectively, such that pi begins at si at
timestep zero and reaches ni.loc at timestep l and pj begins
at sj at timestep zero and reaches nj .loc at timestep l.

Proof. Because ni and nj are not mutex, there exists a pair
of their incoming MDD edges that are not mutex. Therefore,
the source MDD nodes of these two edges are not mutex
either. Continuing this backward induction, we can construct
the desired conflict-free sub-paths.

Theorem 1 combines Properties 1 and 2.

Theorem 1. Iff two MDD nodes ni of MDD i and nj of
MDDj with ni.level = nj .level = l are not mutex, then
there exists a pair of conflict-free sub-paths pi and pj for
agents ai and aj , respectively, such that pi begins at si at
timestep zero and reaches ni.loc at timestep l and pj begins
at sj at timestep zero and reaches nj .loc at timestep l.

Example 4. In Figure 2, MDD nodes D4 of MDD1 and
C5 of MDD2 at level 5 are propagated mutex. From Theo-
rem 1, there does not exist a pair of conflict-free sub-paths
for agents a1 and a2 such that both agents arrive at their re-
spective goal vertices at timestep 5, which means that there
does not exist a pair of conflict-free paths of cost 5 for a1
and a2. Therefore, by definition, the conflict between a1 and
a2 is cardinal.

4 Identifying Cardinal Conflicts with Mutex

Propagation

In this section, we present an algorithm that uses mutex
propagation to identify cardinal conflicts in a CT node.

Two agents with different individual minimum costs can
have vertex conflicts after one agent terminally waits at its
goal vertex, and these conflicts are not captured by mutexes.
To handle them differently, we define two classes of cardinal
conflicts:

Pre-goal Cardinal conflict (PC) within costs (li, lj):
There does not exist a pair of conflict-free paths with the
given costs for both agents from their start vertices to their
goal vertices even if we do not consider conflicts that happen
after one agent terminally waits at its goal vertex.

After-goal Cardinal conflict (AC) within costs (li, lj):
There exists a pair of conflict-free paths with the given costs
for both agents from their start vertices to their goal vertices
if we do not consider conflicts that happen after one agent
terminally waits at its goal vertex. However, for every such
pair of paths, one agent traverses the goal vertex of the other
agent after the other agent terminally waits at its goal vertex.

Given two agents ai and aj and their corresponding

MDDs MDD
li
i and MDD

lj
j , we use Algorithm 2 to deter-

mine whether these agents have a cardinal conflict within
costs (li, lj). Algorithm 2 returns PC, AC or NC (“Not a
Cardinal conflict”). Without loss of generality, we assume
that li ≤ lj throughout this paper. Algorithm 2 first checks

whether all MDD nodes of MDD
lj
j at level li are mutex with

the sink node of MDD
li
i . If so, then it classifies the conflict

as a PC. Otherwise, it checks whether there exist an MDD

node nj of MDD
lj
j at level li that is not mutex with the sink

node of MDD
li
i and a sub-path in MDD

lj
j from nj to its sink

node that does not traverse any MDD node with vertex gi. If
so, it classifies the conflict as an NC. If such an MDD node
and a sub-path do not exist, then it classifies the conflict as
an AC.

Theorem 2. There exists a pair of conflict-free paths pi and
pj for agents ai and aj with costs li and lj , respectively, iff

Algorithm 2 returns NC given MDD
li
i and MDD

lj
j .

Proof. First, assume that there exist such conflict-free paths

pi and pj . From Theorem 1, the MDD node nj of MDD
lj
j

that corresponds to the vertex of agent aj at timestep li is not

mutex with the sink node of MDD
li
i . Therefore, N ′

j is not
empty. Since pi and pj are conflict-free, agent aj following
pj does not traverse vertex gi at or after timestep li. Thus,
there exists a sub-path from nj to its sink node that does
not traverse any MDD node with vertex gi, and Algorithm 2
returns NC.

