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Abstract. Collaborative game-based learning environments integrate game-

based learning and collaborative learning. These environments present students 

with a shared objective and provide them with a means to communicate, which 

allows them to share information, ask questions, construct explanations, and 

work together toward their shared goal. A key challenge in collaborative learn-

ing is that students may engage in unproductive discourse, which may affect 

learning activities and outcomes. Collaborative game-based learning environ-

ments that can detect this off-task behavior in real-time have the potential to 

enhance collaboration between students by redirecting the conversation back to 

more productive topics. This paper investigates the use of dialogue analysis to 

classify student conversational utterances as either off-task or on-task. Using 

classroom data collected from 13 groups of four students, we trained off-task 

dialogue models for text messages from a group chat feature integrated into 

CRYSTAL ISLAND: ECOJOURNEYS, a collaborative game-based learning environ-

ment for middle school ecosystem science. We evaluate the effectiveness of the 

off-task dialogue models, which use different word embeddings (i.e., word2vec, 

ELMo, and BERT), as well as predictive off-task dialogue models that capture 

varying amounts of contextual information from the chat log. Results indicate 

that predictive off-task dialogue models that incorporate a window of recent 

context and represent the sequential nature of the chat messages achieve higher 

predictive performance compared to models that do not leverage this infor-

mation. These findings suggest that off-task dialogue models for collaborative 

game-based learning environments can reliably recognize and predict students’ 

off-task behavior, which introduces the opportunity to adaptively scaffold col-

laborative dialogue. 

Keywords: Off-Task Behavior, Computer-Supported Collaborative Learning, 

Collaborative Game-Based Learning, Game-Based Learning Environments,  

Dialogue Analysis. 
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1 Introduction 

Computer-supported collaborative learning can create highly effective learning expe-

riences [1, 2]. It has been found that students benefit from learning in groups when 

given automated support [3], with conversation between students acting as a stimulus 

for learning [4]. In digital learning environments, collaboration can be achieved by 

allowing students to contribute to a group chat conversation [5, 6]. However, students 

can engage in off-task behavior [7], which can manifest as off-task chat messaging. 
Off-task behavior has been identified as a significant challenge [8-10]. Because 

off-task behavior may be linked to boredom, which has been shown to negatively 

impact learning outcomes [11], it is important to enable learning environments to 

respond when students go off task. Although it has been found that off-task behavior 

can sometimes be beneficial for learning, as students may use off-task time to regulate 

negative affective states such as frustration [12], it is nonetheless important to identify 

student behaviors as off-task as such behaviors can be frequently associated with 

ineffective learning. 
Determining when a behavior is off-task is challenging because whether a given 

behavior is on-task or off-task is highly dependent on the context in which the behav-

ior occurs. To be able to provide adaptive scaffolding that responds to off-task behav-

iors, learning environments must be able to automatically detect off-task behavior in 

real-time. While there has been progress on characterizing types of off-task behavior 

[9, 13] and understanding their impacts on learning [12, 14], limited work has investi-

gated automatically identifying off-task behavior. A particularly intriguing area of 

unexplored work is on identifying off-task behavior during collaborative learning. In 

this paper, we investigate off-task dialogue models to classify chat messages from 

interactions in collaborative game-based learning as off-task or on-task to inform the 

design of conversational agents that can guide groups that have gone off-task toward 

more productive dialogue. 
Using chat log data collected from middle school students’ interactions in 

CRYSTAL ISLAND: ECOJOURNEYS, a collaborative game-based learning environment 

for ecosystem science, we investigate off-task dialogue models for classifying stu-

dents’ conversational utterances as off-task or on-task during collaborative game-

based learning. We investigate the effects of contextual information by comparing 

predictive models that only incorporate features derived from the current chat mes-

sage to models that also include features derived from a context window of previous 

messages within the chat log. These include both static and sequential modeling tech-

niques that utilize varying amounts of context. Additionally, we compare the use of 

several word embedding techniques for deriving features. First, we use pre-trained 

word2vec embeddings [15], which were trained on very large corpora to capture se-

mantic and syntactic features of individual words. Second, we derive embeddings 

from the ELMo [16] and BERT [17] models, which use sequence-based neural net-

works to represent lexical semantics. These embeddings also leverage large corpora 

and augment each word embedding with additional information based on how the 

word is being used in specific contexts . Results demonstrate that sequential models 

that incorporate contextual information using both a window of previous dialogue and 

contextualized word embeddings yield substantial predictive accuracy and precision 

for detecting off-task student dialogue. 
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2 Related Work 

