
Multigrid Neural Memory

Tri Huynh 1 Michael Maire 1 Matthew R. Walter 2

Abstract

We introduce a novel approach to endowing neu-
ral networks with emergent, long-term, large-
scale memory. Distinct from strategies that
connect neural networks to external memory
banks via intricately crafted controllers and hand-
designed attentional mechanisms, our memory is
internal, distributed, co-located alongside com-
putation, and implicitly addressed, while being
drastically simpler than prior efforts. Architect-
ing networks with multigrid structure and con-
nectivity, while distributing memory cells along-
side computation throughout this topology, we
observe the emergence of coherent memory sub-
systems. Our hierarchical spatial organization,
parameterized convolutionally, permits efficient
instantiation of large-capacity memories, while
multigrid topology provides short internal rout-
ing pathways, allowing convolutional networks
to efficiently approximate the behavior of fully
connected networks. Such networks have an im-
plicit capacity for internal attention; augmented
with memory, they learn to read and write specific
memory locations in a dynamic data-dependent
manner. We demonstrate these capabilities on ex-
ploration and mapping tasks, where our network
is able to self-organize and retain long-term mem-
ory for trajectories of thousands of time steps. On
tasks decoupled from any notion of spatial ge-
ometry: sorting, associative recall, and question
answering, our design functions as a truly generic
memory and yields excellent results.

1. Introduction
Memory, in the form of generic, high-capacity, long-term
storage, is likely to play a critical role in expanding neural
networks to new application domains. A neural memory
subsystem with such properties could be transformative—
pushing neural networks within grasp of tasks traditionally

1University of Chicago, Chicago, IL, USA 2Toyota Technolog-
ical Institute at Chicago, Chicago, IL, USA. Correspondence to:
Tri Huynh <trihuynh@uchicago.edu>.

associated with general intelligence and an extended se-
quence of reasoning steps. Development of architectures
for integrating memory units with neural networks spans a
good portion of the history of neural networks themselves
(e.g., from LSTMs (Hochreiter & Schmidhuber, 1997) to
the recent Neural Turing Machines (NTMs) (Graves et al.,
2014)). Yet, while useful, none has elevated neural networks
to be capable of learning from and processing data on size
and time scales commensurate with traditional computing
systems. Recent successes of deep neural networks, though
dramatic, are focused on tasks, such as visual perception or
natural language translation, with relatively short latency—
e.g., hundreds of steps, often the depth of the network itself.

We present a network architecture that allows memory sub-
systems to emerge as a byproduct of training simple com-
ponents. Though our networks appear structurally uniform,
they learn to behave like coherent large-scale memories,
internally coordinating a strategy for directing reads and
writes to specific layers and spatial locations therein. As
an analogy, a convolutional neural network (CNN), tasked
with classifying images, may coordinate and specialize its
internal layers for extracting useful visual representations.
Our networks, trained for a task requiring long-term mem-
ory, do the same with respect to memory: they self-organize
their internal layers into a large-scale memory store. We ac-
complish this using only generic components; our networks
are comprised of LSTM cells and convolutional operations.
Yet, our networks learn to master tasks that are beyond the
abilities of traditional CNNs or LSTMs.

Multigrid organization, imposed on both spatial layout
and connectivity, is the design principle that endows net-
works with this qualitatively new capacity for forming self-
organized memory subsystems. Compared to almost all
existing networks, a multigrid wiring pattern provides an
exponentially more efficient routing topology among local
components embedded within it. Ke et al. (2017) implement
a multigrid variant of CNNs, demonstrating that efficient
routing capacity enables the network to learn tasks that
require attentional behavior. We distribute memory cells
throughout such a network, and observe that this implicit
capacity for attention translates into an implicit capacity for
attention over memory read and write locations. Learned pa-
rameters govern how information flows through the network,
what memory cells to update, and how to update them.

ar
X

iv
:1

90
6.