Now assume that Algorithm 2 returns NC. From Line 5

of Algorithm 2, there exists a sub-path p in MDD
lj
j from an

MDD node nj ∈ N ′

j to its sink node without traversing any
MDD node with vertex gi. From Line 1 of Algorithm 2, nj is

not mutex with the sink node of MDD
li
i . From Theorem 1,

there exists a pair of conflict-free sub-paths pi and pj for
agents ai and aj , respectively, such that pi begins at si at

Algorithm 3: GENERATE-CONSTRAINTS-PC:
Generate constraints for PCs.

Input : Two MDDs MDD
li
i and MDD

lj
j .

Output: Constraint set Ci for agent ai and constraint set
Cj for agent aj .

1 Ci ← constraints on every MDD node of MDD
li
i that is

mutex with all MDD nodes of MDD
lj
j at the same level;

2 Cj ← constraints on every MDD node of MDD
lj
j that is

mutex with all MDD nodes of MDD
li
i at the same level;

3 return 〈Ci, Cj〉;

Algorithm 4: GENERATE-CONSTRAINTS-AC:
Generate constraints for ACs.

Input : Two MDDs MDD
li
i and MDD

lj
j with li ≤ lj .

Output: Constraint set Ci for agent ai and constraint set
Cj for agent aj .

1 Ci ← {cost constraint 〈ai, li〉};

2 Nj ←MDD nodes of MDD
lj
j at level li that are mutex

with the sink node of MDD
li
i ;

3 NAC ←MDD nodes n of MDD
lj
j with n.loc = gi and

n.level > li;
4 Cj ← constraints on all MDD nodes in Nj ∪NAC ;
5 return 〈Ci, Cj〉;

timestep zero and reaches gi at timestep li and pj begins at
sj at timestep zero and reaches nj .loc at timestep li. If agent
ai follows pi until timestep li and then terminally waits at gi
and agent aj follows pj until timestep li then follows p to gj
and terminally waits at gj , then these two paths are conflict-
free and of costs li and lj , respectively.

To apply Theorem 2, li and lj do not have to be the indi-
vidual minimum costs of agents ai and aj , respectively.

Corollary 1. Agents ai and aj have a cardinal conflict iff

Algorithm 2 returns PC or AC given MDD
l?i
i and MDD

l?j
j ,

where l?i and l?j are the individual minimum costs of agents
ai and aj , respectively.

5 Resolving Cardinal Conflicts with Mutex

Propagation

In this section, we first present two algorithms that generate
constraint sets to resolve PCs and ACs within costs (li, lj),
respectively. We then describe how we find suitable li and
lj so that the generated constraints are effective for CBS
branching.

5.1 Generating the Constraint Sets

Given MDD
li
i and MDD

lj
j for which CLASSIFY-CONFLICT

returns PC, we use Algorithm 3 to generate the constraint
sets Ci and Cj for agents ai and aj , respectively. We de-
fine the constraint on MDD node n of MDD i as the ver-
tex constraint 〈ai, n.level, n.loc〉. Constraint set Ci contains

the constraints on every MDD node of MDD
li
i that is mu-

tex with all MDD nodes of MDD
lj
j at the same level. Sim-

ilarly, constraint set Cj contains the constraints on every

MDD node of MDD
lj
j that is mutex with all MDD nodes

of MDD
li
i at the same level.

Property 3. For all pairs of paths of agents ai and aj with
a PC, if ai’s path pi violates a constraint in Ci and aj’s path
pj violates a constraint in Cj , then paths pi and pj are not
conflict-free.

Proof. Let 〈ai, ti, vi〉 and 〈aj , tj , vj〉 denote the two con-
straints violated by paths pi and pj , respectively. If ti ≤ tj ,

use nj to denote the MDD node in MDD
lj
j corresponding

to the vertex of pj at timestep ti. From Line 1 of Algo-

rithm 3, the MDD node ni of MDD
li
i with ni.loc = vi and

ni.level = ti is mutex with nj . From Theorem 1, pi and pj
are not conflict-free. A similar proof works for ti ≥ tj .

This property holds for paths pi and pj of any costs. Sim-
ilarly, if CLASSIFY-CONFLICT returns AC, we use Algo-
rithm 4 to generate constraint sets. We introduce a new type
of constraint.