Computer-supported collaborative learning (CSCL) has been shown to positively 

impact learning outcomes in a variety of contexts [1, 2]. However, providing students 

with a means to communicate during learning can potentially lead to off-task conver-

sations. In a study examining discovery learning in a collaborative environment [7], 

dyads of high school students worked on separate screens in a shared environment 

and communicated via an integrated chat system. Researchers found that 15.7% of the 

chat messages were considered to be off-task, which by their definition meant that the 

messages had nothing to do with the task [7]. And while collaborative game-based 

learning environments offer the potential to create learning experiences that are en-

gaging on many levels, the combination of collaboration and “seductive details” of 

game-based learning [8] can potentially exacerbate this issue, leading to off-task be-

havior. 
The majority of previous work investigating off-task behavior in digital learning 

environments does not seek to automatically detect off-task behaviors. Rather, re-

searchers commonly try to classify the type of off-task behavior and analyze the ef-

fects it has on learning [8, 10]. Some work has explored automatically detecting off-

task behavior in digital learning environments. Baker [13] sought to detect off-task 

behavior in an intelligent tutoring system for math education, where off-task behavior 

was defined as behavior that did not involve the system or the learning task. Field 

observations of students’ behaviors were used as ground truth labels for the machine 

learning algorithms used by Baker [13] and corresponded to the four categories set 

forth in Baker et al. [9]. As a baseline, Baker [13] set a threshold for time spent inac-

tive, considering anything above that threshold to be an instance of off-task behavior. 

Our work extends this line of investigation and focuses on students’ textual commu-

nication while engaging in collaborative learning.  
 Little work has analyzed natural language to detect off-task behavior. However, 

this approach is similar in vein to detecting the topic of students’ writing [18-20] and 

analyzing student dialogue during collaboration [21, 22]. Louis & Higgins [18], 

Persing & Ng [19] and Rei [20] all used natural language processing methods to de-

termine whether a student’s essay is related to a given text prompt. Rei [20] made use 

of word embeddings for determining if an essay is related to a prompt. Similarly, we 

use word embeddings to determine if students’ dialogue is related to either relevant 

curricular content or the collaboration process. Focusing more on collaborative learn-

ing, Adamson et al. [21] presented a framework for dynamically scaffolding online 

collaborative learning discussions using conversational agents that analyze students’ 

conversations and respond to certain linguistic triggers. The work by Rodriguez et al. 

[22] demonstrated that specific characteristics of quality collaboration can be found 

by examining the contribution of multiple students, which we capture in off-task dia-

logue models that consider previous messages in the chat log. 

3 Off-Task Dialogue Modeling 

This work used data collected from CRYSTAL ISLAND: ECOJOURNEYS, a collaborative 

game-based learning environment on ecosystem science (Figure 1). Students work 
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together in the game to identify the causes underlying a sudden sickness affecting a 

fish species on a remote island. Students work at their own computers and share a 

virtual game environment with the other students in their group. Within each group of 

students, individual members take on unique roles in the storyline, gathering infor-

mation that can help them solve the problem along the way. At various points during 

the story, students gather at an in-game virtual whiteboard to share what they have 

learned and work together to narrow down the causes of the fishes’ sickness. Com-

munication between students is achieved through an in-game chat system (Figure 1), 

where they can discuss what they have learned, ask their peers for help, or work to-

gether to construct explanations.  
In this work, we utilized 4,074 chat messages collected from 13 groups of students. 

