
Published as a conference paper at ICLR 2020

A CLOSER LOOK AT DEEP POLICY GRADIENTS

Andrew Ilyas1*, Logan Engstrom1*, Shibani Santurkar1, Dimitris Tsipras1,
Firdaus Janoos2, Larry Rudolph1,2, and Aleksander Mądry1

1MIT 2Two Sigma
{ailyas,engstrom,shibani,tsipras,madry}@mit.edu

rudolph@csail.mit.edu, firdaus.janoos@twosigma.com

ABSTRACT

We study how the behavior of deep policy gradient algorithms reflects the con-
ceptual framework motivating their development. To this end, we propose a fine-
grained analysis of state-of-the-art methods based on key elements of this frame-
work: gradient estimation, value prediction, and optimization landscapes. Our re-
sults show that the behavior of deep policy gradient algorithms often deviates from
what their motivating framework would predict: the surrogate objective does not
match the true reward landscape, learned value estimators fail to fit the true value
function, and gradient estimates poorly correlate with the “true” gradient. The
mismatch between predicted and empirical behavior we uncover highlights our
poor understanding of current methods, and indicates the need to move beyond
current benchmark-centric evaluation methods.

1 INTRODUCTION

Deep reinforcement learning (RL) is behind some of the most publicized achievements of modern
machine learning (Silver et al., 2017; OpenAI, 2018; Dayarathna et al., 2016; OpenAI et al., 2018).
In fact, to many, this framework embodies the promise of the real-world impact of machine learning.
However, the deep RL toolkit has not yet attained the same level of engineering stability as, for
example, the current deep (supervised) learning framework. Indeed, recent studies demonstrate that
state-of-the-art deep RL algorithms suffer from oversensitivity to hyperparameter choices, lack of
consistency, and poor reproducibility (Henderson et al., 2017).

This state of affairs suggests that it might be necessary to re-examine the conceptual underpinnings
of deep RL methodology. More precisely, the overarching question that motivates this work is:

To what degree does current practice in deep RL reflect the principles informing its development?

Our specific focus is on deep policy gradient methods, a widely used class of deep RL algorithms.
Our goal is to explore the extent to which state-of-the-art implementations of these methods succeed
at realizing the key primitives of the general policy gradient framework.

Our contributions. We take a broader look at policy gradient algorithms and their relation to their
underlying framework. With this perspective in mind, we perform a fine-grained examination of key
RL primitives as they manifest in practice. Concretely, we study:

• Gradient Estimation: we find that even when agents improve in reward, their gradient
estimates used in parameter updates poorly correlate with the “true” gradient. We addition-
ally show that gradient estimate quality decays with training progress and task complexity.
Finally, we demonstrate that varying the sample regime yields training dynamics that are
unexplained by the motivating framework and run contrary to supervised learning intuition.

• Value Prediction: our experiments indicate that value networks successfully solve the
supervised learning task they are trained on, but do not fit the true value function. Addi-
tionally, employing a value network as a baseline function only marginally decreases the

*Equal contribution. Work done in part while interning at Two Sigma.

1

ar
X

iv
:1

8
1
1
.0

2
5
5
3
v
4

[c

s.
L

G
]

 2
5
 M

ay
 2

0
2
0

Published as a conference paper at ICLR 2020

6 ACKNOWLEDGEMENTS

Work supported in part by the NSF grants CCF-1553428, CNS-1815221, the Google PhD Fellow-
ship, the Open Phil AI Fellowship, and the Microsoft Corporation.

REFERENCES

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization, 2018.

Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Opti-
mization, 19:1171–1183, 2008.

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. Data center energy consumption modeling: A
survey. IEEE Communications Surveys & Tutorials, 18(1):732–794, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where did my optimum go?: An empirical
analysis of gradient descent optimization in policy gradient methods, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9:1–42, 1997.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. In ICML Reproducibility in
Machine Learning Workshop, 2017.

Sham M. Kakade. A natural policy gradient. In NIPS, 2001.

Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In ICML, 2002.

Kenji Kawaguchi. Deep learning without poor local minima. In NIPS, 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836, 2016.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In NIPS, 2014.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. CoRR, abs/1803.07055, 2018.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training, 2018.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

OpenAI, :, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szy-
mon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation, 2018.

Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In AAAI, 2010.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M. Kakade. Towards general-
ization and simplicity in continuous control. In NIPS, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Statist., 22(3):
400–407, 09 1951. doi: 10.1214/aoms/1177729586. URL https://doi.org/10.1214/

aoms/1177729586.

