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Abstract— In this work, we implement a fully convolutional
segmenter featuring both a learned group structure and a
regularized weight-pruner to reduce the high computational
cost in volumetric image segmentation. We validated our
framework on the ACDC dataset featuring one healthy and four
pathology patient groups imaged throughout the cardiac cycle.
Our technique achieved Dice scores of 96.8% (LV blood-pool),
93.3% (RV blood-pool), and 90.0% (LV Myocardium) with five-
fold cross-validation and yielded similar clinical parameters
as those estimated from the ground-truth segmentation data.
Based on these results, this technique has the potential to
become an efficient and competitive cardiac image segmentation
tool that may be used for cardiac computer-aided diagnosis,
planning, and guidance applications.

Index Terms— Cine MRI, learned group-convolution,
condensation-optimization network, ventricle segmentation

I. INTRODUCTION

The emerging success of Convolutional Neural Networks
(CNNs) in solving high-level computer vision tasks can be
utilized to develop machine learning tools that are capable of
learning hierarchical features in an end-to-end manner [1].
Motivated by the superior performance of deep learning, the
medical imaging community has also embraced the imple-
mentation of deep learning-based approaches for medical
image segmentation [2], as a precursor task for clinical
parameter estimation [3]. However, image segmentation in
clinical settings still requires high accuracy and precision,
with even minimal segmentation errors being unacceptable.

In the context of cardiac image segmentation, fully con-
volutional networks (FCNs) have become well established,
thanks to their per pixel prediction capabilities. An example
of such an application is the segmentation of various cardiac
structures from MR images [4]. Similarly, Bai et al. [5]
reported improved accuracy and robustness of the ventricles
and atria segmentation by using a modified FCN architecture.

The formulation and integration of various regularization
techniques has been a growing strategic trend to improve
the generalization performance of neural networks. One such
particularly compelling approach is the use of Dropout at the
training stage of a neural network. However, the accuracy
of a trained deep network will not be severely improved
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by dropping out a majority of connections at the training
stage and hence current research efforts have been focused on
the use of deep model compression tasks, including weight
pruning [6], weight decay [7], and knowledge distillation [8].

Weight-pruning has aroused much research attention due
to its faster inference with minimal loss in accuracy. Huang
et al. [9] demonstrated the use of weight-pruning technique
in a group-convolution setting, where a DenseNet type
architecture can learn more sparse information during the
training process and prune redundant connections between
convolution layers.

In this work, we propose to use the concept of learned-
group convolution and weight-pruning technique in a fully
convolutional setting to segment the left and right ventricle
blood-pool and left ventricle Myocardium from end-diastolic
and end-systolic cardiac MR images in a more accurate
and more efficient manner. To assess the performance of
this proposed framework, we compare our results (Dice
score, Hausdorff distance, and clinical parameters) to those
obtained using five other segmentation architectures on the
Automatic Cardiac Diagnosis Challenge (ACDC) dataset.
Lastly, we show that the proposed learned-group convolution
and weight-pruning technique improve the segmentation per-
formance, as well as the estimation of clinical cardiac indices
in cine MR slices.

II. METHODOLOGY

To tackle the task of precise and rapid heart chamber
detection and segmentation in cine MR images, we pro-
pose a specifically designed network architecture — learned
condensation-optimization network (L-CO-Net), shown in
Fig. 1. Our proposed L-CO-Net framework substitutes the
concept of both standard convolution and group convolution
(G-Conv) with learned group-convolution (LG-Conv). While
the standard convolution needs an increased level of compu-
tation, i.e. O(Ii x Oo), and concurrently, the pre-defined use
of filters in each group convolution restricts its representation
capability, these aforementioned problems are mitigated by
introducing LG-Conv that learns group convolution dynam-
ically during training through a multi-stage scheme. Before
training, the input channels and filters are split into equally
sized M groups denoted as Ik = {Ik1 , Ik2 , ... , IkM } and
F k = {F k

1 , F k
2 , ... , F k

M}, where Iki is the ith feature map
of kth layer. The output of this group convolution layer is
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Fig. 1. Illustration of L-CO-Net framework: (a) ROI detection around LV-
RV; (b) Segmentation block consisting of a decoder and an encoder where
each condense block (CB) consists of 3 Layers with a growth rate of k
= 16. The transformations within each CB and the transition-down block
are labeled with a cyan and yellow box, respectively. (c) Learned Group
Convolution (LG-Conv) block is shown in the red rectangular box.

