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Abstract

Building rich machine learning datasets in a scal-
able manner often necessitates a crowd-sourced
data collection pipeline. In this work, we use hu-
man studies to investigate the consequences of em-
ploying such a pipeline, focusing on the popular
ImageNet dataset. We study how specific design
choices in the ImageNet creation process impact
the fidelity of the resulting dataset—including the
introduction of biases that state-of-the-art models
exploit. Our analysis pinpoints how a noisy data
collection pipeline can lead to a systematic mis-
alignment between the resulting benchmark and
the real-world task it serves as a proxy for. Finally,
our findings emphasize the need to augment our
current model training and evaluation toolkit to
take such misalignments into account. 1

1. Introduction

Large-scale vision datasets and their associated bench-
marks (Everingham et al., 2010; Deng et al., 2009; Lin
et al., 2014; Russakovsky et al., 2015) have been instru-
mental in guiding the development of machine learning
models (Krizhevsky et al., 2012; Szegedy et al., 2016; He
et al., 2016). At the same time, while the progress made on
these benchmarks is undeniable, they are only proxies for
real-world tasks that we actually care about—e.g., object
recognition in the wild. Thus, it is natural to wonder:

How aligned are existing benchmarks with their

motivating real-world tasks?

On one hand, significant design effort goes into ensuring
that these benchmarks accurately model real-world chal-
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Figure 1: Judging the correctness of ImageNet labels may
not be straightforward. While the labels shown above appear
valid, none of them match the ImageNet labels (respectively
“projectile”, “acoustic guitar”, and “church”).

lenges (Ponce et al., 2006; Torralba & Efros, 2011; Evering-
ham et al., 2010; Russakovsky et al., 2015). On the other
hand, the sheer size of machine learning datasets makes
meticulous data curation impossible. Dataset creators thus
resort to scalable methods such as automated data retrieval
and crowd-sourced annotation (Everingham et al., 2010;
Russakovsky et al., 2015; Lin et al., 2014; Zhou et al., 2017),
often at the cost of faithfulness to the task being modeled.
As a result, the dataset annotations obtained can sometimes
be ambiguous, incorrect, or otherwise misaligned with the
ground truth (cf. Figure 1). Still, despite our awareness of
these issues (Russakovsky et al., 2015; Recht et al., 2019;
Stock & Cisse, 2018; Hooker et al., 2019; Northcutt et al.,
2019), we lack a precise characterization of their pervasive-
ness and impact, even for widely-used datasets.

Our contributions

We develop a methodology for obtaining fine-grained data
annotations via large-scale human studies. These annota-
tions allow us to precisely quantify ways in which typical
object recognition benchmarks fall short of capturing the un-
derlying ground truth. We then study how such benchmark-

task misalignment impacts state-of-the-art models—after all,
models are often developed by treating existing datasets as
the ground truth. We focus our exploration on the ImageNet
dataset (Deng et al., 2009) (specifically, the ILSVRC2012
object recognition task (Russakovsky et al., 2015)), one of
the most widely used benchmarks in computer vision.

Quantifying benchmark-task alignment. We find that
systematic annotation issues pervade ImageNet, and can
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often be attributed to design choices in the dataset collection
pipeline itself. For example, during the ImageNet labeling
process, annotators were not asked to classify images, but
rather to validate an automatically-obtained candidate label
without knowledge of other dataset classes. This leads to:

• Multi-object images (Section 4.1): While each image
is associated with a single label, we find that more than
one fifth of ImageNet images contain objects from mul-

tiple classes. In fact, the dataset label often does not
even correspond to what humans deem the “main ob-
ject”. Nevertheless, models still achieve significantly-
better-than-chance prediction performance on these im-
ages, indicating that they must exploit idiosyncrasies
of the dataset that humans are oblivious to.

