
Published as a conference paper at ICLR 2020

IMPLEMENTATION MATTERS IN DEEP POLICY

GRADIENTS: A CASE STUDY ON PPO AND TRPO

Logan Engstrom1*, Andrew Ilyas1*, Shibani Santurkar1, Dimitris Tsipras1,
Firdaus Janoos2, Larry Rudolph1,2, and Aleksander Mądry1

1MIT 2Two Sigma
{engstrom,ailyas,shibani,tsipras,madry}@mit.edu

rudolph@csail.mit.edu, firdaus.janoos@twosigma.com

ABSTRACT

We study the roots of algorithmic progress in deep policy gradient algorithms
through a case study on two popular algorithms: Proximal Policy Optimization
(PPO) and Trust Region Policy Optimization (TRPO). Specifically, we investigate
the consequences of “code-level optimizations:” algorithm augmentations found
only in implementations or described as auxiliary details to the core algorithm.
Seemingly of secondary importance, such optimizations turn out to have a major
impact on agent behavior. Our results show that they (a) are responsible for most
of PPO’s gain in cumulative reward over TRPO, and (b) fundamentally change
how RL methods function. These insights show the difficulty and importance of
attributing performance gains in deep reinforcement learning.

1 INTRODUCTION

Deep reinforcement learning (RL) algorithms have fueled many of the most publicized achievements
in modern machine learning (Silver et al., 2017; OpenAI, 2018; Abbeel & Schulman, 2016; Mnih
et al., 2013). However, despite these accomplishments, deep RL methods still are not nearly as
reliable as their (deep) supervised learning counterparts. Indeed, recent research found the existing
deep RL methods to be brittle (Henderson et al., 2017; Zhang et al., 2018), hard to reproduce (Hen-
derson et al., 2017; Tucker et al., 2018), unreliable across runs (Henderson et al., 2017; 2018), and
sometimes outperformed by simple baselines (Mania et al., 2018).

The prevalence of these issues points to a broader problem: we do not understand how the parts
comprising deep RL algorithms impact agent training, either separately or as a whole. This unsat-
isfactory understanding suggests that we should re-evaluate the inner workings of our algorithms.
Indeed, the overall question motivating our work is: how do the multitude of mechanisms used in
deep RL training algorithms impact agent behavior?

Our contributions. We analyze the underpinnings of agent behavior—both through the traditional
metric of cumulative reward, and by measuring more fine-grained algorithmic properties. As a first
step, we conduct a case study of two of the most popular deep policy-gradient methods: Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimization
(PPO) (Schulman et al., 2017). These two methods are closely related: PPO was originally devel-
oped as a refinement of TRPO.

We find that much of the observed improvement in reward brought by PPO may come from seem-
ingly small modifications to the core algorithm which we call code-level optimizations. These op-
timizations are either found only in implementations of PPO, or are described as auxiliary details
and are not present in the corresponding TRPO baselines1. We pinpoint these modifications, and
perform an ablation study demonstrating that they are instrumental to the PPO’s performance.

*Equal contribution. Work done in part while interning at Two Sigma.
1Note that these code-level optimizations are separate from “implementation choices” like the choice of

PyTorch versus TensorFlow in that they intentionally change the training algorithm’s operation.

1

ar
X

iv
:2

0
0
5
.1

2
7
2
9
v
1

[c

s.
L

G
]

 2
5
 M

ay
 2

0
2
0

Published as a conference paper at ICLR 2020

This observation prompts us to study how code-level optimizations change agent training dynamics,
and whether we can truly think of these optimizations as merely auxiliary improvements. Our results
indicate that these optimizations fundamentally change algorithms’ operation, and go even beyond
improvements in agent reward. We find that they majorly impact a key algorithmic principle behind
TRPO and PPO’s operations: trust region enforcement.

Ultimately, we discover that the PPO code-optimizations are more important in terms of final re-
ward achieved than the choice of general training algorithm (TRPO vs. PPO). This result is in stark
contrast to the previous view that the central PPO clipping method drives the gains seen in Schulman
et al. (2017). In doing so, we demonstrate that the algorithmic changes imposed by such optimiza-
tions make rigorous comparisons of algorithms difficult. Without a rigorous understanding of the
full impact of code-level optimizations, we cannot hope to gain any reliable insight from comparing
algorithms on benchmark tasks.