formulated as Ik+1 = [F k
1 ⊗ Ik1 , F k

2 ⊗ Ik2 , ..., F k
M ⊗ IkM ] =

[{fk11∗ik11, fk12∗ik12, ..., fk1N ∗ik1h}, {fk21∗ik21, fk22∗ik22, ..., fk2N ∗
ik2h}, .... , {fkM1 ∗ ikM1, f

k
M2 ∗ ikM2, ..., f

k
MN ∗ ikMh}], where

Ik = {ik1 , ik2 , ... , ikh }, F k = {fk1 , fk2 , ... , fkN}, h is the
number of channels, and N is the number of filters. Since
each group has its own weights, they can select their own
set of relevant input features, assisting the system to predict
most relevant features at the relevant connections. This multi-
stage pipeline consists of multi-condensation stages followed
by the optimization stage. In the first half of the pipeline,
training is initiated by calculating the magnitude of the
weights for each incoming feature, which are then averaged.
After that, the low-magnitude weighted column is screened
out from the features. Thus, a fraction of (C − 1)/C is
truncated after each of the C − 1 condensing stages.

The second part of the pipeline is where all training occurs.
This stage is focused on finding the optimal permutation
connection that will share a similar sparsity pattern, to
mitigate any negative effects on accuracy induced by the
pruning process. As mentioned by Huang et al. [9], both the
L1 and L2 regularization methods are efficient for solving the
overfitting problem, but they do not perform well for network
optimization. To address this limitation, we use an efficient
regularizer referred to as group lasso (GL), which is a natural
generalization of the standard lasso (least absolute shrinkage
and selection operator) objective [10]. Additionally, the GL
regularizer encourages group-level sparsity at the factor level
by forcing all outgoing connections from a single neuron
(corresponding to a group) to be either simultaneously zero
or not.

A. Heart Localization

To reduce computational complexity and improve accu-
racy, a Fourier transform-based method proposed by Lin et
al. [11] is used to automatically detect and extract a region
of interest (ROI) that encompasses the LV and RV. The
motivation for using the Fourier transform is that LV and RV
are the only large moving structures in the thorax and move
at the same frequency, dictated by the heart rate. Therefore,
the pixel intensity changes over time between the LV blood-
pool and the LV-myocardium, whereas the change in pixel
intensity is almost static at the boundary. We enhanced the
LV and RV regions by computing the Fourier transform for

each slice and retaining only the first harmonic. Moreover,
since the shape of the LV is circular in nature, we also used
the circle Hough transform introduced by Oksuz et al. [12]
to identify the center and radius of the ROI of the LV and
RV. We then generated a bounding-box and used it to crop
the ROI from the image (Fig. 1 (a)).

B. Heart Segmentation

The heart segmentation block in Fig. 1 (b) consists of
both an encoder and a decoder path, where the encoder path
has an input image size of 128 × 128, and three condense
blocks (CBs) with feature map size of {1282, 542, 322}. We
employ separable convolution with different filter sizes in the
initial layers and then stack them together, as inspired by the
Xception network.

We introduced a novel skip connection block which is
computationally and memory-efficient (Fig. 1). The decoder
is symmetrical to the encoder consisting of three blocks,
comprised of 3×3 transposed convolutions CBs, and a soft-
max layer in the last layer for generating the image mask.
The concatenation in skip-layer has been replaced by an
element-wise addition operation to mitigate the problem of
the feature-map explosion. We employ a number of layers
per block as 2, 3, 4, 5, 4, 3, 2 with 32 initial feature maps, 3
max-pooling layers, a growth rate of k = 16, group/condense
block = 4, and condensation factor, C = 4 (Fig. 1). The
weights are updated during back-propagation operation by
minimizing the dual loss function, LTotal:

LTotal = α.LEntropy(A,E) + β.(1− LDice(A,E)) (1)

where LEntropy is the weighted cross-entropy loss and LDice

is the dice loss. The parameter α varies between 0 and 1 and
β = 1−α. A be the training samples and E be the weights.
The first term, LEntropy in equation 1 is used to calculate
the weight map from the reference classes and labels, where
L and |V | are the set of all reference classes and voxels in
the training set, respectively in equation in 2.

