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ABSTRACT 

Thermal comfort and energy efficiency are always the two 
most significant objectives in HVAC operations. However, 
for conventional HVAC systems, the pursuit of high energy 
efficiency may be at the expense of satisfactory thermal 
comfort. Therefore, even if centralized HVAC systems 
nowadays have higher energy efficiency than before in office 
buildings, most of them cannot adapt the dynamic occupant 
behaviors or individual thermal comfort. In order to realize 
high energy efficiency while still maintain satisfactory 
thermal environment for occupants indoors, the integrated 
hybrid HVAC system has been developed for years such as 
task-ambient conditioning system. Moreover, the occupant-
based HVAC control system such as human-in-the-loop has 
also been investigated so that the system can be adaptive 
based on occupant behaviors. However, most of research 
related to personalized air-conditioning system only focuses 
on field-study with limited scale (i.e. only one office room), 
this paper has proposed a co-simulation model in energyplus 
to simulate the hybrid cooling system with synthetic thermal 
comfort distributions based on global comfort database I&II. 
An optimization framework on cooling set-point is proposed 
with the objective of energy performance and the constraints 
of thermal comfort distribution developed by unsupervised 
Gaussian mixture model (GMM) clustering and kernel 
density estimation (KDE). The co-simulation results have 
illustrated that with the proposed optimization algorithm and 
the hybrid cooling system, HVAC demand power has 
decreased 5.3% on average with at least 90% of occupants 
feeling satisfied. 
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1 INTRODUCTION 
Thermal comfort and energy efficiency are always the two 
most significant objectives in heating, ventilation and air-
conditioning (HVAC) operations. However, for 

conventional HVAC systems, the pursuit of high energy 
efficiency may be at the expense of satisfactory thermal 
comfort. Therefore, even if centralized HVAC systems 
nowadays have higher energy efficiency than before in office 
buildings, most of them cannot adapt the dynamic occupant 
behaviors or individual thermal comfort. In order to realize 
high energy efficiency while still maintaining satisfactory 
thermal environment for occupants indoors, the hybrid air-
conditioning system has been developed for years such as 
task-ambient conditioning system. Moreover, the occupant-
based HVAC control system such as human-in-the-loop has 
also been investigated so that the system can adapt the 
system based on occupants’ feedback actively or passively. 
The following sections will introduce recent developments 
of adaptive thermal comfort and the occupant-based control.  

1.1 Adaptive thermal comfort 
Since innovations in HVAC are inspired with the targets to 
improve energy efficiency and improve thermal comfort for 
individuals, it is of great importance to have comprehensive 
understandings in these targets. 

As defined by ANSI/ASHRAE 55 and ISO7730 [1], thermal 
comfort is a condition of mind which expresses satisfaction 
with thermal environment and is assessed by subjective 
evaluation. For the past 40 years, many researchers have 
been investigating the principle indicators of thermal 
comfort. The Danish scientist Fanger believed that thermal 
comfort was same as neutral state in terms of thermal 
sensation based on experimental studies. He also derived a 
well-known equation called predicted mean vote (PMV). 
Moreover, for indoor environment, since heat exchange and 
evaporation loss are owing to the difference between thermal 
environment conditions and human body conditions, for 
PMV equation, the following six measurable variables are 
accepted to be the indicators of thermal comfort, which are 
indoor air temperature, indoor relative humidity, indoor air 
velocity, mean radiant temperature, clothing insulation and 
metabolic rate [2]. 

However, since in regular office buildings, thermal 
environments are different from such well-controlled 
experimental test-bed, many researchers are turning to 
adaptive thermal comfort model instead of static thermal 