Our results emphasize the importance of building RL methods in a modular manner. To progress
towards more performant and reliable algorithms, we need to understand each component’s impact
on agents’ behavior and performance—both individually, and as part of a whole.

Code for all the results shown in this work is available at https://github.com/MadryLab/
implementation-matters.

2 RELATED WORK

The idea of using gradient estimates to update neural network–based RL agents dates back at least
to the work of Williams (1992), who proposed the REINFORCE algorithm. Later, Sutton et al.
(1999) established a unifying framework that casts the previous algorithms as instances of the policy
gradient method.

Our work focuses on proximal policy optimization (PPO) (Schulman et al., 2017) and trust region
policy optimization (TRPO) (Schulman et al., 2015a), which are two of the most prominent policy
gradient algorithms used in deep RL. Much of the original inspiration for the usage of the trust
regions stems from the conservative policy update of Kakade (2001). This policy update, similarly
to TRPO, uses a natural gradient descent-based greedy policy update. TRPO also bears similarity
to the relative policy entropy search method of Peters et al. (2010), which constrains the distance
between marginal action distributions (whereas TRPO constrains the conditionals of such action
distributions).

Notably, Henderson et al. (2017) points out a number of brittleness, reproducibility, and experimen-
tal practice issues in deep RL algorithms. Importantly, we build on the observation of Henderson
et al. (2017) that final reward for a given algorithm is greatly influenced depending on the code
base used. Rajeswaran et al. (2017) and Mania et al. (2018) also demonstrate that on many of the
benchmark tasks, the performance of PPO and TRPO can be matched by fairly elementary random-
ized search approaches. Additionally, Tucker et al. (2018) showed that one of the recently proposed
extensions of the policy gradient framework, i.e., the usage of baseline functions that are also action-
dependent (in addition to being state-dependent), might not lead to better policies after all.

3 ATTRIBUTING SUCCESS IN PROXIMAL POLICY OPTIMIZATION

Our overarching goal is to better understand the underpinnings of the behavior of deep policy gra-
dient methods. We thus perform a careful study of two tightly linked algorithms: TRPO and PPO
(recall that PPO is motivated as TRPO with a different trust region enforcement mechanism). To
better understand these methods, we start by thoroughly investigating their implementations in prac-
tice. We find that in comparison to TRPO, the PPO implementation contains many non-trivial op-
timizations that are not (or only barely) described in its corresponding paper. Indeed, the standard
implementation of PPO2 contains the following additional optimizations:

2From the OpenAI baselines GitHub repository: https://github.com/openai/baselines

2

Published as a conference paper at ICLR 2020

1. Value function clipping: Schulman et al. (2017) originally suggest fitting the value net-
work via regression to target values:

LV = (Vθt − Vtarg)
2,

but the standard implementation instead fits the value network with a PPO-like objective:

LV = max
[
(Vθt − Vtarg)

2
,
(
clip

(
Vθt , Vθt−1

− ε, Vθt−1
+ ε

)
− Vtarg

)2]
,

where Vθ is clipped around the previous value estimates (and ε is fixed to the same value as
the value used to clip probability ratios in the PPO loss function (cf. Eq. (2) in Section 4).

2. Reward scaling: Rather than feeding the rewards directly from the environment into the
objective, the PPO implementation performs a certain discount-based scaling scheme. In
this scheme, the rewards are divided through by the standard deviation of a rolling dis-
counted sum of the rewards (without subtracting and re-adding the mean)—see Algorithm 1
in Appendix A.2.

3. Orthogonal initialization and layer scaling: Instead of using the default weight initial-
ization scheme for the policy and value networks, the implementation uses an orthogonal
initialization scheme with scaling that varies from layer to layer.

4. Adam learning rate annealing: Depending on the task, the implementation sometimes
anneals the learning rate of Adam (Kingma & Ba, 2014) (an already adaptive method) for
optimization.