Cost Constraint: Cost constraint 〈ai, l〉 forces the path
cost of agent ai to be larger than l.

Such a cost constraint can be implemented easily by
changing the termination condition of the low-level search
of CBS.

Given MDD
li
i and MDD

lj
j for which CLASSIFY-

CONFLICT returns AC, we use Algorithm 4 to generate the
constraint sets Ci and Cj for agents ai and aj , respectively.
Constraint set Ci contains only the cost constraint 〈ai, li〉.
Constraint set Cj contains the constraints on all MDD nodes

of MDD
lj
j at level li that are mutex with the sink node of

MDD
li
i and all MDD nodes n of MDD

lj
j with n.loc = gi

and n.level > li.

Property 4. For all pairs of paths of agents ai and aj with
an AC, if ai’s path cost is not larger than li and aj’s path
violates a vertex constraint from Cj , then the two paths are
not conflict-free.

Proof. From the calculation of Cj on Line 4 of Algorithm 4,
Cj contains the vertex constraints on all MDD nodes in

Nj ∪NAC . NAC contains all those MDD nodes of MDD
lj
j

at levels larger than li whose vertices are gi. If agent aj vi-
olates the constraint on an MDD node n in NAC , it must
have a conflict with agent ai because ai terminally waits at
gi at timestep n.level. Nj contains all those MDD nodes of

MDD
lj
j that are mutex with the sink node of MDD

li
i . From

Theorem 1, since ai occupies gi at timestep li and aj vio-
lates the constraint on an MDD node in Nj , the two paths
are not conflict-free.

Properties 3 and 4 ensure that the constraint sets gener-
ated by Algorithms 3 and 4 do not rule out any pairs of
conflict-free paths for the agents to which the constraint sets
are added.

Property 5. Algorithms 3 and 4 generate constraint sets
that increase the individual minimum costs of agents to
which these constraint sets are added.

Proof. If Algorithm 2 outputs PC, then Ck, k ∈ {i, j}, con-

tains constraints on all MDD nodes of MDD
lk
k at level li

because the sink node of MDD
li
i is mutex with all MDD

nodes of MDD
lj
j at level li. Therefore, any path of agent ak

satisfying Ck must have cost of at least lk + 1.
If Algorithm 2 outputs AC, then Ci contains only one cost

constraint 〈ai, li〉. Therefore, any path of agent ai satisfying
Ci must have cost of at least li+1. For agent aj , Cj contains
constraints on all MDD nodes in Nj and NAC . We prove by
contradiction that there does not exist a path for agent aj of
cost less than or equal to lj . Assume that such a path p exists.

We use N ′

j to denote the set of nodes of MDD
lj
j at level li

that are not mutex with the sink node of MDD
li
i . From The-

orem 1, p must traverse a vertex that corresponds to an MDD
node in N ′

j at timestep li. Because Algorithm 2 outputs AC,

from Line 5, there does not exist a sub-path in MDD
lj
j from

any MDD node in N ′

j to the sink node of MDD
lj
j that does

not traverse an MDD node in NAC . Therefore, such a path
p does not exist.

Property 5 shows that, in every child CT node generated
with newly-added constraints from Algorithms 3 or 4, the
individual minimum cost of at least one agent increases.
Therefore, the SoC of that child CT node is larger than the
SoC of its parent CT node.

Properties 3-5 show that using Algorithms 3 and 4 to gen-
erate constraints for cardinal conflicts guarantees the opti-
mality and completeness of CBS, since the proof of Theo-
rem 2 in (Li et al. 2019c) applies. Moreover, Properties 3-5
do not rely on li and lj being the individual minimum costs
of ai and aj , respectively. Therefore, we can pick any li and
lj as long as ai and aj have a cardinal conflict within (li, lj).

In practice, to keep the sizes of the constraint sets Ci and
Cj small (which could reduce the runtime of the low-level
search of CBS), we remove the constraints on all such MDD
nodes n from the constraint set Ck, k ∈ {i, j}, if the con-
straints on all of n’s predecessors in the MDD are also in
Ck. Such constraints are redundant because the agent can-
not reach n.loc at timestep n.level.