comfort model such as PMV for years. For instance, one of 
the milestone projects of adaptive thermal comfort is 
ASHRAE RP-884 (comfort database I) [3] which collected a 
total of 22000 sets of data from the real office environments 
across the world. This project has been widely used to 
develop various adaptive thermal comfort models, which 
have been integrated into personalized HVAC controls. With 
RP884 dataset, Seungjae et al. [4] has proposed a method for 
learning personalized thermal preference profiles by 
formulating a combined classification and inference problem 
with 5-cluster model. However, instead of predicting 7-point 
thermal sensation described in ASHRAE 55, the paper 
predicts thermal preferences with 3 classes, namely “want 
cooler”, “want warmer” and “no change” by Bayesian 
approach. Rather than classification of thermal sensation, it 
predicts the probability of a test occupant falling into each of 
the classes by clustering all occupants with Gaussian mixture 
model (GMM). Moreover, Frederik et al. [5] has also 
proposed a personalized thermal comfort model using 
Bayesian network to predict thermal sensation indoors in a 
specific area such as San Francisco with ASHRAE RP-884 
dataset. Moreover, a newly released dataset called ASHRAE 
global thermal comfort database II (Comfort database II) 
intends to support diverse inquiries about adaptive thermal 
comfort in field settings [6].  

In all, factors to adaptive thermal comfort in indoor 
environment can be categorized into environment-related 
factors and occupant-related factors, as shown in the 
following tables.  

Variable Unit 
Indoor air temperature ℃ 

Indoor relative humidity % 

Indoor air velocity m/s 

Mean radiant temperature ℃ 

Table 1. Environment-related factors to thermal comfort 

Variable Unit 

Metabolic rate  met 

Clothing insulation clo 

Table 2. Occupant-related factors to thermal comfort 

1.2 Occupant-based HVAC control 
In order to reduce energy consumption of the existing HVAC 
systems and improve occupant comfort, occupant-
responsive HVAC controls have been being investigated for 
years. One of the key to designing occupant-responsive 
HVAC system is to understand the occupant behaviors. 

Besides meeting thermal comfort requirements mentioned 
above, occupant-responsive HVAC system also plays a role 

in determining the energy consumption of the entire building. 
For most of the commercial buildings, particularly office 
buildings and schools, the heating and cooling loads are 
largely dependent on the occupanct behavioral patterns like 
occupant presence and activities. However, the conventional 
HVAC systems have been operated without the ability to 
adjust supply air rate accordingly. Therefore, much of the 
energy use for HVAC is wasted, particularly when the 
conditioned spaces being unoccupied or the operation being 
under the maximum levels. On the contrary, since occupant-
responsive HVAC system can be responsive to the dynamic 
occupancy profile, it has a large potential to reduce energy 
consumption. 

Occupant behaviors have two distinctive effects on building 
performances, which are passive and active effects [9]. 
Passive effects are derived from dynamic occupancy 
schedules like the presence of the occupants during a day or 
occupancy behaviors like using the microwave in the 
lunchtime or doing computer-based work. Active effects are 
derived from individual preferences of the indoor 
environment such as personal thermal comfort or occupancy 
behaviors like turning on/off lights or opening/closing 
windows based on their own preferences. In other words, to 
understand passive effects of human on the building systems, 
it requires objective occupancy information like occupancy 
schedules or location of occupants. However, to understand 
active effects of human on the building system, it requires 
subjective occupancy feedback describing individual 
preferences such as thermal comfort, visual comfort. Both 
passive and active effects could play important roles in 
operations of building systems and building diagnostics. 

With the comprehensive understanding of effects of 
occupant behaviors on building performances, it is of great 
importance to incorporate occupant pattern recognition 
system with HVAC controls to improve occupant comfort 
and increase energy savings. Besides, among different 
occupant-based HVAC systems, the personalized task-
ambient conditioning system is not only able to provide 
occupants with individual control to adapt individual thermal 
comfort preferences but also ensure that the centralized 
HVAC system is operated with high energy-efficiency.  

The personal comfort system (PCS) from Centre for Built 
Environment (CBE), UC Berkeley is an innovation to 
develop a low-energy personalized systems as micro-zones 
and integrate them into centralized HVAC operations as a 
macro-zone in open plan office environments [10]. The 
project has invented the personalized heating and cooling 
chairs with wireless internet connectivity and tested the 
performances in different real office environments in 
California. PCS adjusts the local thermal environment based 
on occupants’ inputs regarding heating/cooling set-points of 
the chair. Meanwhile, the whole framework gets further 
optimized with communication between chairs and the 
centralized HVAC system by controlling the set-points of the 
centralized system based on feedbacks of all micro-zones. In 



the case study, the test energy performances were optimized 
with the mode of widening HVAC temperature setpoint dead 
band in conjunction with proposed chairs. In addition, Zhang 
et al. [11] has developed a task-ambient system heating only 
the feet and hands, and cooling only the hands and face, to 
provide comfort in a wide range of ambient environment. 
The simulated annual heating and cooling energy savings 
with such task-ambient system is as much as 40%. Last but 
not least, Lu et al. also [12] has conducted a field study to 
evaluate the energy and thermal comfort performances of a 
hybrid cooling system consisting of personalized cooling 
fans and split air-conditioning system in Shanghai.  