5. Reward Clipping: The implementation also clips the rewards within a preset range (usu-
ally [−5, 5] or [−10, 10]).

6. Observation Normalization: In a similar manner to the rewards, the raw states are also not
fed into the optimizer. Instead, the states are first normalized to mean-zero, variance-one
vectors.

7. Observation Clipping: Analagously to rewards, the observations are also clipped within a
range, usually [−10, 10].

8. Hyperbolic tan activations: As observed by Henderson et al. (2017), implementations of
policy gradient algorithms also use hyperbolic tangent function activations between layers
in the policy and value networks.

9. Global Gradient Clipping: After computing the gradient with respect to the policy and
the value networks, the implementation clips the gradients such the “global ℓ2 norm” (i.e.
the norm of the concatenated gradients of all parameters) does not exceed 0.5.

These optimizations may appear as merely surface-level or insignificant algorithmic changes to the
core policy gradient method at hand. However, we find that they dramatically impact the perfor-
mance of PPO. Specifically, we perform a full ablation study on the four optimizations mentioned
above3. Figure 1 shows a histogram of the final rewards of agents trained with every possible con-
figuration of the above optimizations—for each configuration, a grid search for the optimal learning
rate is performed, and we measure the reward of random agents trained using the identified learning
rate. Our findings suggest that many code-level optimizations are necessary for PPO to attain its
claimed performance.

The above findings show that our ability to understand PPO from an algorithmic perspective hinges
on the ability to distill out its fundamental principles from such algorithm-independent (in the sense
that these optimizations can be implemented for any policy gradient method) optimizations. We
thus consider a variant of PPO called PPO-MINIMAL (PPO-M) which implements only the core of
the algorithm. PPO-M uses the standard value network loss, no reward scaling, the default network
initialization, and Adam with a fixed learning rate. Importantly, PPO-M ignores all the code-level
optimizations listed at the beginning of Section 3. We explore PPO-M alongside PPO and TRPO.
We list all the algorithms we study and their defining properties in Table 1.

Overall, our results on the importance of these optimizations both corroborate results demonstrating
the brittleness of deep policy gradient methods, and demonstrate that even beyond environmental
brittleness, the algorithms themselves exhibit high sensitivity to implementation choices 4.

3Due to restrictions on computational resources, we could only perform a full ablation on the first four of
the identified optimizations.

4This might also explain the difference between different codebases observed in Henderson et al. (2017)

3

Published as a conference paper at ICLR 2020

A popular method in this class is trust region policy optimization (TRPO) Schulman et al. (2015a).
TRPO constrains the KL divergence between successive policies on the optimization trajectory,
leading to the following problem:

max
θ

E(st,at)∼π

[
πθ(at|st)

π(at|st)
Âπ(st, at)

]

s.t. DKL(πθ(· | s)||π(· | s)) ≤ δ, ∀s . (1)

In practice, we maximize this objective with a second-order approximation of the KL divergence
and natural gradient descent, and replace the worst-case KL constraints over all possible states with
an approximation of the mean KL based on the states observed in the current trajectory.

Proximal policy optimization. One disadvantage of the TRPO algorithm is that it can be compu-
tationally costly—the step direction is estimated with nonlinear conjugate gradients, which requires
the computation of multiple Hessian-vector products. To address this issue, Schulman et al. (2017)
propose proximal policy optimization (PPO), which tries to enforce a trust region with a different
objective that does not require computing a projection. Concretely, PPO proposes replacing the
KL-constrained objective (1) of TRPO by clipping the objective function directly as:

max
θ

E(st,at)∼π

[
min

(
clip (ρt, 1− ε, 1 + ε) Âπ(st, at), ρtÂπ(st, at)

)]
(2)

where

ρt =
πθ(at|st)

π(at|st)
. (3)

Note that this objective can be optimized without an explicit projection step, leading to a simpler
parameter update during training. In addition to its simplicity, PPO is intended to be faster and more
sample-efficient than TRPO (Schulman et al., 2017).