On average, each group sent 313.4 chat messages (min = 118, max = 617, SD = 

155.6). Groups consist of four students and a facilitator, who observes students’ prob-

lem solving and dialogue and guides their discussions. The researcher’s role is to keep 

students on track and to occasionally ask leading questions to nudge them in the right 

direction. Within each group, students sent an average of 242.3 messages (min = 83, 

max = 553, SD = 141.9) and the researcher sent an average of 70.1 messages (min = 

30, max = 125, SD = 30.1). Individually, students sent an average of 61.8 messages 

over the course of the study (min = 10, max = 203, SD = 47.7). Messages sent by the 

researcher were used as context for student messages but were not used as training or 

testing samples. As a result, the total number of messages available for training and 

testing was 3,150.  

 

    

Fig. 1. (Left) CRYSTAL ISLAND: ECOJOURNEYS’ gameplay.                                                          

(Right) CRYSTAL ISLAND: ECOJOURNEYS’ in-game chat system. 

3.1 Off-Task Message Annotation 

We formulate off-task dialogue modeling as a supervised binary classification task. 

Thus, each message in the chat data is annotated as off-task or on-task. The annota-

tion scheme builds on a classic dialogue act modeling framework [23] as well as dia-

logue act frameworks related to collaborative learning [22]. Like previous work [24], 

we label messages as on-task if they address relevant curricular content, foster collab-

oration, address affective states, or pose relevant questions. These messages are either 

related to the game’s learning goals, self-regulation, or collaborative processes, so we 

consider them to be on-task. Some examples of chat messages and the labels assigned 

to them can be seen in Table 1. 
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Table 1. On-task and off-task chat messages. 

 Definition Examples 

On-Task (0) 

Productive text: any message 

that deals with the game’s 

scientific content, fosters 

collaboration, addresses rele-

vant affective states, or poses 

a relevant question. 

“Water temp is warm needs to go in 

the water cold column” 
“What do I do I am at the house and 

have a map”; 
“Hi” (if the students are introducing 

themselves) 

Off-Task (1) 

Text that is not productive. “I notice it seems I am the only one 

using capital letters around here”; 
“Nancy and I switched mice and 

switched back” 

 

To label the chat messages, we first organized the messages by gameplay sessions, 

which were determined by the day that the students played CRYSTAL ISLAND: 

ECOJOURNEYS and the group to which they were assigned. This was done so that the 

sequences of chat messages used to create contextual features were all from the same 

group and occurred on the same day. The dataset contains 4,074 messages from 13 

groups of students, which are split into 69 gameplay sessions. On average, each ses-

sion includes approximately 59 messages (min = 1, max = 280, SD = 55.8). Each 

session, students sent approximately 45.7 messages on average (min = 1, max = 214, 

SD = 44.9) and the researcher sent approximately 17.1 messages (min = 0, max = 66, 

SD = 14.4). The data was labeled by two researchers using a rubric that was devel-

oped for this task (Table 1). Both researchers labeled 60% of the data, with an over-

lapping 20% to allow for calculation of inter-rater reliability. The raters achieved a 

Cohen’s kappa of 0.751, indicating substantial agreement. For the messages that the 

raters did not agree on, labels were reconciled through discussion, and messages that 

appeared to contain both on-task and off-task dialogue were considered to be on-task. 

The final message labels contain 1,960 on-task (0) labels and 1,190 off-task labels 

(37.7% off-task), representing an imbalance. This is significantly higher than the rate 

of off-task conversation found in some other work [7], which may be because the 

learning environment combines collaboration and game-related elements. 

3.2 Feature Extraction 

To evaluate if the context in which a message occurs affects its classification as off-

task or on-task, we generated context-based features as well as features that only used 

information from the current message. The message-specific features were the num-

ber of times the student had previously contributed to the group conversation, a score 

representing the polarity of the message’s sentiment, the number of characters in the 

message, the Jaccard similarity of the message with the game’s text content, and the 

average word embedding for the message [25].  
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Table 2. An example of 21 consecutive chat messages. A window containing a subset of the 20 

preceding messages is used as context for predicting whether the last message is on- or off-task. 