Based on the literature review, much more attention has been 
paid to occupant-based HVAC control, especially task-
ambient conditioning system than before. Moreover, 
compared to static thermal comfort, the adaptive thermal 
comfort has become more popular, particularly developing 
thermal comfort model with advanced machine learning 
algorithms. However, few studies have applied adaptive 
thermal comfort models trained with machine learning 
algorithms into the whole-building energy simulation for 
evaluating the hybrid cooling system such as task-ambient 
conditioning system. Therefore, this paper aims to evaluate 
the energy and thermal comfort performances of a task-
ambient cooling system where each task system consists of a 
personal fan and ambient system is a typical VAV system 
with energy co-simulations. Moreover, this paper has also 
proposed to use comfort database I&II to create synthetic 
thermal preference distributions so as to design an 
optimization control framework for the task-ambient 
conditioning system.  

2 METHODOLOGY 

2.1 Development of thermal preference distribution 
Even if individuals have different thermal preferences under 
the same thermal environment in air-conditioned open-plan 
offices, most of the thermal preference distributions can be 
approximated as Gaussian distributions where the majority 
are satisfied while only a few of occupants vote for either 
being uncomfortably warmer or uncomfortably cooler. 
Therefore, in order to simulate different thermal preferences 
in a shared space, Figure 1 shows the diagram of developing 
the synthetic thermal preference distributions with the 
comfort database I&II. As shown in the figure, the pipeline 
is comprised of clustering of the thermal environments, 

thermal preference distribution synthesis and sampling as 
well as calculation of the number of occupants under each 
thermal preference given the total number of occupants.  

The subset of the comfort database I&II was used where a 
total of 2354 instances were collected. In the subset, data 
were collected either from hybrid cooling system consisting 
of ceiling fans and the centralized cooling or from the 
conventional centralized cooling system. Among the subset, 
815 instances were collected with the task-ambient cooling 
system while 1539 instances were collected with the 
conventional centralized cooling system.  

Since the indoor environments are expected to vary a bit in 
the database, the unsupervised clustering is implemented so 
as to cluster the similar thermal environments into a single 
cluster and see the histogram of thermal preference in each 
cluster. Instead of using K-means, similar thermal 
environment conditions. Since the setpoint is optimized with 
the thermal environment in core zone where discomfort due 
to non-uniform radiation can be ignored, only air velocity, 
air temperature and relative humidity were used to represent 
thermal environment conditions. Then, similar thermal 
environment conditions were clustered with Gaussian 
mixture model (GMM) where the number of clusters were 
selected based on BIC score. After clustering, the histogram 
of thermal preference under each cluster was developed so 
that in the energy model, the number of occupants for each 
thermal preference can be sampled from the synthetic 
thermal preference distribution with kernel density 
estimation (KDE) under the given cluster. Moreover, since 
Energyplus cannot simulate the thermal environment 
changes after fans were operated, the subset without fan 
operations and the subset with fan operations were clustered, 
respectively.  

2.2 Thermal preference synthesis algorithm 
As mentioned before, the synthetic thermal preference 
distributions were approximated with Gaussian distribution. 
Therefore, kernel density estimation (KDE) was 
implemented based on the dataset. Kernel K(x; h) is a 
function controlled by the bandwidth parameter h, which can  

 

 

 

 
Figure 1 The diagram of developing the synthetic thermal preference distributions 

  



 

be seen as smoothing parameter controlling the tradeoff 
between bias and variance in the result. Given the kernel 
form, the density estimate at a point y within a group of 
points 𝑥"; i=1..N is given by: 

𝜌$ 𝑦 = 𝐾()*+,
-
)/

"01   Eq. 1 

where h is bandwidth and the bandwidth is tuned with 5-fold 
cross-validation from 5 candidate values between 0.1 and 1.  