Trust regions in TRPO and PPO. Enforcing a trust region is a core algorithmic property of
different policy gradient methods. However, whether or not a trust region is enforced is not directly
observable from the final rewards. So, how does this algorithmic property vary across state-of-the-art
policy gradient methods?

In Figure 2 we measure the mean KL divergence between successive policies in a training run of
both TRPO and PPO-M (PPO without code-level optimizations). Recall that TRPO is designed
specifically to constrain this KL-based trust region, while the clipping mechanism of PPO attempts
to approximate it. Indeed, we find that TRPO precisely enforces this trust region (this is unsuprising,
and nearly by construction).

We thus turn our attention to the trust regions induced by training with PPO and PPO-M. First, we
consider mathematically the contribution of a single state-action pair to the gradient of the PPO
objective, which is given by

∇θLPPO =

{
∇θLθ

πθ(a|s)
π(a|s) ∈ [1− ǫ, 1 + ǫ] or LC

θ < Lθ

0 otherwise
,

where Lθ := E(s,a)∈τ∼π

[
πθ(a|s)

π(a|s)
Aπ(s, a)

]
,

and LC
θ := E(s,a)∈τ∼π

[
clip

(
πθ(a|s)

π(a|s)
, 1− ε, 1 + ε

)
Aπ(s, a)

]

are respectively the standard and clipped versions of the surrogate objective. As a result, since we
initialize πθ as π (and thus the ratios start all equal to one) the first step we take is identical to a
maximization step over the unclipped surrogate objective. It thus stands to reason that the nature of
the trust region enforced is heavily dependent on the method with which the clipped PPO objective
is optimized, rather than on the objective itself. Therefore, the size of the step we take is determined
solely by the steepness of the surrogate landscape (i.e. Lipschitz constant of the optimization prob-
lem we solve), and we can end up moving arbitrarily far from the trust region. We hypothesize that

5

Published as a conference paper at ICLR 2020

Table 2: Full ablation of step choices (PPO or TRPO) and presence of code-level optimizations
measuring agent performance on benchmark tasks. TRPO+ is a variant of TRPO that uses PPO
inspired code-level optimizations, and PPO-M is a variant of PPO that does not use PPO’s code-
level optimizations (cf. Section 3). Varying the use of code-level optimizations impacts performance
significantly more than varying whether the PPO or TRPO step is used. We detail our experimental
setup in Appendix A.1. We train at least 80 agents for each estimate (more for some high-variance
cases). We present 95% confidence intervals computed via a 1000-sample bootstrap. We also present
the AAI and ACLI metrics discussed in Section 5, which attempt to quantify the relative contribution
of algorithmic choice vs. use of code-level optimizations respectively.

MUJOCO TASK

STEP WALKER2D-V2 HOPPER-V2 HUMANOID-V2

PPO 3292 [3157, 3426] 2513 [2391, 2632] 806 [785, 827]
PPO-M 2735 [2602, 2866] 2142 [2008, 2279] 674 [656, 695]
TRPO 2791 [2709, 2873] 2043 [1948, 2136] 586 [576, 596]
TRPO+ 3050 [2976, 3126] 2466 [2381, 2549] 1030 [979, 1083]

AAI 242 99 224
ACLI 557 421 444

algorithms. Specifically, we examine how employing the core PPO and TRPO steps changes model
performance while controlling for the effect of code-level optimizations identified in standard im-
plementations of PPO (in particular, we focus on those covered in Section 3). These code-level
optimizations are largely algorithm-independent, and so they can be straightforwardly applied or
lightly adapted to any policy gradient method. The previously introduced PPO-M algorithm cor-
responds to PPO without these optimizations. To further account for their effects, we study an
additional algorithm which we denote as TRPO+, consisting of the core algorithmic contribution of
TRPO in combination with PPO’s code-level optimizations as identified in Section 3 5. We note that
TRPO+ together with the other three algorithms introduced (PPO, PPO-M, and TRPO; all listed in
Table 1) now capture all combinations of core algorithms and code-level optimizations, allowing us
to study the impact of each in a fine-grained manner.