Example 5. In Figure 2, the constraints generated by Al-
gorithm 3 are those of the MDD nodes which are filled
with solid blue. After removing redundancies, the constraint
set for agent a1 contains constraints 〈a1, 2, C2〉, 〈a1, 3, C3〉
and 〈a1, 4, C4〉, while the constraint set for agent a2 con-
tains constraints 〈a2, 3, B4〉 and 〈a2, 4, C4〉. These two con-
straint sets are exactly the barrier constraints for this cardi-
nal rectangle conflict.

5.2 Determining the Numbers of Levels of MDDs

For some cardinal conflicts, the minimum SoC of conflict-
free paths for the two conflicting agents is much larger than
the sum of their individual minimum costs. If we generate
constraints using MDDs for the conflicting agents whose

Algorithm 5: GENERATE-CONSTRAINTS-C: Gen-
erate constraints for cardinal conflicts.

Input : Two agents ai and aj with l?i ≤ l?j and

CLASSIFY-CONFLICT(MDD
l?i
i , MDD

l?j
j) 6= NC.

Output: Constraint set Ci for agent ai and constraint set
Cj for agent aj .

1 di ← 0;
2 dj ← 0;

3 while CLASSIFY-CONFLICT(MDD
l∗i +di+1

i ,

MDD
l∗j+dj+1

j) 6= NC do

4 di ← di + 1;
5 dj ← dj + 1;

6 end

7 while CLASSIFY-CONFLICT(MDD
l∗i +di+1

i , MDD
l∗j+dj

j)

6= NC do
8 di ← di + 1;
9 end

10 if CLASSIFY-CONFLICT(MDD
l?i +di
i ,MDD

l?j+dj

j) = PC

then

11 return GENERATE-CONSTRAINTS-PC(MDD
l?i +di
i ,

MDD
l?j+dj

j);

12 else // CLASSIFY-CONFLICT returns AC

13 return GENERATE-CONSTRAINTS-AC(MDD
l?i +di
i ,

MDD
l?j+dj

j);

14 end

numbers of levels are the respective individual minimum
costs, CBS still needs to expand multiple CT nodes to re-
solve all conflicts between the conflicting agents. An exam-
ple is a corridor conflict where, in any optimal solution, one
agent needs to wait for a certain number k of timesteps to
allow the other agent to traverse the corridor. Since Algo-
rithms 3 and 4 use MDDs whose numbers of levels are the
respective individual minimum costs, the constraints gener-
ated by them can increase the cost of either agent by only
one. Therefore, CBS needs to increase the CT to a depth of
at least k to find an optimal solution. Without heuristic guid-
ance, CBS thus needs to expand ω(2k) CT nodes.

To resolve cardinal conflicts efficiently when agents need
to increase their sum of individual minimum costs by
more than one, we aggressively increase the numbers of
levels of MDDs before using them to generate the con-
straint sets. As long as Algorithm 2 classifies two MDDs
as AC or PC, we can apply Algorithms 3 and 4. Although
there are several ways of determining suitable MDDs for
generating the constraint sets, we adopt Algorithm 5 as
our overall constraint generation algorithm. We begin with
di = dj = 0 and increase di and dj simultaneously un-

til CLASSIFY-CONFLICT(MDD
l?i +di+1

i ,MDD
l?j+dj+1

j) re-

turns NC. We then increase only di until CLASSIFY-

CONFLICT(MDD
l?i +di+1

i ,MDD
l?j+dj

j) returns NC. Finally,

MDDs MDD
l?i +di

i and MDD
l?j+dj

j are used to generate the
constraint sets on Lines 10-14. We leave it to future work to

study how different ways of choosing the numbers of MDD
levels affect the efficiency of CBS.