• Bias in label validation (Section 4.2): Even when there
is only one object in an image, collectively, annotators
often end up validating several mutually exclusive la-
bels. These correspond, for example, to images that
are ambiguous or to classes with synonymous labels.
The ImageNet label in these cases is determined not by
annotators themselves, but rather by the fidelity of the
automated image retrieval process. In general, given
that annotators are ineffective at filtering out errors
under this setup, the automated component of the data
pipeline may have a disproportionate impact on the
quality of ImageNet annotations.

More broadly, these issues point to an inherent tension be-
tween the goal of building large-scale benchmarks that are
realistic and the scalable data collection pipelines needed
to achieve this goal. Hence, for benchmarks created using
such pipelines, the current standard for model evaluation—
accuracy with respect to a single, fixed dataset label—may
be insufficient to correctly judge model performance.

Human-based performance evaluation. In light of this,
we use our annotation pipeline to directly measure human-
model alignment. We find that more accurate ImageNet
models also make predictions that annotators are more likely
to agree with. In fact, we find that models have reached a
level where non-expert annotators are largely unable to dis-
tinguish between predicted labels and ImageNet labels (i.e.,
even model predictions that don’t match the dataset labels
are often judged valid by annotators). While reassuring, this
finding highlights a different challenge: non-expert annota-
tions may no longer suffice to tell apart further progress from
overfitting to idiosyncrasies of the ImageNet distribution.

2. A Closer Look at the ImageNet Dataset

We start by briefly describing the original ImageNet collec-
tion and annotation process. As it turns out, several details
of this process significantly impact the resulting dataset.

The ImageNet creation pipeline. ImageNet is a proto-
typical example of a large-scale dataset (1000 classes and
more than million images) created through automated data
collection and crowd-sourced filtering. At a high level, this
creation process comprised two stages (Deng et al., 2009):

1. Image and label collection: The ImageNet creators
first selected a set of classes using the WordNet hierar-
chy (Miller, 1995). Then, for each class, they sourced
images by querying several search engines with the
WordNet synonyms of the class in several languages.
Note that for each of the retrieved images, the proposed

label—that will be assigned to this image should it be
included in the dataset, is already determined. That is,
the label is simply given by the WordNet node that was
used for the corresponding search query.

2. Image validation via the CONTAINS task. To validate
the image-label pairs retrieved in the previous stage,
the ImageNet creators employed annotators via the
Mechanical Turk (MTurk) crowd-sourcing platform.
Specifically, for every class, annotators were presented
with its description (along with links to the relevant
Wikipedia pages) and a grid of candidate images. Their
task was then to select all images in that grid that con-
tained an object of that class (with explicit instructions
to ignore clutter and occlusions). The grids were shown
to multiple annotators and only images that received
a “convincing majority” of votes (based on per-class
thresholds estimated using a small pool of annotators)
were included in ImageNet. In what follows, we will
refer to this filtering procedure as the CONTAINS task.

Revisiting the ImageNet labels

The process described above is a natural method for cre-
ating a large-scale dataset, especially if it involves a wide
range of classes. However, even putting aside occasional
annotator errors, the resulting dataset might not accurately
capture the ground truth. Indeed, as we discuss below, this
pipeline design itself can lead to certain systematic errors
in the dataset. The root cause for many of these is that the
image validation stage (i.e., the CONTAINS task) only asks
annotators to verify if a specific label (i.e., WordNet node for
which the image was retrieved), shown in isolation, is valid
for a given image. Crucially, annotators are never asked to
choose among different possible labels for the image and, in
fact, have no knowledge of what the other classes even are.
This can introduce discrepancies in the dataset in two ways:

Images with multiple objects. Annotators are instructed
to ignore the presence of other objects when validating a
particular ImageNet label for an image. However, these ob-
jects could themselves correspond to other ImageNet classes.
This can lead to the selection of images with multiple valid
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labels or even to images where the dataset label does not
correspond to the most prominent object in the image.