2.3 Co-simulation with the proposed framework 
The energy simulation was implemented with the co-
simulation between energyplus and python. The one-story 
small office building was simulated in Shanghai from July 
1st to August 31st. The total ground floor area is 512 m2 and 
5 thermal zones are built. Moreover, the cooling is supplied 
with packaged DX cooling coil and the heating is supplied 
with gas heating coil. The 3D rendering and floor plan are 
shown in Figure 2 and Figure 3. The co-simulation 
framework was developed in [13]. 

 
Figure 2 3D rendering of the reference building     

 
Figure 3 Thermal zones of the building 

The baseline and optimized simulation were both conducted 
with dual setpoint schedule. The baseline cooling setpoint 
schedule is the default schedule where the cooling setpoint is 
predetermined and fixed to be 22℃ (Figure 4) and the 
heating setpoint is constant to be 21 ℃.	Even if the heating 
set-point schedule is the same as baseline, the cooling 
setpoint schedule is based on the proposed optimization 
framework in the optimized simulation. Meanwhile, the 
setpoint schedules are the same for all zones so as to ensure 
the system responses the dynamic setpoint changes in time 

in both simulations. Moreover, it is assumed all perimeter 
zones are unoccupied and Figure 5 shows the occupancy 
schedules of core zone used in both simulations.  

 
Figure 4 The fixed temperature set-point schedule in baseline      

 
Figure 5 The occupancy schedule in both simulations 

Besides baseline setpoint schedule, Figure 6 shows the flow 
diagram of the proposed optimization framework. As shown 
in the diagram, two histogram models were implemented to 
simulate the conditions when the personalized fan is operated 
or not, respectively. Moreover, the initial cooling set-point is 
24℃ and the setpoint is increased by 1℃	or no change when 
the space is occupied at each time step. However, it is 
assumed that the reason for turning on fans is only because 
of feeling warm. Meanwhile, it is also assumed that all the 
fans will be turned off when determining a new set-point. 

The control law of the proposed optimization framework is 
shown below: 

 

Objective function: 

min. Sensible cooling loads Eq.2 
subjective to: 

% of occupants feeling warm < δ Eq.3 
20 ℃ < cooling set-point t < 30 ℃   Eq.4 

where δ is threshold tuned with simulation episodes 



 
Figure 6 Flow diagram of the proposed optimization framework 

As shown in the control law, the cooling set-point is 
controlled every 30 minutes. In addition, since the objective 
function of sensible cooling loads is monotonously 
decreasing when cooling set-point is increasing, it will reach 
the optimal state under the constraints after several time steps 
in the end. Meanwhile, if the number of occupants feeling 
warm exceeds the threshold or the setpoint exceeds the 
boundary, the updating will decrease 1℃ for this time step. 
The threshold can be tuned with benchmark of multiple 
simulation episodes. 

3 RESULT ANALYSIS 

3.1 Synthetic thermal preference distributions 

As a result, with comfort database I&II, 7 clusters were 
selected for the subset without fans and 6 clusters were 
selected for the subset with fans on according to the lowest 
BIC scores. Table 3 shows the mean of each cluster and the 
correspondent best bandwidth for KDE without fans. In 
addition, Figure 7 shows the histogram of thermal preference 
distribution within each cluster for the subset without fans, 
respectively. As shown in the table, except cluster 1, 
different clusters have similar indoor air temperature and 
indoor air velocity. Since no fans were deployed for the 
system, the air velocity is smaller than 0.2 m/s. However, 
relative humidity varies a lot among different clusters. This 
may result from lack of humidity control in common office 
buildings. In addition, except cluster 1, thermal preference 
histograms have shown that the majority vote is “no change” 
in different clusters. Moreover, compared to thermal 
preference vote of “want cooler”, all clusters but cluster 1 
have more votes for “want warmer”. This may be because of 
low air temperature. Therefore, there is a potential to 
increase cooling set-point to save energy while maintaining 
occupant thermal comfort.  