Example 6. In any optimal solution of the corridor conflict
example in Figure 1b, one of the two agents has a cost of 11.
In Algorithm 5, CLASSIFY-CONFLICT returns PC until di =
dj = 4. Therefore, Algorithm 5 uses MDD

10
1 and MDD

10
2

to generate the constraint sets. After removing redundancies,
the constraint set for agent a1 is

C1 ={〈a1, 5, B5〉, 〈a1, 6, B4〉, 〈a1, 6, B5〉, 〈a1, 7, B3〉,

〈a1, 7, B4〉},

which prevents agent a1 from arriving at vertex C5 before
timestep 11. Similarly, the constraint set for agent a2 is

C2 ={〈a2, 5, B1〉, 〈a2, 6, B2〉, 〈a2, 6, B1〉, 〈a2, 7, B3〉,

〈a2, 7, B2〉},

which prevents agent a2 from arriving at vertex C1 before
timestep 11.

6 CBSH with Mutex Propagation

Based on our proposed mutex propagation techniques, we
develop a new MAPF solver, called CBSH with Mutex
Propagation (CBSH-MP), that extends CBSH-RM (Li et al.
2019c). CBSH-RM is equipped with heuristic guidance and
rectangle reasoning that are retained in CBSH-MP. When re-
solving semi-cardinal and non-cardinal rectangle conflicts,
CBSH-MP uses rectangle reasoning to generate barrier con-
straints. In addition, CBSH-MP uses Algorithm 2 to identify
cardinal conflicts. When resolving cardinal conflicts, it uses
Algorithm 5 to generate the constraint sets. CBSH-MP also
caches the MDDs and the constraint sets for cardinal con-
flicts in two hash tables to reduce the runtime overhead of
mutex propagation. From Section 5.1, CBSH-MP is com-
plete and optimal.

7 Experimental Results

In this section, we report experimental results for CBSH-
MP. We first compare CBSH-MP with CBSH-RM on the
cardinal-conflict instances shown in Figure 1. Then, we
compare CBSH-MP with CBSH-RM and CBSH (Felner et
al. 2018) on various types of four-neighbor grid map in-
stances from the MAPF benchmark set (Stern et al. 2019).
These three MAPF solvers share the same codebase, except
for conflict classification and constraint generation. We run
all experiments on t2.large AWS EC2 instances with 8GB of
memory.

7.1 Cardinal-Conflict Instances

We use the cardinal-conflict instances shown in Figure 1.
Table 1 shows the number of CT node expansions of CBSH-
MP and CBSH-RM. The Prefix “>” in an entry means that
the MAPF solver does not solve the instance within five min-
utes, and the number after “>” is the number of CT node
expansions when the runtime limit is reached. CBSH-MP
solves all instances within one second.

CBSH-RM does not efficiently solve cardinal conflicts
other than cardinal rectangle conflicts since it lacks rules to

Table 1: Shows the number of CT node expansions on dif-
ferent cardinal-conflict instances. The “Size” and “Length”
of rectangle and corridor conflicts are the size and length
of the yellow areas in Figures 1a and 1b, respectively. The
“Size” of goal vertex conflicts is the map size. The “Width”
of switching agents conflicts is the map width.

Cardinal Rectangle Conflict

Size 5× 5 6× 6 7× 7 8× 8
CBSH-RM 1 1 1 1

CBSH-MP 1 1 1 1

Cardinal Corridor Conflict

Length 12 14 16 18

CBSH-RM 9, 302 39, 596 > 102, 238 > 95, 105
CBSH-MP 1 1 1 1

Goal Vertex Conflict

Size 6× 6 6× 6 7× 7 8× 8
CBSH-RM 182, 065> 1, 277, 243> 1, 107, 885> 1, 051, 743
CBSH-MP 1 1 1 1

Switching Agents Conflict

Width 7 8 9 10
CBSH-RM> 685, 234 > 695, 391 > 690, 585 > 690, 394
CBSH-MP 19 32 130 32

deal with such conflicts. However, it solves cardinal rectan-
gle conflicts faster than CBSH-MP because rectangle rea-
soning has a smaller overhead than mutex propagation.