Biases in image filtering. Since annotators have no
knowledge other classes, they do not have a sense of the
granularity of image features they should pay attention to
(e.g., the labels in Figure 1 appear reasonable until one
becomes aware of the other ImageNet classes). Moreover,
the task itself does not necessary account for their expertise.
Indeed, one cannot reasonably expect non-experts to
distinguish, e.g., between all the 24 terrier breeds that are
present in ImageNet. As a result, if annotators are shown
images containing objects of a different, yet similar class,
they are likely to select them as valid. This implies that
potential errors in the collection process (e.g., automated
search retrieving images that do not match the query label)
are unlikely to be corrected during validation (via the
CONTAINS task) and thus can propagate to the final dataset.

In the light of the above, it is clear that eliciting ground truth
information using the ImageNet creation pipeline may not
be straightforward. In Section 3, we present a framework
for improving this elicitation and then, in Section 4, we use
that framework to investigate the discrepancies highlighted
above and their impact on ImageNet-trained models.

3. From Label Validation to Image

Classification

We begin our study by obtaining a better understanding of
the ground truth for ImageNet data. To achieve this, rather
than asking annotators to validate a single proposed label
for an image (as in the original pipeline), we would like
them to classify the image, selecting all the relevant labels
for it. However, asking (untrained) annotators to choose
from among all 1,000 ImageNet classes is infeasible.

To circumvent this difficulty, our pipeline consists of two
phases, illustrated in Figure 2. First, we obtain a small set
of candidate labels for each image (Section 3.1). Then, we
present these labels to annotators and ask them to select
one of them for each distinct object using what we call the
CLASSIFY task (Section 3.2). These phases are described
in detail below, with additional information in Appendix B.

For our analysis, we use 10,000 images from the ImageNet
validation set—i.e., 10 randomly selected images per class.
Note that since the ImageNet training and validation sets
were created using the same procedure, analyzing the latter
is sufficient to understand systematic issues in that dataset.

3.1. Obtaining candidate labels

To ensure that the per-image annotation task is manageable,
we narrow down the candidate labels to a small set. To

this end, we first obtain potential labels for each image by
simply combining the top-5 predictions of 10 models from
different parts of the accuracy spectrum with the existing
ImageNet label (yields approximately 14 labels per image;
cf. Appendix Figure 11). Then, to prune this set further,
we reuse the ImageNet CONTAINS task—asking annotators
whether an image contains a particular class (Section 2)—
but for all potential labels. The outcome of this experiment
is a selection frequency for each image-label pair, i.e., the
fraction of annotators that selected the image as containing
the corresponding label.2 We find that, although images
were often selected as valid for many labels, relatively few
of these labels had high selection frequency (typically less
than five per image). Thus, restricting potential labels to
this smaller set of candidate labels allows us to hone in
on the most likely ones, while ensuring that the resulting
annotation task is still cognitively tractable.

3.2. Image classification via the CLASSIFY task

Once we have identified a small set of candidate labels for
each image, we present them to annotators to obtain fine-
grained label information. Specifically, we ask annotators
to identify: (a) all labels that correspond to objects in the
image, and (b) the label for the main object (according to
their judgment). Crucially, we explicitly instruct annotators
to select only one label per distinct object—i.e., in case they
are confused about the correct label for a specific object, to
pick the one they consider most likely. Moreover, since Ima-
geNet contains classes that could describe parts or attributes
of a single physical entity (e.g., “car” and “car wheel”),
we ask annotators to treat these as distinct objects, since
they are not mutually exclusive. We present each image
to multiple annotators and then aggregate their responses
(per-image) as described below. In the rest of the paper, we
refer to this annotation setup as the CLASSIFY task.

Identifying the main label and number of objects.

From each annotator’s response, we learn what they con-
sider to be the label of the main object, as well as how many
objects they think are present in the image. By aggregating
these two quantities based on a majority vote over annota-
tors, we can get an estimate of the number of objects in the
image, as well as of the main label for that image.