05
94

8v
4

 [c
s.L

G
]

15
 A

ug
 2

02
0

Multigrid Neural Memory

Multigrid Convolutional Layer

x2

x1

x0

X = {x0, x1, x2}

c
o
n
v

c
o
n
v

c
o
n
v

y2

y1

y0

Y = {y0, y1, y2}
Multigrid Memory Layer

hx
2,t

cx
2,t

hx
1,t

cx
1,t

hx
0,t

cx
0,t

Xt

conv - LSTM

{h, c}y

2,t−1

conv - LSTM

{h, c}y

1,t−1

conv - LSTM

{h, c}y

0,t−1

h
y

2,t

c
y

2,t

h
y

1,t

c
y

1,t

h
y

0,t

c
y

0,t

Yt

at (input)

Multigrid Memory Network

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

Yt−1

Yt

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

z3,t

z2,t

z1,t

z0,t

Figure 1. Multigrid memory architecture. Top Left: A multigrid convolutional layer (Ke et al., 2017) transforms input pyramid X ,
containing activation tensors {x0, x1, x2}, into output pyramid Y via learned filter sets that act across the concatenated representations of
neighboring spatial scales. Top Right: We design an analogous variant of the convolutional LSTM (Xingjian et al., 2015), in which X
and Y are indexed by time and encapsulate LSTM internals, i.e., memory cells (c) and hidden states (h). Bottom: Connecting many such
layers, both in sequence and across time, yields a multigrid mesh capable of routing input at into a much larger memory space, updating a
distributed memory representation, and providing multiple read-out pathways (i.e., z0,t, z1,t, z2,t, z3,t, or any combination thereof).

Our design philosophy starkly contrasts with recent neural
memory architectures, including NTMs and the subsequent
Differentiable Neural Computer (DNC) (Graves et al., 2016).
These prior approaches isolate memory in an external stor-
age bank, accessed via explicit addressing modes driven by
custom hand-crafted controllers; they graft a von Neumann
memory model onto a neural network. Instead, we inter-
twine memory units throughout the interior of a deep net-
work. Memory is a first-class citizen, rather than a separate
data store accessed via a special controller. We introduce a
new kind of network layer—a multigrid memory layer—and
use it as a stackable building block to create deep memory
networks. Contrasting with simpler LSTMs, our memory
is truly deep; accessing an arbitrary memory location re-
quires passing through several layers. Figure 1 provides a
visualization; we defer the full details to Section 3.

There are major benefits to our design strategy, in particular:

• Distributed, co-located memory and compute. Our
memory layers incorporate convolutional and LSTM
components. Stacking such layers, we create not only
a memory network, but also a generalization of both
CNNs and LSTMs. Our memory networks are standard
networks with additional capabilities. Section 4 shows
they can learn tasks that require performing classifica-
tion alongside storage and recall.

This unification also opens a design space for connect-
ing our memory networks to each other, as well as to
standard networks. Within a larger system, we can easily
plug the internal state of our memory into a standard
CNN—essentially granting that CNN read-only mem-

ory access. Sections 3 and 4 develop and experimentally
validate two such memory interface approaches.
• Scalability. Distributing storage over a multigrid hier-

archy allows us to instantiate large amounts of mem-
ory while remaining parameter-efficient. The low-level
mechanism underlying memory access is convolution,
and we inherit the parameter-sharing efficiencies of
CNNs. Our filters act across a spatially organized col-
lection of memory cells, rather than the spatial extent of
an image. Increasing feature channels per memory cell
costs parameters, but adding more cells incurs no such
cost, decoupling memory size from parameter count.
Connecting memory layers across spatial pyramid levels
allows for growing memory spatial extent exponentially
with network depth, while guaranteeing there is a path-
way between the network input and every memory unit.

• Simplicity: implicit addressing, emergent subsystems.
Our networks, once trained, behave like memory
subsystems—this is an emergent phenomenon. Our de-
sign contains no explicit address calculation unit, no con-
troller, and no attention mask computation. We take well
known building blocks (i.e., convolution and LSTMs),
wrap them in a multigrid wiring pattern, and achieve
capabilities superior to those of the DNC, a far more
complex design.