Velocity 

[m/s] 

Temperature 

[℃ ] 

Relative  

Humidity 

[%] 

Optimal  

bandwidth 

0.56 25.78 58.65 1 

0.11 23.76 63.34 0.18 

0.16 23.96 56.12 0.56 

0.12 22.59 67.19 0.56 

0.13 23.7 38.1 1 

0.12 23.91 58.6 0.18 

0.12 23.13 48.85 0.18 

Table 3 The centroid of each cluster and the correspondent 
optimal bandwidth with fan off 
 
Similarly, Table 4 shows the means of the clusters and Figure 
8 shows the histograms of the thermal preference distribution 
within each cluster for the subset with fans on, respectively. 
As shown in the table, the mean air velocity of each cluster 
is higher than those in most of clusters without fans, which 
is because of the operation of fans. Meanwhile, the table has 
illustrated the average value of the mean air temperature in 
each cluster with fans on is larger than that without fans. In 
addition, the figure has illustrated that the majority votes 
within each cluster is “no change”, which means such task-
ambient cooling system has potential to increase air 
temperature to save energy while still maintaining high 
thermal comfort level.  

Velocity 

[m/s] 

Temperature 

[℃ ] 

Relative  

Humidity 

[%] 

Optimal  

bandwidth 

0.31 25.98 66.24 0.56 

0.34 26.72 58 0.32 

0.47 25.85 63.09 0.32 

0.28 24.83 75.68 0.32 

0.17 23.5 44.54 0.56 

0.19 25.36 63.27 0.32 

Table 4 The centroid of each cluster and the correspondent 
optimal bandwidth with fan on  

 

 

 



 

 

 

 
Figure 7 The histogram of thermal preference distribution with fan off 

 
Figure 8 The histogram of thermal preference distribution with fan on

 

3.2 Energy benchmark of the proposed framework 
In terms of energy benchmark between baseline control and 
the proposed control framework, HVAC electric demand 
power was used to evaluate the energy performances. 
Meanwhile, the percentage of occupants feeling warm is 
controlled within 10%. As a result, Figure 9 shows the 
comparisons of HVAC electric demand power between 

baseline and the proposed optimized models with different 
occupancy schedules. As shown in the figure, the proposed 
framework has achieved 5%, 5.3% and 5.6% demand power 
reduction compared to baseline models with 90% of 
occupants are comfortable when the number of occupants are 
15, 20 and 25, respectively. Therefore, it is meaningful to 
develop the task-ambient conditioning system which not 



only creates comfortable local environment but also 
improves the overall energy performance. 

 
Figure 9 HVAC electric demand power between baseline and the 
proposed optimized simulations 

4 DISCUSSIONS 
The simulation study has evaluated the energy performances 
of the task-ambient cooling system consisting of 
personalized fans and the centralized cooling system. In 
order to simulate individuals, have different thermal 
preferences in a shared office space, the synthetic thermal 
preference distributions have been developed so as to 
generate “virtual” occupants with various thermal 
preferences in the same thermal environments. The results 
have validated that the proposed optimization framework 
could achieve 5.3% of HVAC electric demand power 
savings on average without the compromise of occupant 
thermal comfort. However, there are still limitations in the 
energy models. Firstly, due to lack of data, instead of 
common task conditioning systems such as personalized 
fans, this energy simulation has applied comfort database 
where the hybrid cooling system is comprised of ceiling fans 
and the ambient conditioning system. As a result, the thermal 
preference distributions based on comfort database may be 
different from actual task-ambient conditioning systems. In 
addition, the objective function in the control law can be 
improved to not only take sensible cooling loads but also take 
latent cooling loads into consideration.  

5 CONCLUSION 
This study has proposed an optimization framework to 
maximize the energy efficiency and thermal comfort with a 
task-ambient conditioning system by updating the cooling 
setpoint. In order to evaluate energy performances with the 
proposed optimization framework, a co-simulation of a 
typical office building was conducted with Energyplus. 
Moreover, in order to simulate the fact that different people 
have different thermal preferences in Energyplus, synthetic 
thermal preference distributions were generated with kernel 
density estimation in each cluster based on GMM clustering 
of the thermal environment given in the comfort database. 
The results have shown that with the proposed framework, 
the proposed framework has achieved 5%, 5.3% and 5.6% 
demand power reduction compared to baseline models with 
90% of occupants are comfortable when the number of 
occupants are 15, 20 and 25, respectively. In future, more 
work could be done to optimize the energy performances in 

the simulation by updating other parameters such as relative 
humidity.  
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