Number 
Group 

Member 
Message 

1 
Wizard 

(Facilitator) 

How are you all doing? It would be great if you could go in and 

vote once you are done putting your evidence in. 

2 Student A We have voted 

3 Student B 
I am doing very well. I voted for every one and I am also ready for 

the next chapter. Game on! 

4 Student C And I believe we are done with entering our evidence 

5 Wizard I see that you are all very agreeable! 

6 Student B Great job! 

7 Student C :) 

8 Wizard 

But we also need to see if we can rule any of our hypotheses out to 

move on. Let’s try to quickly see if we can go through the board. 

Scientists often have disagreements as they advance their ideas. 

They will look for evidence both for and against ideas. Let’s start 

on the right with the unsorted ideas. Any suggestions where that 

might go? 

9 Student B Why thank you kind wizard :) 

10 Student B Ok 

11 Student C Not enough space 

12 Student B Not enough space 

13 Wizard And would that support or not support it? Let’s talk about that. 

14 Student A 
If we put that in not enough space then it would kind of be going 

against it 

15 Wizard 
What do the rest of you think? How are we then on the ‘not enough 

space’ hypothesis? 

16 Student B Yes 

17 Student C 
Well I think that it should be even though it goes against it it still 

fits 

18 Student A It has no point in being there because it doesn’t affect their health 

19 Student A For not enough space 

20 Wizard 
[Student A] and [Student B], what do you think? Why would we 

keep this hypothesis or remove it? 

21 Student B 
We should actually remove it. It doesn’t fit in anything. I thought it 

over more. 

 

Message sentiment was calculated using NLTK’s [26] Vader sentiment analyzer. 

Because the game is dialogue-driven, information is presented through text-based 

conversations with in-game characters. We extracted this text from the game and 

removed stop words, as defined by NLTK’s [26] list of English stop words. Then, the 

complete corpus of game text was compared against each message to calculate Jac-

card similarity, which quantifies the similarity between the chat message and the 

game’s text content [27]. If a message is very similar to the game’s text content, then 

the student is likely talking about something that is relevant to the game and is there-

fore on-task. Jaccard similarity, which is the size of the intersection of two sets divid-

ed by the size of the union, was preferred over other text similarity metrics like the 

cosine similarity of tf-idf vectors, because Jaccard similarity only looks at the unique 

words that are common between two sources of text. This was preferable because 
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many words that are highly related to the game’s educational content appear several 

times in the game’s text, and tf-idf would discount these words because they are so 

common. For the message’s average word embedding, we compared word2vec to 

ELMo and BERT embeddings to evaluate the effects of contextualized embeddings. 

We used word2vec embeddings with dimensionality 300, ELMo with dimensionality 

256, and BERT with dimensionality 768. We used the ELMo embeddings generated 

from the second LSTM layer (i.e., layer 3 out of 3) to achieve the representation add-

ing contextual information. For the BERT embeddings, we used the average of the 

token outputs across the 11th layer, which is the last hidden layer. Using these layers 

for both BERT and ELMo incorporates the richest representation produced by these 

embedding techniques, allowing for the most contextual information to be used. 

For the context-based features, we defined a message’s context as a sliding win-

dow containing the k previous messages in the chat log. Please see Table 2 for an 

example of chat dialogue. From these messages, we extracted the number of unique 

users who contributed to the conversation, the average length of messages in the con-

text, the average time between messages, the number of times the learning facilitator 

sent a message, the cosine similarity between the current message’s average word 

embedding and the word embedding of the most recent message from the researcher, 

the cosine similarity between the average word embedding of the current message and 

the average word embedding for all messages in the context, and the average Jaccard 

similarity between each previous message and the game’s text content. During anno-

tation, researchers noticed that off-task behavior often does not include every student 

in the team, so keeping track of the number of unique users during this chat window 

might be an indicator of off-task behavior. That is, if a small number of students are 

contributing heavily to the chat, it is likely that the messages they are sending are 

either consistently on-task or consistently off-task. Similarly, message length and time 

between messages could indicate off-task behavior, since short messages sent in rapid 

succession likely were not thoughtfully generated and could be off-task. Features 

related to the researcher’s contributions to the chat could indicate off-task behavior, 

since more messages from the researcher could indicate that they needed to try harder 

to keep students on-task. Also, given that the facilitator's messages are examples of 

on-task dialogue, messages that were similar would likely be on-task. Since word 

embeddings allow words to be represented as real-valued vectors in a high-

dimensional space, the cosine similarity between average word embeddings can be 

used to quantify the similarity of two messages. 