A diverse array of synthetic tasks serves as our experimental
testbed. Mapping and localization, an inherently spatial
task with relevance to robotics, is one focus. However,
we avoid only experimenting with tasks naturally fit to the
architecturally-induced biases of our memory networks. We

Multigrid Neural Memory

also train them to perform algorithmic tasks, as well as
natural language processing (NLP) tasks, previously used in
analyzing the capabilities of NTMs and DNCs. Throughout
all settings, DNC accuracy serves as a baseline. We observe
significant advantages for multigrid memory, including:
• Long-term retention. On spatial mapping tasks, our

network correctly remembers observations of an exter-
nal environment collected over paths thousands of time
steps long. Visualizing internal memory unit activations
reveals an interpretable representation and algorithmic
strategy our network learns for solving the problem. The
DNC, in contrast, fails to master these tasks.

• Generality. On tasks decoupled from any notion of
spatial geometry, such as associative recall or sorting
(algorithmic), or question answering (NLP), our memory
networks prove equally or more capable than DNCs.

Section 4 further elaborates on experimental results. Sec-
tion 5 discusses implications: multigrid connectivity is a
uniquely innovative design principle, as it allows qualita-
tively novel behaviors (attention) and subsystems (memory
stores) to emerge from training simple components.

2. Related Work
An extensive history of work seeks to grant neural networks
the ability to read and write memory (Das et al., 1992; 1993;
Mozer & Das, 1993; Zeng et al., 1994; Hölldobler et al.,
1997). Das et al. (1992) propose a neural pushdown automa-
ton, which performs differential push and pop operations
on external memory. Schmidhuber (1992) uses two feed-
forward networks: one produces context-dependent weights
for the second, whose weights may change quickly and can
be used as a form of memory. Schmidhuber (1993) pro-
poses memory addressing in the form of a “self-referential”
recurrent neural network that modifies its own weights.

Recurrent Long Short-Term Memory networks (LSTMs)
(Hochreiter & Schmidhuber, 1997) have enabled signifi-
cant progress on a variety of sequential prediction tasks,
including machine translation (Sutskever et al., 2014),
speech recognition (Graves et al., 2013), and image cap-
tioning (Donahue et al., 2017). LSTMs are Turing-
complete (Siegelmann & Sontag, 1995) and are, in principle,
capable of context-dependent storage and retrieval over long
time periods (Hermans & Schrauwen, 2013). However, ca-
pacity for long-term read-write is sensitive to the training
procedure (Collins et al., 2017) and is limited in practice.

Grid LSTMs (Kalchbrenner et al., 2015) arrange LSTM
cells in a 2D or 3D grid, placing recurrent links along all
axes of the grid. This sense of grid differs from our usage
of multigrid, as the latter refers to links across a multiscale
spatial layout. In Kalchbrenner et al. (2015)’s terminology,
our multigrid memory networks are not Grid LSTMs, but
are a variant of Stacked LSTMs (Graves et al., 2013).

To improve the long-term read-write abilities of recurrent
networks, several modifications have been proposed. These
include differentiable attention mechanisms (Graves, 2013;
Bahdanau et al., 2014; Mnih et al., 2014; Xu et al., 2015) that
provide a form of content-based memory addressing, pointer
networks (Vinyals et al., 2015) that “point to” rather than
blend inputs, and architectures that enforce independence
among neurons within each layer (Li et al., 2018).

A number of methods augment the short- and long-term
memory internal to recurrent networks with external “work-
ing” memory, in order to realize differentiable programming
architectures that can learn to model and execute various
programs (Graves et al., 2014; 2016; Weston et al., 2015b;
Sukhbaatar et al., 2015; Joulin & Mikolov, 2015; Reed &
de Freitas, 2015; Grefenstette et al., 2015; Kurach et al.,
2015). Unlike our approach, these methods explicitly decou-
ple memory from computation, mimicking a standard com-
puter architecture. A neural controller (analogous to a CPU)
interfaces with specialized external memory (e.g., random-
access memory or tapes).

The Neural Turing Machine (Graves et al., 2014) augments
neural networks with a hand-designed attention mechanism
to read from and write to external memory in a differen-
tiable fashion. This enables the NTM to learn to perform
various algorithmic tasks, including copying, sorting, and as-
sociative recall. The Differential Neural Computer (Graves
et al., 2016) improves upon the NTM with support for dy-
namic memory allocation and additional memory addressing
modes. Without a sparsifying approximation, DNC runtime
grows quadratically with memory due to the need to main-
tain the temporal link matrix. Our architecture has no such
overhead, nor does it require maintaining any auxiliary state.