For rectangle conflicts, corridor conflicts and goal ver-
tex conflicts, CBSH-MP expands only one CT node before
finding an optimal solution. For switching agents conflicts,
CBSH-MP expands only three CT nodes with cardinal con-
flicts at the bottom of the CT, and it expands only CT nodes
with semi-cardinal and non-cardinal conflicts in the rest of
the CT.

7.2 Benchmark Map Instances

We use four benchmark maps from Stern et al. (2019): two
small maps, which are the 16×16 empty map and the 32×32
map with 20% randomly blocked cells, and two large maps,
which are the 194 × 194 game map lak303d and the 128 ×
128 maze map with corridor width 1. We vary the number
of agents and, for each number of agents, average over 25
“even scenarios” from the benchmark set.

Figure 3 shows the success rates of CBSH-MP, CBSH-
RM and CBSH, which respectively specify how many in-
stances are solved by them within the time limit of five min-
utes, and Figure 4 shows the runtime of each MAPF solver
averaged over the instances solved by all MAPF solvers. In
the 16×16 empty map, both CBSH-RM and CBSH-MP out-
perform CBSH since there are many rectangle conflicts in
the problem instances. However, CBSH-MP only has a small
advantage over CBSH-RM. In the other three maps with
narrower environments, CBSH-MP outperforms CBSH-RM
and CBSH in both runtime and success rate because there
are more cardinal conflicts that CBSH-RM and CBSH do
not have rules to deal with.

ber 19-17966S. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies or the
U.S. government.

References

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N. F. 2018. Robust multi-agent path finding. In
SoCS, 2–9.

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281–300.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel, O.;
Tolpin, D.; and Shimony, E. 2015. ICBS: Improved conflict-
based search algorithm for multi-agent pathfinding. In IJ-
CAI, 740–746.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. K. S.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent path finding. In ICAPS, 83–87.

Hönig, W.; Preiss, J. A.; Kumar, T. K. S.; Sukhatme, G. S.;
and Ayanian, N. 2018. Trajectory planning for quadrotor
swarms. IEEE Transactions on Robotics 34(4):856–869.

Kautz, H., and Selman, B. 1996. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In AAAI,
1194–1201.

Lam, E.; Bodic, P. L.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-cut-and-price for multi-agent pathfinding. In IJ-
CAI, 1289–1296.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved heuristics for multi-agent path finding with
conflict-based search. In IJCAI, 442–449.

Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019b. Disjoint splitting for multi-agent path
finding with conflict-based search. In ICAPS, 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019c. Symmetry-breaking constraints for grid-based multi-
agent path finding. In AAAI, 6087–6095.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New techniques for pairwise symmetry
breaking in multi-agent path finding. In ICAPS.

Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig,
S. 2016. Multi-agent path finding with payload transfers
and the package-exchange robot-routing problem. In AAAI,
3166–3173.

Mackworth, A. K. 1977. Consistency in networks of rela-
tions. Artificial Intelligence 8(1):99–118.

Morris, R.; Pasareanu, C. S.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, T. K. S.; and Koenig, S. 2016. Planning, scheduling
and monitoring for airport surface operations. In AAAI-16
Workshop on Planning for Hybrid Systems.

Nguyen, X., and Kambhampati, S. 2000. Extracting effec-
tive and admissible state space heuristics from the planning
graph. In AAAI, 798–805.

Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In IJCAI, 459–464.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470–495.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.

Stern, R.; Sturtevant, N. R.; Atzmon, D.; Walker, T.; Li, J.;
Cohen, L.; Ma, H.; Kumar, T. K. S.; Felner, A.; and Koenig,
S. 2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In SoCS, 151–158.

Surynek, P. 2013. Mutex reasoning in cooperative path find-
ing modeled as propositional satisfiability. In IROS, 4326–
4331.

Surynek, P. 2019. Unifying search-based and compilation-
based approaches to multi-agent path finding through satis-
fiability modulo theories. In IJCAI, 1177–1183.

Weld, D. S. 1999. Recent advances in AI planning. AI
Magazine 20(2):93–123.

Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9–20.

Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI,
1443–1449.