9

Published as a conference paper at ICLR 2020

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
In ICML, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. CoRR, abs/1506.02438,
2015c.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Ilya Sutskever. Keynote talk. NVIDIA NTECH, 2018. URL https://www.youtube.com/

watch?v=w3ues-NayAs&t=467s.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, 1999.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

10

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 BACKGROUND

In the reinforcement learning (RL) setting, an agent interacts with a stateful environment with the
goal of maximizing cumulative reward. Formally, we model the environment as a (possibly random-
ized) function mapping its current state s and an action a supplied by the agent to a new state s′ and
a resulting reward r. The choice of actions of the agent is governed by the its policy π. This policy
is a function mapping environment states to a distribution over the actions to take. The objective of
an RL algorithm is to find a policy π which maximizes the expected cumulative reward, where the
expectation is taken over both environment randomness and the (randomized) action choices.

Preliminaries and notation. For a given policy π, we denote by π(a|s) the probability that this
policy assigns to taking action a when the environment is in the state s. We use r(s, a) to denote
the reward that the agent earns for playing action a in response to the state s. A trajectory τ =
{(at, st) : t ∈ {1 . . . T}} is a sequence of state-action pairs that constitutes a valid transcript of
interactions of the agent with the environment. (Here, at (resp. st) corresponds to the action taken
by the agent (resp. state of the environment) in the t-th round of interaction.) We then define π(τ)
to be the probability that the trajectory τ is executed if the agent follows policy π (provided the
initial state of the environment is s1). Similarly, r(τ) =

∑
t r(st, at) denotes the cumulative reward

earned by the agent when following this trajectory, where st (resp. at) denote the t-th state (resp.
action) in the trajectory τ . In the RL setting, however, we often choose to maximize the discounted
cumulative reward of a policy R := R1, where Rt is defined as

Rt(τ) =
∞∑

t′=t

γ(t′−t)rt′ .

and 0 < γ < 1 is a “discount factor”. The discount factor ensures that the cumulative reward of
a policy is well-defined even for an infinite time horizon, and it also incentivizes achieving reward
earlier.

Policy gradient methods. A widely used class of RL algorithms that will be the focus of our
analysis is the class of so-called policy gradient methods. The central idea behind these algorithms
is to first parameterize the policy πθ using a parameter vector θ. (In the deep RL context, πθ is
expressed by a neural network with weights θ.) Then, we perform stochastic gradient ascent on the
cumulative reward with respect to θ. In other words, we want to apply the stochastic ascent approach
to our problem:

max
θ

Eτ∼πθ
[r(τ)] , (5)

where τ ∼ πθ represents trajectories (rollouts) sampled from the distribution induced by the policy
πθ. This approach relies on the key observation (Sutton et al., 1999) that under mild conditions, the
gradient of our objective can be written as:

∇θEτ∼πθ
[r(τ)] = Eτ∼πθ

[∇θ log(πθ(τ)) r(τ)], (6)

and the latter quantity can be estimated directly by sampling trajectories according to the policy πθ.

When we use the discounted variant of the cumulative reward and note that the action of the policy
at time t cannot affect its performance at earlier times, we can express our gradient estimate as:

ĝθ = Eτ∼πθ


 ∑

(st,at)∈τ

∇θ log πθ(at|st) ·Qπθ
(st, at)


 , (7)

where Qπθ
(st, at) represents the expected returns after taking action at from state st:

Qπθ
(st, at) = Eπθ

[Rt|at, st] . (8)

11

Published as a conference paper at ICLR 2020

Value estimation and advantage. Unfortunately, the variance of the expectation in (7) can be (and
often is) very large, which makes getting an accurate estimate of this expectation quite challenging.
To alleviate this issue, a number of variance reduction techniques have been developed. One of the
most popular such techniques is the use of a so-called baseline function, wherein a state-dependent
value is subtracted from Qπθ

. Thus, instead of estimating (7) directly, we use:

ĝθ = Eτ∼πθ


 ∑

(st,at)∈τ

∇θ log πθ(at|st) · (Qπθ
(st, at)− b(st))


 , (9)

where b(·) is a baseline function of our choice.

A natural choice of the baseline function is the value function, i.e.

Vπθ
(st) = Eπθ

[Rt|st] . (10)

When we use the value function as our baseline, the resulting gradient estimation problem becomes:

ĝθ = Eτ∼πθ


 ∑

(st,at)∈τ

∇θ log πθ(at|st) ·Aπθ
(st, at)


 , (11)

where

Aπθ
(st, at) = Qπθ

(st, at)− Vπθ
(st) (12)

is referred to as the advantage of performing action at. Different methods of estimating Vπθ
have

been proposed, with techniques ranging from moving averages to the use of neural network predic-
tors Schulman et al. (2015b).