As our results show in Table 2, it turns out that code-level optimizations contribute to algorithms’
increased performance often significantly more than the choice of algorithm (i.e., using PPO vs.
TRPO). For example, on Hopper-v2, PPO and TRPO see 17% and 21% improvements (respectively)
when equipped with code-level optimizations. At the same time, for all tasks after fixing the choice
to use or not use optimizations, the core algorithm employed does not seem to have a significant
impact on reward. In Table 2, we quantify this contrast through the following two metrics, which
we denote average algorithmic improvement (AAI) and average code-level improvement (ACLI):

AAI = max{|PPO − TRPO+|, |PPO-M − TRPO|},

ACLI = max{|PPO − PPO-M|, |TRPO+ − TRPO|}.

In short, AAI measures the maximal effect of switching step algorithms, whereas ACLI measures
the maximal effect of adding in code-level optimizations for a fixed choice of step algorithm.

PPO without clipping. Given the relative insignificance of the step mechanism compared to the
use of code-level optimizations, we are prompted to ask: to what extent is the clipping mechanism
of PPO actually responsible for the algorithm’s success? In Table 3, we assess this by considering
a PPO-NOCLIP algorithm which makes use of common code-level optimizations (by gridding over
the best possible combination of such optimizations) but does not employ a clipping mechanism (this
is the same algorithm we studied in Section 4 in the context of trust region enforcement)—recall that
we list all the algorithms studied in Table 1.

It turns out that the clipping mechanism is not necessary to achieve high performance—we find that
PPO-NOCLIP performs uniformly better than PPO-M, despite the latter employing the core PPO

5We also add a new code-level optimization, a KL decay, inapplicable to PPO but meant to serve as the
analog of Adam learning rate annealing.

7

Published as a conference paper at ICLR 2020

Table 3: Comparison of PPO performance to PPO without clipping. We find that there is little dif-
ference between the rewards attained by the two algorithms on the benchmark tasks. Note that both
algorithms use code-level optimizations; our results indicate that the clipping mechanism is often of
comparable or lesser importance to the use of code-level optimizations. We detail our experimental
setup in Appendix A.1. We train at least 80 agents for each estimate (for some high-variance cases,
more agents were used). We present bootstrapped 95% confidence intervals computed with 1000
samples. We also present results from the OpenAI baselines (Dhariwal et al., 2017) where available.

WALKER2D-V2 HOPPER-V2 HUMANOID-V2

PPO 3292 [3157, 3426] 2513 [2391, 2632] 806 [785, 827]
PPO (BASELINES) 3424 2316 —
PPO-M 2735 [2602, 2866] 2142 [2008, 2279] 674 [656, 695]
PPO-NOCLIP 2867 [2701, 3024] 2371 [2316, 2424] 831 [798, 869]

clipping mechanism. Moreover, introducing code-level optimizations seems to outweigh even the
core PPO algorithm in terms of effect on rewards. In fact, we find that with sufficient hyperparameter
tuning, PPO-NOCLIP often matches the performance of standard PPO, which includes a standard
configuration of code-level optimizations6. We also include benchmark PPO numbers from the
OpenAI baselines repository (Dhariwal et al., 2017) (where available) to put results into context.

Our results suggest that it is difficult to attribute success to different aspects of policy gradient
algorithms without careful analysis.

6 CONCLUSION

In this work, we take a first step in examining how the mechanisms powering deep policy gradi-
ent methods impact agents both in terms of achieved reward and underlying algorithmic behavior.
Wanting to understand agent operation from the ground up, we take a deep dive into the operation of
two of the most popular deep policy gradient methods: TRPO and PPO. In doing so, we identify a
number of “code-level optimizations”—algorithm augmentations found only in algorithms’ imple-
mentations or described as auxiliary details in their presentation—and find that these optimizations
have a drastic effect on agent performance.

In fact, these seemingly unimportant optimizations fundamentally change algorithm operation in
ways unpredicted by the conceptual policy gradient framework. Indeed, the optimizations often
dictate the nature of the trust region enforced by policy gradient algorithms, even controlling for the
surrogate objective being optimized. We go on to test the importance of code-level optimizations
in agent performance, and find that PPO’s marked improvement over TRPO (and even stochastic
gradient descent) can be largely attributed to these optimizations.