LTotal = α. [−
∑
ai∈A

{
∑
l∈L

scale ∗ |V |
classfreq

+

∑
l∈L

edgescale ∗ |V |
edgefreq

} log (p(ri|ai;E))] +

β. [1−
∑

l∈L
|B|
|Bl| (

∑
ai∈A p(ri|ai;E)G(ai) + ε)∑

l∈L
|B|
|Bl| (

∑
ai∈A p(ri|ai;E) +G(ai) + ε)

]

(2)

Let ri be the label of the reference class corresponding to
voxel ai ∈ A. |B| represents the number of pixels in a mini-
batch and |Bl| represents the number of pixels in each class
l ∈ L. The term ε is used to prevent division by 0, when one
of the sets is empty. The total loss, LTotal is minimized via
the Adam optimizer and evaluated by dice scores associated
with clinical indices i.e. ejection fraction and myocardial
mass etc.
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Fig. 2. Representative ED and ES frames segmentation results of a
complete cardiac cycle from the base (high slice index) to apex (low slice
index) showing RV blood-pool, LV blood-pool, and LV-Myocardium in
purple, red, and cyan respectively.

C. Imaging Data

For this study, we used the Automated Cardiac Diagnosis
Challenge (ACDC) dataset1, consisting of short-axis cardiac
cine-MR images acquired for 100 patients divided into 5
subgroups: normal (NOR), myocardial infarction (MINF),
dilated cardiomyopathy (DCM), hypertrophic cardiomyopa-
thy (HCM), and abnormal right ventricle (ARV), available
through the 2017 MICCAI-ACDC challenge [13] which are
then splitted into 70% training and 15% validation set.

III. RESULTS

The proposed architecture was evaluated on the MICCAI
STACOM 2017 ACDC dataset in a stratified five-fold cross
validation. Fig. 2 shows segmentation results and the ground
truth masks for both 2D and 3D cases. Table I summa-
rizes the comparison results, which show that our proposed
model significantly improved the segmentation performance
against several state-of-the-art multi-class segmentation tech-
niques [13] in terms of Dice metrics, Hausdorff distance,
and clinical parameters. Our proposed L-CO-Net architec-
ture achieved a Dice score and (Hausdorff distance) of
96.8%(7.9mm) and 95.1%(6.4mm) for the LV blood-pool,
89.5%(8.9mm) and 90.0%(8.9mm) for the LV-Myocardium
and 93.3%(11.2mm) and 87.43%(11.9mm) for the RV
blood-pool in end-diastole and end-systole, respectively.

The predicted segmentation was subsequently used to
compute the clinical parameters. The agreement between the
ground truth and the automatic is reported using correlation
statistical analysis by mapping the predicted volumes of the
testing set onto the ground truth volumes of the training set.
As illustrated in Table II the agreement between our method’s
prediction and ground truth is high, characterized by a
Pearson’s correlation coefficient (rho) of 0.997(p < 0.01)
for LV-EF, 0.998 for LV-EDV and 0.993(p < 0.1) for Myo-
mass. There was a slight over-estimation in the RV blood-
pool segmentation, also reflected in the clinical parameters
estimation.

Fig. 3 shows a graphical comparison between the clinical
parameters estimated from the cardiac features segmented
via L-CO-Net and the same homologous parameters esti-
mated from the ground truth, manual segmentations, for
both healthy volunteers and patients featuring various cardiac
conditions. As shown, the clinical parameters estimated using

1https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

Fig. 3. Graphical comparison between clinical parameters estimated using
L-CO-Net segmentation and same parameters estimated using the ground
truth segmentation in terms of Mean(Std. Dev.) EDV (in mL) = end-diastolic
volume, ESV (in mL) = end-systolic volume, SV (in mL) = stroke volume,
EF (%) = ejection fraction MM (in gm) = myocardial mass.

our automatically segmented features show no significant
difference from those estimated based on the ground truth,
manually segmented features.

In terms of performance, as summarized in Table I, our
proposed L-CO-Net segmentation framework entails roughly
340, 000 parameters, which represents more than 10-fold
reduction from the UNet (∼ 4.1 million parameters), 60-
fold reduction from MUNet (∼ 19 million parameters), and
a 2-fold reduction from the most parameter-efficient method
reported here - DNet (∼ 650, 000 parameters).

IV. DISCUSSION AND CONCLUSION

In this paper, we propose a new memory-efficient archi-
tecture for accurate LV, RV blood-pool and myocardium
segmentation, and clinical parameter quantification from
breath-hold cine cardiac MRI. The capability of our network
to learn the group structure allows multiple groups to re-use
the same features via condensed connectivity. Moreover, the
efficient weight-pruning methods lead to high computational
savings without compromising segmentation accuracy. To the
best of our knowledge, this is the first paper that presents a
learned condensation-optimization approach for estimating
clinical parameters from cardiac image segmentation in a
fully convolutional setting. Our analysis across both healthy
and abnormal patients indicated that the segmentation and
estimated clinical parameters show no statistically significant
difference from the ground truth manual segmentation and
the inherently estimated clinical parameters.