Partitioning labels into objects. Different annotators
may choose different labels for the same object and thus
we need to map their selections to a single set of distinct
objects. To illustrate this, consider an image of a soccer
ball and a terrier, where one annotator has selected “Scotch

2Note that this notion of selection frequency (introduced
by Recht et al. (2019)) essentially mimics the majority voting
process used to create ImageNet (cf. Section 2), but using a fixed
number of annotators per grid instead of an adaptive process.
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Since this exact process is part of our annotation pipeline
Section 3.1, we can analyze these results directly.

We find that often, under this task setup, annotators collec-

tively deem multiple labels as valid for a single image—i.e.,
labels other that the ImageNet label are also validated by
an independent group of annotators. In fact, for nearly 40%
of the images, there exists another label that is selected as
valid (in isolation) at least as often as the ImageNet label
(cf. Figure 7a). Crucially, this does not only occur when
multiple objects are present in the image—annotators often
validate as many as 10 classes in isolation even for single-
object images (cf. Figure 22a). Thus, even for images where
a single ground truth label exists, the ImageNet filtering
pipeline may fail to elicit this label from annotators.4

Moreover, we find that this confusion is not just a conse-
quence of annotator non-expertise, but also of the task setup
itself. If instead of asking annotators to judge the validity of
a label in isolation, we ask them to choose among all labels
simultaneously (i.e., via the CLASSIFY task), they select
substantially fewer labels—see Appendix Figure 22b.

These findings highlight how sensitive annotators are
to seemingly insignificant aspects of the data collection
pipeline. It also indicates that ImageNet labels may not
have be vetted as carefully as one might expect. Annotators
might have been unable to correct errors, and consequently,
ImageNet labels may be determined, to a large extent, by
the fidelity (and biases) of the automated retrieval process.

Confusing class pairs. We find that there are several pairs
of ImageNet classes that annotators have trouble telling
apart. When asked to judge each label in isolation, inde-
pendent groups of annotators deem both labels as valid for
images of either ImageNet class—Appendix Figure 23. On
some of these classes, models still perform quite well—
likely because the search results from the automated image
retrieval process do not overlap significantly. However, on
others, even state-of-the-art models have poor accuracy (be-
low 40%)—see Figure 7b. In fact, we can attribute this poor
performance to model confusion within these pairs—none

of the models we examined can distinguish these classes
much better than chance.

The apparent performance barrier on these classes could
be due to an inherent overlap in their image distributions
within ImageNet. It is likely that automated image retrieval
caused mixups in the images of the two classes, which went

4 Note that our selection frequency estimates for ImageNet
labels may be biased (underestimates) (Engstrom et al., 2020)
as these specific pairs have already been filtered during dataset
creation based on their selection frequency. However, we can
effectively ignore this bias since: a) our results are robust to varying
the number of annotators (Appendix C.2), b) most of our results
are based on the CLASSIFY task for which this bias does not apply.

undetected during data filtering. We find that several of these
classes are semantically similar—e.g., “rifle” and “assault
rifle”—making annotators prone to validate incorrect images
in the CONTAINS task. In some cases, we also identify errors
in the annotation pipeline—overlaps in class names (e.g.,
“maillot” and “maillot, tank suit”) and Wikipedia links (e.g.,
“laptop” vs. “notebook” computer).

Overall, the existence of such ambiguous classes highlights
that choosing labels that are in principle disjoint (e.g., using
WordNet) is not sufficient to ensure that the resulting dataset
has non-overlapping classes—when using noisy validation
pipelines, we need to factor human confusion into class
selection and description. Further, given that ImageNet
already contains such overlapping classes, it is natural to
wonder whether accuracy on these classes can be improved
(without overfitting to the test set idiosyncrasies).

5. Beyond Test Accuracy:

Human-In-The-Loop Model Evaluation

Our analysis of the ImageNet dataset so far makes it clear
that using top-1 accuracy as a standalone performance met-
ric can be problematic—issues such as multi-object images
and ambiguous classes make ImageNet labels an imperfect
proxy for the ground truth. Taking these issues into consid-
eration, we now turn our focus to augmenting the model
evaluation toolkit with metrics that are better aligned with
the underlying goal of object recognition.