Overall, our results highlight the necessity of designing deep RL methods in a modular manner.
When building algorithms, we should understand precisely how each component impacts agent
training—both in terms of overall performance and underlying algorithmic behavior. It is impos-
sible to properly attribute successes and failures in the complicated systems that make up deep RL
methods without such diligence. More broadly, our findings suggest that developing an RL toolkit
will require moving beyond the current benchmark-driven evaluation model to a more fine-grained
understanding of deep RL methods.

7 ACKNOWLEDGEMENTS

We would like to thank Chloe Hsu for identifying a bug in our initial implementation of PPO and
TPRO. Work supported in part by the NSF grants CCF-1553428, CNS-1815221, the Google PhD
Fellowship, the Open Phil AI Fellowship, and the Microsoft Corporation.

6Note that it is possible that further refinement on the code-level optimizations could be added on top of
PPO to perhaps improve its performance to an even greater extent (after all, PPO-NOCLIP can only express a
subset the training algorithms covered by PPO, as the latter leaves the clipping severity ε to be free parameter)

8

Published as a conference paper at ICLR 2020

REFERENCES

Pieter Abbeel and John Schulman. Deep reinforcement learning through policy optimization. Tuto-
rial at Neural Information Processing Systems, 2016.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:

//github.com/openai/baselines, 2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where did my optimum go?: An empirical
analysis of gradient descent optimization in policy gradient methods, 2018.

Sham M. Kakade. A natural policy gradient. In NIPS, 2001.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. CoRR, abs/1803.07055, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NeurIPS Deep
Learning Workshop, 2013.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In AAAI, 2010.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M. Kakade. Towards general-
ization and simplicity in continuous control. In NIPS, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, 1999.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines in reinforcement learning. In ICML,
2018.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Amy Zhang, Yuxin Wu, and Joelle Pineau. Natural environment benchmarks for reinforcement
learning, 2018.

9

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 EXPERIMENTAL SETUP

All the hyperparameters used in this paper were obtained through grid searches. For PPO the ex-
act code-level optimizations and their associated hyperparameters (e.g. coefficients for entropy
regularization, reward clipping, etc.) were taken from the OpenAI baselines repository 7, and
gridding is performed over the value function learning rate, the clipping constant, and the learn-
ing rate schedule. In TRPO, we grid over the same parameters (replacing learning rate sched-
ule with the KL constraint), but omit the code-level optimizations. For PPO-NoClip, we grid
over the same parameters as PPO, in addition to the configuration of code-level optimizations
(since we lack a good reference for what the optimal configuration of these optimizations is).
For TRPO+ we also grid over the code-level optimizations, and also implement a “KL sched-
ule” whereby the KL constraint can change over training (analogous to the learning rate anneal-
ing optimization in PPO). Finally, for PPO-M, we grid over the same parameters as PPO (just
learning rate schedules), without any code-level optimizations. The final parameters for each al-
gorithm are given below, and a more detailed account is available in our code release: https:
//github.com/MadryLab/implementation-matters.

Table 4: Hyperparameters for all algorithms for Walker2d-v2.

PPO TRPO PPO-NoClip PPO-M TRPO+

Timesteps per iteration 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.85 0.95 0.95
Value network LR 0.0003 0.0003 0.0006 0.0002 0.0001
Value network num. epochs 10 10 10 10 10
Policy network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
KL constraint (δ) N/A 0.04 N/A N/A 0.07
Fisher estimation fraction N/A 0.1 N/A N/A 0.1
Conjugate gradient steps N/A 10 N/A N/A 10
Conjugate gradient damping N/A 0.1 N/A N/A 0.1
Backtracking steps N/A 10 N/A N/A 10
Policy LR (Adam) 0.0004 N/A 7.25e-05 0.0001 N/A
Policy epochs 10 N/A 10 10 N/A
PPO Clipping ε 0.2 N/A 1e+32 0.2 N/A
Entropy coeff. 0 0 -0.01 0 0
Reward clipping [-10.0, 10.0] – [-30, 30] – [-10.0, 10.0]
Gradient clipping (ℓ2 norm) -1 -1 0.1 -1 1
Reward normalization returns none rewards none returns
State clipping [-10.0, 10.0] – [-30, 30] – [-10.0, 10.0]

All error bars we plot are 95% confidence intervals, obtained via bootstrapped sampling.