Other methods enhance recurrent layers with differentiable
forms of a restricted class of memory structures, includ-
ing stacks, queues, and dequeues (Grefenstette et al., 2015;
Joulin & Mikolov, 2015). Gemici et al. (2017) augment
structured dynamic models for temporal processes with var-
ious external memory architectures (Graves et al., 2014;
2016; Santoro et al., 2016).

Similar memory-explicit architectures have been proposed
for deep reinforcement learning (RL) tasks. While deep RL
has been applied to several challenging domains (Mnih et al.,
2015; Hausknecht & Stone, 2015; Levine et al., 2016), most
approaches reason over short-term state representations,
which limits their ability to deal with partial observabil-
ity inherent in many tasks. Several methods augment deep
RL architectures with external memory to facilitate long-
term reasoning. Oh et al. (2016) maintain a fixed number
of recent states in memory and then read from the memory
using a soft attention operation. Parisotto & Salakhutdinov
(2018) propose a specialized write operator, together with
a hand-designed 2D memory structure, both specifically

Multigrid Neural Memory

crafted for navigation in maze-like environments.

Rather than learn when to write to memory (e.g., as done by
NTM and DNC), Pritzel et al. (2017) continuously write the
experience of an RL agent to a dictionary-like memory mod-
ule queried in a key-based fashion (permitting large mem-
ories). Building on this framework, Fraccaro et al. (2018)
augment a generative temporal model with a specialized
form of spatial memory that exploits privileged information,
including an explicit representation of the agent’s position.

Though we experiment with RL, our memory implementa-
tion contrasts with this past work. Our multigrid memory
architecture jointly couples computation with memory read
and write operations, and learns how to use a generic mem-
ory structure rather than one specialized to a particular task.

3. Multigrid Memory Architectures
A common approach to endowing neural networks with
long-term memory builds memory addressing upon explicit
attention mechanisms. Such attention mechanisms, indepen-
dent of memory, are hugely influential in natural language
processing (Vaswani et al., 2017). NTMs (Graves et al.,
2014) and DNCs (Graves et al., 2016) address memory by
explicitly computing a soft attention mask over memory
locations. This leads to a design reliant on an external mem-
ory controller, which produces and then applies that mask
when reading from or writing to a separate memory bank.

We craft a memory network without such strict division into
modules. Instead, we propose a structurally uniform archi-
tecture that generalizes modern convolutional and recurrent
designs by embedding memory cells within the feed-forward
computational flow of a deep network. Convolutional neural
networks and LSTMs (specifically, the convolutional LSTM
variety (Xingjian et al., 2015)) exist as strict subsets of the
full connection set comprising our multigrid memory net-
work. We even encapsulate modern residual networks (He
et al., 2016). Though omitted from diagrams (e.g., Figure 1)
for the sake of clarity, we utilize residual connections link-
ing the inputs of subsequent layers across the depth (not
time) dimension of our memory networks.

In our design, memory addressing is implicit rather than
explicit. We build upon an implicit capacity for attentional
behavior inherent in a specific kind of network architecture.
Ke et al. (2017) propose a multigrid variant of both standard
CNNs and residual networks (ResNets). While their primary
experiments concern image classification, they also present
a striking result on a synthetic image-to-image transforma-
tion task: multigrid CNNs (and multigrid ResNets) are capa-
ble of learning to emulate attentional behavior. Their anal-
ysis reveals that the multigrid connection structure is both
essential to and sufficient for enabling this phenomenon.

The underlying cause is that bi-directional connections

across a scale-space hierarchy (Figure 1, left) create ex-
ponentially shorter signalling pathways between units at
different locations on the spatial grid. Specifically, coarse-
to-fine and fine-to-coarse connections between pyramids in
subsequent layers allow a signal to hop up pyramid levels
and back down again (and vice-versa). As a consequence,
pathways connect any neuron in a given layer with every
neuron located only O(log(S)) layers deeper, where S is
the spatial extent (diameter) of the highest-resolution grid
(see Appendix A for a detailed analysis). In a standard con-
volutional network, this takes O(S) layers. These shorter
pathways enable our convolutional architecture to approxi-
mate the behavior of a fully-connected network.