5.1. Human assessment of model predictions

To gain a broader understanding of model performance we
start by directly employing annotators to judge model pre-
dictions. Concretely, we want to understand whether more
accurate models make higher-quality predictions, i.e., if the
labels they predict (including the erroneous ones) also ap-
pear more reasonable to humans. Intuitively, this would
capture improvements in models that might not be reflected
in accuracy alone (e.g., predicting an incorrect, yet similar
animal breed), while also accounting for imperfections in
ImageNet labels. Specifically, given a model prediction for
a specific image, we measure:

• Selection frequency of the prediction: How often an-
notators deem the predicted label as being present in
the image. We can compute these selection frequen-
cies as we repeated the CONTAINS task using model
predictions as the proposed image label. This metric
accommodates for multi-object images or ambiguous
classes as annotators will confirm any valid label.

• Accuracy based on main label annotation: How fre-
quently the prediction matches the main label for the
image, as determined using on the CLASSIFY task.
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Figure 7: (a) Number of labels deemed valid (based on varying thresholds) by independent groups of annotators for a single
image under the ImageNet filtering pipeline. For more than 70% of images, annotators collectively select another label as
valid at least half as often as they select the ImageNet label (leftmost). (b) Model progress on ambiguous class pairs has
been largely stagnant—possibly due to substantial overlap in the image distributions of these classes within ImageNet. In
fact, models are unable to distinguish between these pairs better than chance (cf. pairwise accuracy).

This metric penalizes models that exploit dataset bi-
ases to predict ImageNet labels even when these do not
correspond to the most prominent image object. At the
same time, it only measures accuracy as non-experts
perceive it—if annotators cannot distinguish between
two classes (e.g., different dog breeds), models can do
no better than random chance on this metric, even if
their predictions actually match the ground truth.

Contextualizing model progress. We start by comparing
models with varying top-1 accuracy based on these metrics.
We find that models have been consistently improving on
this axis (cf., Figure 8), more than what accuracy alone
would explain (i.e., more predictions matching the ImageNet
label). Crucially, the predictions of state-of-the-art models
have, on average, gotten quite close to ImageNet labels.
Annotators are almost equally likely to select the predicted
label as valid (or as the main object) for the image as the
ImageNet label. This indicates that model predictions might
be closer to what non-expert annotators can recognize as the
ground truth than accuracy alone suggests.

This does not imply, however, that further improvements
in ImageNet accuracy will not translate into progress on
the underlying task. After all, for many images, ImageNet
labels could capture the ground truth and annotators simply
lack the expertise to make such distinctions. However, the
results in Figure 8 hint at a different issue: we may no
longer by able to easily identify (e.g., using crowd-sourcing)
the extent to which further gains in accuracy correspond to
actual improvements, as opposed to models simply fitting
to specifics of the ImageNet distribution.

Incorrect predictions. We can also use these metrics to
examine model mistakes, i.e., predictions that deviate from

Figure 8: Annotator assessment of model predictions—we
measure how often annotators select the predicted/ImageNet
label: (top) as contained in the image (selection frequency

[SF] from Section 3.1); (bottom) to denote the main image
object (cf. Section 3.2) (shading denotes 95% confidence
intervals via bootstrapping). Even though state-of-the-art
models have imperfect top-1 accuracy, their predictions
are, on average, almost indistinguishable according to (non-
expert) annotators from the ImageNet labels themselves.

the ImageNet label. Specifically, we can treat human assess-
ment of these labels (w.r.t. the metrics above) as a proxy for
how much these predictions deviate from the ground truth.
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We observe that more accurate ImageNet models make pro-
gressively fewer mistakes that would be judged by humans
as such (i.e., with low selection frequency)—see Figure 9.
At the same time, for all models, a large fraction of the
incorrect predictions are actually valid according to anno-
tators, potentially corresponding to multi-object images or
ambiguous classes. From a different perspective, this also
highlights the pitfalls of using selection frequency as the
sole filtering criterion during dataset creation. Even images
which high selection frequency (w.r.t. dataset label) may be
ambiguous, posing unintended challenges for models (cf.
Appendix Figure 25).