Our proposed model outperforms several best methods
according to dice scores, Hausdorff distances(HD), and clin-
ical parameters, achieving 96.8% dice with 7.9mm HD for
LV blood pool in ED and 95.1%(6.4mm) in ES phase,
which showed at least 0.41% improvement in ED phase and
3.7% improvement in ES phase over the current methods,
as well as more than 6% improvement over the traditional
U-Net architecture. For LV-Myocardium segmentation, we
achieved 89.5%(8.9mm) in ED and 90.0%(8.9mm) in ES,
which showed at least 0.67% improvement in ED and 0.22%
improvement in ES phase over the current methods, with at
least a 10-fold reduction in the number of parameters.

To improve the robustness of L-CO-Net framework, we
used a low-level image pre-processing operation which
serves as a precursor preliminary segmentation that narrows
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TABLE I
QUANTITATIVE EVALUATION OF THE SEGMENTATION RESULTS IN TERMS OF MEAN DICE SCORE (%) WITH HAUSDORFF DISTANCE(IN MM), NO. OF

PARAMETERS (×106), AND THE CLINICAL INDICES EVALUATED ON THE ACDC DATASET FOR LV, RV BLOOD-POOL AND LV-MYOCARDIUM

COMPARED ACROSS SEVERAL BEST PERFORMING NETWORKS, INCLUDING L-CO-Net. THE STATISTICAL SIGNIFICANCE OF THE L-CO-NET RESULTS

COMPARED AGAINST FIVE OTHER BASELINE MODELS ARE REPRESENTED BY ∗(p < 0.05) AND ∗ ∗ (p < 0.01). THE BEST DICE SCORES AND

HAUSDORFF DISTANCES ARE EMPHASIZED USING BOLD FONTS.

End Diastole (ED) End Systole (ES)
UNet
[14]

DCN
[15]

MUNet
[16]

MNet
[17]

DNet
[18]

L-CO-
Net UNet DCN MUNet MNet DNet L-CO-

Net
Dice [LV] 95.0 96.0 96.3 96.1 96.4 96.8* 90.0 91.0 91.1 91.5 91.7 95.1**
Hausdorff (8.2) (7.5) (6.5) (7.7) (8.1) (7.9) (10.9) (9.6) (9.2) (7.1) (9.0) (6.4)
Dice [Myo] 88.2 87.5 89.2 87.5 88.9 89.5* 89.7 89.4 90.1 89.5 89.8 90.0*
Hausdorff (9.8) (11.1) (8.7) (9.9) (9.8) (8.9) (11.3) (10.7) (10.6) (8.9) (12.6) (8.9)
Dice[RV] 91.1 92.8 93.2 92.9 93.5 93.3 81.9 87.2 88.3 88.5 87.9 87.4
Hausdorff (13.5) (11.9) (12.7) (12.9) (14.0) (11.2) (18.7) (13.4) (14.7) (11.8) (13.9) (11.9)

#Parameters 4.1 - 19.0 2.11 0.65 0.34

TABLE II
CORRELATION BETWEEN CLINICAL PARAMETERS ESTIMATED USING

L-CO-NET SEGMENTATION AND HOMOLOGOUS PARAMETERS

ESTIMATED FROM SIX OTHER BASELINE SEGMENTATION METHODS

(?(p < 0.1), ? ? (p < 0.01)).

Parson’s Correlation Coefficient

UNet DCN MUNet MNet DNet EUNet L-CO-
Net

LV EF 0.987 0.988 0.988 0.989 0.989 0.991 0.997??
LV EDV 0.997 0.993 0.995 0.993 0.997 0.997 0.998
RV EF 0.791 0.852 0.851 0.793 0.858 0.901 0.869
RV EDV 0.945 0.980 0.977 0.986 0.982 0.988 0.988
Myo mass 0.989 0.963 0.982 0.968 0.990 0.989 0.993?