3.3 Modeling 

We first compared the performance of static models that incorporate contextual in-

formation to those that do not. The contextual models include features extracted from 

the previous 5, 10, 15 or 20 messages within the gameplay session. If there were few-

er previous messages than the size of the window, we utilized the most messages 

available for calculating the features. Additionally, we evaluated the effects of differ-

ent word embedding techniques (i.e., word2vec, ELMo, and BERT) on the perfor-

mance of these models. We used logistic regression to perform this binary classifica-
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tion. To ensure a fair feature set comparison, we performed principal component 

analysis (PCA) on the features for each representation to reduce the feature set to the 

first 50 principal components. We used standardization of the features before apply-

ing PCA, transforming both the training and testing data utilizing the training data’s 

means and standard deviations. 
We also investigated the performance of sequential models on this task. We built 

models that took in different window lengths (i.e., 5, 10, 15, 20) of previous messag-

es, where each message was represented by the set of message-specific features de-

scribed earlier. Sequences that were shorter than the length of the window were front-

padded with zeros. Again, models were evaluated across each word embedding tech-

nique. For the sequential modeling task, we adopted LSTM-based sequential models 

with a single hidden layer. Hyperparameter tuning was performed across the number 

of nodes in the hidden layer (50, 100, 200, or 300), the activation function (sigmoid, 

hyperbolic tangent, or rectified linear unit), and the amount of dropout used (0.2, 0.3, 

0.4, and 0.5). The optimal configuration was one hidden layer with 50 nodes, sigmoid 

activation function, and 30% dropout. These models were trained for up to 100 

epochs, stopping early if validation loss did not decrease for 15 epochs. Models were 

trained using group-level 10-fold cross-validation. 

4 Results 

Results for the off-task prediction task can be found in Table 3. Among the static off-

task dialogue models, we found that the most accurate feature configuration used the 

word2vec embeddings with a context window of size 5 (accuracy = 0.786). We also 

note that the majority class baseline accuracy for this data is 62.3%, which is the per-

centage of on-task messages. The improvement over the baseline indicates that the 

language-based representation of the chat messages does help with determining off-

task labels. This same configuration also achieved the highest precision and F1 scores 

(precision = 0.710, F1 = 0.678). In general, we notice that all three scores tend to be 

highly related. We also note that, for all embeddings, a context window size of 5 per-

formed the best for these models. Incorporating some amount of contextual infor-

mation into the model improves performance over relying solely on features derived 

from the current message, confirming our hypothesis that context can help classify 

off-task behavior in collaborative game-based learning chat logs. 
For the sequential models, the most accurate configuration was the BERT embed-

ding with a window size of 20 (accuracy = 0.791). Both contextual embeddings (i.e., 

ELMo and BERT) outperformed word2vec across most window sizes. Moreover, 

these contextual embeddings benefit from longer window sizes, while word2vec still 

performed best with a window of size 5. While accuracy and F1 score were still corre-

lated, accuracy and precision were less correlated than in the static models, with the 

most precise configuration being BERT with a window of size 5 (precision = 0.759). 
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Table 3. Results across embedding type, context window length, and model.  