Figure 9: Distribution of annotator selection frequencies
(cf. Section 3.1) for model predictions deemed incorrect
w.r.t. the ImageNet label. Models that are more accurate also
make fewer mistakes with low annotator selection frequency
(for the corresponding image-label pair).

5.2. Human vs. model performance

Aside from using humans to judge the quality of model
predictions, we can also directly compare the model pre-
diction for an image to that made by humans. For instance,
we can compare the confusion matrices for models and hu-
mans, treating the annotator specified main label as a human
prediction. (Note that, this prediction only matches the Im-
ageNet label on about 80% of the images, despite the fact
that annotators are presented with only a few relevant labels,
which include the ImageNet label, to choose from—see Fig-
ure 8.) Instead of visualizing the full 1000-by-1000 matrices
(cf. Appendix C.4), we partition ImageNet classes into 11
superclasses (cf. Appendix A.1.1), allowing us to study
confusions between and within superclasses separately.

In the cross-superclass confusion matrix (cf. Figure 10a),
we observe a block where both human and model confusion
is high. This is particularly striking given that these super-
classes are semantically quite different. To understand these
confusions better, we compare the superclass confusion ma-
trix with the superclass co-occurrence matrix, i.e., how often
an image of superclass i (w.r.t. the ImageNet label) also
contains an object of superclass j according to annotators
(cf. Figure 10b). Indeed, we find that the two matrices

are quite aligned—indicating that model and human confu-
sion between superclasses might be driven largely by the
existence of multi-object images. We also observe that the
intra-superclass confusions are more significant for humans
compared to models (cf. Appendix Figure 30), particularly
on fine-grained classes (e.g., dog breeds), which could be a
consequence of the issues identified in Section 4.2.

6. Related Work

Identifying ImageNet issues. Some of the ImageNet la-
bel issues we study have already been identified in prior
work. Specifically, Recht et al. (2019); Northcutt et al.
(2019); Hooker et al. (2019) identify class pairs that might
be inherently ambiguous (similar to our findings in Sec-
tion 4.2). Moreover, the existence of cluttered images was
discussed by Russakovsky et al. (2015) as an indication
that the dataset mirrors real-world conditions—and hence
deemed desirable—and by Stock & Cisse (2018); North-
cutt et al. (2019); Hooker et al. (2019) as a source of label
ambiguity (similar to our findings in Section 4.1). Addi-
tionally, Stock & Cisse (2018) perform human-based model
evaluation, with similar conclusions to our experiments in
Section 5.1. Finally, Stock & Cisse (2018) use manual data
collection and saliency maps to identify racial biases that
models rely on to make their predictions. However, the
focus of all these studies is not on characterizing these label-
ing issues in ImageNet—as such they only provide coarse
estimates for their pervasiveness. In particular, none of
these studies evaluate how these issues affect model perfor-
mance, nor do they obtain annotations that are sufficient (in
granularity and scale) to draw per-class conclusions.

Human performance on ImageNet. Studying human ac-
curacy on the ImageNet classification task is challenging,
mainly due to the fact that annotators need to be mindful of
all the 1000 ImageNet classes that are potentially present.
The original ImageNet challenge paper contained results
for two trained annotators (Russakovsky et al., 2015), while
Karpathy (2014) reports result based on evaluating them-
selves. An MTurk study using a subset of the ImageNet
classes is presented in Dodge & Karam (2017). In contrast
to these studies, we are not interested in estimating human
accuracy on ImageNet but rather obtain fine-grained im-
age annotations. Hence, we only ask annotators to select
between a few labels per image.