DCN: Dilated Convolution Network, MUNet: Modified 3D UNet, MNet: Modified
M-Net, DNet: DenseNet, EUNet[19]: Ensemble UNet, L-CO-Net: Learned
Condensation-Optimization Network.

the capture range of the subsequent deep learning segmenta-
tion and parameter estimation. Our experiments show that
L-CO-Net runs on the ACDC dataset using 50% of the
memory requirements of Dense-Net and 8% of the memory
requirements of U-Net, while still maintaining excellent
clinical accuracy. We observed that the segmentation results
for RV have not improved significantly beyond those of
the LV or myocardium. An alternative solution for better
segmentation of the RV would be to explore an additional
slice refinement and slice misalignment correction for future
work.

REFERENCES

[1] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár.
Panoptic feature pyramid networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6399–
6408, 2019.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 234–241. Springer, 2015.

[3] Suinesiaputra Avan et al. Fully-automated left ventricular mass and
volume MRI analysis in the UK Biobank population cohort: evaluation
of initial results. The International Journal of Cardiovascular Imaging,
34(2):281–291, 2018.

[4] Phi Vu Tran. A fully convolutional neural network for cardiac
segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494,
2016.

[5] Wenjia Bai et al. Automated cardiovascular magnetic resonance image
analysis with fully convolutional networks. Journal of Cardiovascular
Magnetic Resonance, 20(1):65, 2018.

[6] Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Kaidi Xu, Yunfei
Yang, Fuxun Yu, Jian Tang, Makan Fardad, Sijia Liu, et al. Progressive
weight pruning of deep neural networks using ADMM. arXiv preprint
arXiv:1810.07378, 2018.

[7] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse.
Three mechanisms of weight decay regularization. arXiv preprint
arXiv:1810.12281, 2018.

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowl-
edge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[9] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q
Weinberger. CondenseNet: An efficient DenseNet using learned group
convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2752–2761, 2018.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the
group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736,
2010.

[11] Xiang Lin, Brett R Cowan, and Alistair A Young. Automated
detection of left ventricle in 4D MR images: experience from a large
study. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 728–735. Springer, 2006.

[12] Ilkay Oksuz et al. Automatic CNN-based detection of cardiac MR
motion artefacts using k-space data augmentation and curriculum
learning. Medical Image Analysis, 55:136–147, 2019.

[13] Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky,
Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar
Camara, Miguel Angel Gonzalez Ballester, et al. Deep learning
techniques for automatic MRI cardiac multi-structures segmentation
and diagnosis: Is the problem solved? IEEE Transactions on Medical
Imaging, 37(11):2514–2525, 2018.

[14] Jay Patravali, Shubham Jain, and Sasank Chilamkurthy. 2D-3D
fully convolutional neural networks for cardiac MR segmentation.
In International Workshop on Statistical Atlases and Computational
Models of the Heart, pages 130–139. Springer, 2017.

[15] Jelmer M Wolterink, Tim Leiner, Max A Viergever, and Ivana Išgum.
Automatic segmentation and disease classification using cardiac cine
MR images. In International Workshop on Statistical Atlases and
Computational Models of the Heart, pages 101–110. Springer, 2017.

[16] Christian F Baumgartner, Lisa M Koch, Marc Pollefeys, and Ender
Konukoglu. An exploration of 2D and 3D deep learning techniques
for cardiac MR image segmentation. In International Workshop on
Statistical Atlases and Computational Models of the Heart, pages 111–
119. Springer, 2017.

[17] Yeonggul Jang, Yoonmi Hong, Seongmin Ha, Sekeun Kim, and Hyuk-
Jae Chang. Automatic segmentation of LV and RV in cardiac MRI.
In International Workshop on Statistical Atlases and Computational
Models of the Heart, pages 161–169. Springer, 2017.

[18] Mahendra Khened, Varghese Alex Kollerathu, and Ganapathy Kr-
ishnamurthi. Fully convolutional multi-scale residual DenseNets for
cardiac segmentation and automated cardiac diagnosis using ensemble
of classifiers. Medical Image Analysis, 51:21–45, 2019.

[19] Fabian Isensee, Paul F Jaeger, Peter M Full, Ivo Wolf, Sandy
Engelhardt, and Klaus H Maier-Hein. Automatic cardiac disease
assessment on cine-MRI via time-series segmentation and domain
specific features. In International Workshop on Statistical Atlases and
Computational Models of the Heart, pages 120–129. Springer, 2017.

1220

Authorized licensed use limited to: Cristian Linte. Downloaded on September 25,2020 at 18:13:06 UTC from IEEE Xplore.  Restrictions apply. 