7https://github.com/openai/baselines

10

Published as a conference paper at ICLR 2020

Table 5: Hyperparameters for all algorithms for Humanoid-v2.

PPO TRPO PPO-NoClip PPO-M TRPO+

Timesteps per iteration 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.85 0.95 0.85
Value network LR 0.0001 0.0003 5e-05 0.0004 5e-05
Value network num. epochs 10 10 10 10 10
Policy network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
KL constraint (δ) N/A 0.07 N/A N/A 0.1
Fisher estimation fraction N/A 0.1 N/A N/A 0.1
Conjugate gradient steps N/A 10 N/A N/A 10
Conjugate gradient damping N/A 0.1 N/A N/A 0.1
Backtracking steps N/A 10 N/A N/A 10
Policy LR (Adam) 0.00015 N/A 2e-05 9e-05 N/A
Policy epochs 10 N/A 10 10 N/A
PPO Clipping ε 0.2 N/A 1e+32 0.2 N/A
Entropy coeff. 0 0 0.005 0 0
Reward clipping [-10.0, 10.0] – [-10.0, 10.0] – [-10.0, 10.0]
Gradient clipping (ℓ2 norm) -1 -1 0.5 -1 0.5
Reward normalization returns none returns none returns
State clipping [-10.0, 10.0] – [-10.0, 10.0] – [-10.0, 10.0]

Table 6: Hyperparameters for all algorithms for Hopper-v2.

PPO TRPO PPO-NoClip PPO-M TRPO+

Timesteps per iteration 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.925 0.95 0.95
Value network LR 0.00025 0.0002 0.0004 0.0004 0.0002
Value network num. epochs 10 10 10 10 10
Policy network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value network hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
KL constraint (δ) N/A 0.13 N/A N/A 0.04
Fisher estimation fraction N/A 0.1 N/A N/A 0.1
Conjugate gradient steps N/A 10 N/A N/A 10
Conjugate gradient damping N/A 0.1 N/A N/A 0.1
Backtracking steps N/A 10 N/A N/A 10
Policy LR (Adam) 0.0003 N/A 6e-05 0.00017 N/A
Policy epochs 10 N/A 10 10 N/A
PPO Clipping ε 0.2 N/A 1e+32 0.2 N/A
Entropy coeff. 0 0 -0.005 0 0
Reward clipping [-10.0, 10.0] – [-2.5, 2.5] – [-10.0, 10.0]
Gradient clipping (ℓ2 norm) -1 -1 4 -1 1
Reward normalization returns none rewards none returns
State clipping [-10.0, 10.0] – [-2.5, 2.5] – [-10.0, 10.0]

11

Published as a conference paper at ICLR 2020

A.2 PPO CODE-LEVEL OPTIMIZATIONS

Algorithm 1 PPO scaling optimization.

1: procedure INITIALIZE-SCALING()
2: R0 ← 0
3: RS = RUNNINGSTATISTICS() ⊲ New running stats class that tracks mean, standard

deviation
4: procedure SCALE-OBSERVATION(rt) ⊲ Input: a reward rt
5: Rt ← γRt−1 + rt ⊲ γ is the reward discount
6: ADD(RS,Rt)
7: return rt/STANDARD-DEVIATION(RS) ⊲ Returns scaled reward

12

	1 Introduction
	2 Related Work
	3 Attributing Success in Proximal Policy Optimization
	4 Code-Level Optimizations have Algorithmic Effects
	5 Identifying Roots of Algorithmic Progress
	6 Conclusion
	7 Acknowledgements
	A Appendix
	A.1 Experimental Setup
	A.2 PPO Code-Level Optimizations
	A.3 Trust Region Optimization