Generalization beyond the test set. The design of large-
scale vision datasets that allow generalization beyond the
narrow benchmark task has long been a topic of discus-
sion (Ponce et al., 2006; Everingham et al., 2010; Torralba
& Efros, 2011; Russakovsky et al., 2015). Torralba & Efros
(2011) proposed evaluating cross-dataset generalization—
testing the performance of a model on a different dataset
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(a) Confusion matrices (b) Co-occurrence matrix

Figure 10: Similarity between model and human predictions (indicated by main object selection in the CONTAINS task):
(a) Model (ResNet-50) and human confusion matrices on 11 ImageNet superclasses (cf. Section A.1.1). (b) Superclass
co-occurrence matrix: how likely specific pairs of superclasses are to occur together (using annotations from Section 3.2).

with a similar class structure. Recht et al. (2019) focused on
reproducing the ImageNet validation set process to measure
potential adaptive overfitting or over-reliance on the exact
dataset creation conditions. Kornblith et al. (2019) investi-
gated the extent to which better ImageNet performance im-
plies better feature extraction as measured by the suitability
of internal model representations for transfer learning (Don-
ahue et al., 2014; Sharif Razavian et al., 2014).

Adversarial testing. Beyond the aforementioned benign
shifts in test distribution, there has been significant work on
measuring model performance from a worst-case perspec-
tive. Biggio et al. (2013) and Szegedy et al. (2014) demon-
strate that models are extremely brittle to imperceptible
pixel-wise perturbations. Similar, yet less severe, brittleness
can be observed for a range of natural perturbations, such
as: worst-case spatial transformation (e.g, rotations) (Fawzi
& Frossard, 2015; Engstrom et al., 2019), common image
corruptions (Hendrycks & Dietterich, 2019), adversarial tex-
ture manipulation (Geirhos et al., 2019), adversarial data
collection (Barbu et al., 2019; Hendrycks et al., 2019).

7. Conclusion

In this paper, we take a step towards understanding how
closely widely-used vision benchmarks align with the real-
world tasks they are meant to approximate, focusing on
the ImageNet dataset. Our analysis uncovers systematic—
and fairly pervasive—ways in which ImageNet annotations
deviate from the ground truth, such as the prevalence of
images with multiple valid labels, and ambiguous classes.

Crucially, we find that these deviations significantly impact
what ImageNet-trained models learn, and how we perceive

model progress. For instance, top-1 accuracy often under-
estimates the performance of models by unduly penalizing
them for predicting a different, but also valid, image la-
bel. Further, current models seem to derive part of their
accuracy from exploiting ImageNet-specific features that
humans are oblivious to, and hence may not generalize well
to the real world. Such issues make it clear that measuring
accuracy alone may give us only an imperfect view of model
performance on the motivating object recognition task.

Taking a step towards evaluation metrics that circumvent
these issues, we design a framework that enables us to utilize
crowdsourced annotation to directly judge the correctness of
model predictions. On the positive side, we find that models
that are more accurate on ImageNet also tend to be more
human-aligned in their errors. In fact, on average, annotators
turn out to be unable to distinguish the (potentially incorrect)
predictions of state-of-the-art models from the ImageNet
labels. While this might be reassuring, it also indicates
that we are at a point where we cannot easily gauge (e.g.,
via simple crowd-sourcing) whether further progress on the
ImageNet benchmark is meaningful, or is simply a result of
overfitting to this benchmarks’ idiosyncrasies.

More broadly, our findings highlight an inherent conflict
between the goal of building large and diverse datasets that
capture complexities of the real world and the need for their
annotation process to be scalable. Indeed, in the context of
ImageNet, we found that some of the very reasons that make
the collection pipeline scalable (e.g., the CONTAINS task,
crowdsourced annotation) were at the core of systematic
annotation issues. We believe that developing annotation
pipelines that better capture the ground truth while remain-
ing scalable is an important avenue for future research.
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