Surrogate Objective. So far, our focus has been on extracting a good estimate of the gradient
with respect to the policy parameters θ. However, it turns out that directly optimizing the cumula-
tive rewards can be challenging. Thus, a modification used by modern policy gradient algorithms
is to optimize a “surrogate objective” instead. We will focus on maximizing the following local
approximation of the true reward Schulman et al. (2015a):

max
θ

E(st,at)∼π

[
πθ(at|st)

π(at|st)
Aπ(st, at)

] (
= Eπθ

[Aπ]

)
, (13)

or the normalized advantage variant proposed to reduce variance Schulman et al. (2017):

max
θ

E(st,at)∼π

[
πθ(at|st)

π(at|st)
Âπ(st, at)

]
(14)

where

Âπ =
Aπ − µ(Aπ)

σ(Aπ)
(15)

and π is the current policy.

Trust region methods. The surrogate objective function, although easier to optimize, comes at a
cost: the gradient of the surrogate objective is only predictive of the policy gradient locally (at the
current policy). Thus, to ensure that our update steps we derive based on the surrogate objective are
predictive, they need to be confined to a “trust region” around the current policy. The resulting trust
region methods (Kakade, 2001; Schulman et al., 2015a; 2017) try to constrain the local variation of
the parameters in policy-space by restricting the distributional distance between successive policies.

A popular method in this class is trust region policy optimization (TRPO) Schulman et al. (2015a),
which constrains the KL divergence between successive policies on the optimization trajectory, lead-
ing to the following problem:

max
θ

E(st,at)∼π

[
πθ(at|st)

π(at|st)
Âπ(st, at)

]

s.t. DKL(πθ(· | s)||π(· | s)) ≤ δ, ∀s . (16)

In practice, this objective is maximized using a second-order approximation of the KL divergence
and natural gradient descent, while replacing the worst-case KL constraints over all possible states
with an approximation of the mean KL based on the states observed in the current trajectory.

12

Published as a conference paper at ICLR 2020

Proximal policy optimization. In practice, the TRPO algorithm can be computationally costly—
the step direction is estimated with nonlinear conjugate gradients, which requires the computation
of multiple Hessian-vector products. To address this issue, Schulman et al. Schulman et al. (2017)
propose proximal policy optimization (PPO), which utilizes a different objective and does not com-
pute a projection. Concretely, PPO proposes replacing the KL-constrained objective (16) of TRPO
by clipping the objective function directly as:

max
θ

E(st,at)∼π

[
min

(
clip (ρt, 1− ε, 1 + ε) Âπ(st, at), ρtÂπ(st, at)

)]
(17)

where

ρt =
πθ(at|st)

π(at|st)
(18)

In addition to being simpler, PPO is intended to be faster and more sample-efficient than
TRPO (Schulman et al., 2017).

13

Published as a conference paper at ICLR 2020

A.2 EXPERIMENTAL SETUP

We use the following parameters for PPO and TRPO based on a hyperparameter grid search:

Table 1: Hyperparameters for PPO and TRPO algorithms.

Humanoid-v2 Walker2d-v2 Hopper-v2
PPO TRPO PPO TRPO PPO TRPO

Timesteps per iteration 2048 2048 2048 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99 0.99
GAE discount (λ) 0.95 0.95 0.95 0.95 0.95 0.95
Value network LR 0.0001 0.0003 0.0003 0.0003 0.0002 0.0002
Value net num. epochs 10 10 10 10 10 10
Policy net hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]
Value net hidden layers [64, 64] [64, 64] [64, 64] [64, 64] [64, 64] [64, 64]

KL constraint (δ) N/A 0.07 N/A 0.04 N/A 0.13
Fisher est. fraction N/A 0.1 N/A 0.1 N/A 0.1
Conjugate grad. steps N/A 10 N/A 10 N/A 10
CG damping N/A 0.1 N/A 0.1 N/A 0.1
Backtracking steps N/A 10 N/A 10 N/A 10

Policy LR (Adam) 0.00025 N/A 0.0004 N/A 0.00045 N/A
Policy epochs 10 N/A 10 N/A 10 N/A
PPO Clipping ε 0.2 N/A 0.2 N/A 0.2 N/A
Entropy coeff. 0.0 0.0 0.0 0.0 0.0 0.0
Reward clipping [-10, 10] – [-10, 10] – [-10, 10] –
Reward normalization On Off On Off On Off
State clipping [-10, 10] – [-10, 10] – [-10, 10] –

All error bars we plot are 95% confidence intervals, obtained via bootstrapped sampling.

14

	1 Introduction
	2 Examining the Primitives of Deep Policy Gradient Algorithms
	2.1 Gradient estimate quality
	2.2 Value prediction
	2.3 Exploring the optimization landscape

	3 Towards Stronger Foundations for Deep RL
	4 Related Work
	5 Conclusion
	6 Acknowledgements
	A Appendix
	A.1 Background
	A.2 Experimental Setup
	A.3 Standard Reward Plots
	A.4 Quality of Gradient Estimation
	A.5 Value Prediction
	A.6 Optimization Landscape