  Logistic Regression LSTM 

EMBEDDING 
Context 

Length 
Accuracy Precision F1 Accuracy Precision F1 

Word2vec 

0 0.769 0.691 0.642 - - - 

5 0.786 0.710 0.678 0.774 0.710 0.636 

10 0.783 0.710 0.676 0.751 0.680 0.609 

15 0.781 0.707 0.670 0.744 0.659 0.604 

20 0.776 0.702 0.660 0.723 0.628 0.591 

ELMo 

0 0.754 0.662 0.615 - - - 

5 0.778 0.696 0.661 0.772 0.693 0.660 

10 0.775 0.701 0.654 0.781 0.707 0.667 

15 0.767 0.687 0.645 0.788 0.714 0.676 

20 0.766 0.681 0.643 0.789 0.720 0.678 

BERT 

0 0.745 0.664 0.635 - - - 

5 0.763 0.684 0.653 0.787 0.759 0.660 

10 0.768 0.696 0.659 0.787 0.731 0.674 

15 0.767 0.692 0.657 0.778 0.744 0.670 

20 0.763 0.687 0.651 0.791 0.714 0.686 

 

Comparing static and sequential models, we find that the sequential models achieve 

the best overall performance, both in terms of accuracy and precision. This confirms 

our hypothesis that sequential techniques for modeling off-task behavior in student 

conversations outperform static techniques. While the static models performed best 

with short context windows, the sequential models make better use of longer context. 

4.1 Discussion 

For the static models, a short window of context yielded the best performance. A 

window of size 5 performed better than no context at all, and performance tended to 

decrease with longer windows. This may be because using too much context relies too 

heavily on information from the past, whereas information that is more recent can 

indicate components of the conversation’s flow. Longer context windows likely in-

clude more information from irrelevant messages, and since the static models summa-

rize previous chat messages by averaging features, relevant and irrelevant information 

are treated the same. However, the sequential models made better use of more con-

text. The performance of the word2vec embeddings decreased as window size in-

creased, but the contextual embeddings (i.e., ELMo and BERT) performed best with 

windows of size 20. We speculate that this may be due to the fact that ELMo and 

BERT create embeddings that, in addition to the syntactic and semantic information 

transferred from pre-training on large corpora, also encode some information that is 

related to the specific context in which words were used. Thus, while longer sequenc-

es accrue more noise from the solely pre-trained embeddings, the sequential models 
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may be able to focus on context-specific information captured by the contextualized 

embeddings. 
We found that the simpler logistic regression models performed nearly as well as 

the LSTM models. While we might expect the gap between the static and sequential 

models to widen given more training data, since the LSTM may be able to pick up on 

more complex relationships than logistic regression, the static models performed well 

in this study. This may be due to the set of features that were used to represent the 

chat’s context. In particular, we expect that the cosine similarity with the facilitator’s 

most recent message and the average Jaccard similarity between each previous mes-

sage and the game’s text content could be very helpful in identifying messages as off-

task. Since the facilitator’s messages are examples of on-task dialogue, messages that 

are similar will likely be on-task as well. For instance, if a student is responding to the 

facilitator’s question or talking about a similar topic, their messages would likely be 

similar. In much the same way, if the average Jaccard similarity between the messag-

es in the context window and the game’s text content is high, this is an indicator that 

students are likely talking about things that are related to the game and are thus on-

task. 

5 Conclusion and Future Work 

Collaborative game-based learning environments create learning experiences that 

feature rich collaborative problem solving. However, students interacting with one 

another may at times engage in off-task behavior, which can manifest in off-task chat 

messages. If a collaborative game-based learning environment could utilize an off-

task dialogue model to reliably recognize and even predict when students go off-task, 

it could facilitate more productive conversation. In this work, we have presented pre-

dictive off-task dialogue models that analyze students’ chat conversations and detect 

off-task behavior. In particular, LSTM models that use contextualized BERT word 

embeddings achieve substantial accuracy for detecting off-task messages. These mod-

els perform best when provided with a context window of 20 previous messages, 

since they are able to effectively identify features of the previous messages that may 

be followed by instances of off-task behavior. 
In future work, it will be instructive to investigate additional conversational mod-

eling that considers participant role to determine the most relevant message to send to 

the students to get them back on task. Additionally, it may be possible to increase the 

predictive accuracy of models with word-by-word sequential modeling and sentence 

embedding. Together, these may significantly increase the ability of off-task dialogue 

models to recognize and predict off-task behavior, which opens the door to real-time 

adaptive facilitation that supports robust collaborative learning. 
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