By replacing convolutional layers with convolutional
LSTMs (Xingjian et al., 2015), we convert the inherent
attentional capacity of multigrid CNNs into an inherent ca-
pacity for distributed memory addressing. Grid levels no
longer correspond to operations on a multiresolution image
representation, but instead correspond to accessing smaller
or larger storage banks within a distributed memory hierar-
chy. Dynamic routing across scale space (in the multigrid
CNN) now corresponds to dynamic routing into different
regions of memory, according to a learned strategy.

3.1. Multigrid Memory Layer
Figure 1 diagrams both the multigrid convolutional layer of
Ke et al. (2017) and our corresponding multigrid memory
(MG-conv-LSTM) layer. Activations at a particular depth
in our network consist of a pyramid Xt = {(hxj,t, cxj,t)},
where j indexes the pyramid level, t indexes time, and x
is the layer. hx and cx denote the hidden state and mem-
ory cell contents of a convolutional LSTM (Xingjian et al.,
2015), respectively. Following the construction of Ke et al.
(2017), states hx at neighboring scales are resized and con-
catenated, with the resulting tensors fed as inputs to the
corresponding scale-specific convolutional LSTM units in
the next multigrid layer. The state associated with a conv-
LSTM unit at a particular layer and level (hyj,t, c

y
j,t) is com-

puted from memory: hyj,t−1 and cyj,t−1, and input tensor:
↑hxj−1,t ⊕ hxj,t ⊕ ↓hxj+1,t, where ↑, ↓, and ⊕ denote upsam-
pling, downsampling, and concatenation. Specifically, a
multigrid memory layer (Figure 1, top right) operates as:
Hx

j,t := (↑hx
j−1,t)⊕ (hx

j,t)⊕ (↓hx
j+1,t)

ij,t := σ(W xi
j ∗Hx

j,t +Whi
j ∗ hy

j,t−1 +W ci
j ◦ cyj,t−1 + bij)

fj,t := σ(W xf
j ∗Hx

j,t +Whf
j ∗ hy

j,t−1 +W cf
j ◦ c

y
j,t−1 + bfj)

cyj,t := fj,t ◦ cyj,t−1+ ij,t ◦ tanh(W xc
j ∗Hx

j,t+W
hc
j ∗ hy

j,t−1+ bcj)

oyj,t := σ(W xo
j ∗Hx

j,t +Who
j ∗ hy

j,t−1 +W co
j ◦ cyj,t + boj)

hy
j,t := oyj,t ◦ tanh(c

y
j,t)

Superscripts denote variable roles (e.g., layer x or y, and/or
a particular parameter subtype for weights or biases). Sub-
scripts index pyramid level j and time t, ∗ denotes con-
volution, and ◦ the Hadamard product. Computation re-

Multigrid Neural Memory

sembles Xingjian et al. (2015), with additional input tensor
assembly, and repetition over output pyramid levels j. If
a particular input pyramid level is not present in the archi-
tecture, it is dropped from the concatenation in the first
step. Like Ke et al. (2017), downsampling (↓) includes max-
pooling. We utilize a two-dimensional memory geometry,
and change resolution by a factor of two in each spatial
dimension when moving up or down a pyramid level.

Connecting many such memory layers yields a memory net-
work or distributed memory mesh, as shown in the bottom
diagram of Figure 1. Note that a single time increment
(from t− 1 to t) involves running an entire forward pass of
the network, propagating the input signal at to the deepest
layer zt. Though not drawn here, we also incorporate batch
normalization layers and residual connections along grids
of corresponding resolution (i.e., from hxj,t to hyj,t). These
details mirror Ke et al. (2017). The convolutional nature of
the multigrid memory architecture, together with its routing
capability provides parameter-efficient implicit addressing
of a scalable memory space.

3.2. Memory Interfaces
As our multigrid memory networks are multigrid CNNs
plus internal memory units, we are able to connect them to
other neural network modules as freely and flexibly as one
can do with CNNs. Figure 2 diagrams a few such interface
architectures, which we experimentally explore in Section 4.

In Figure 2 (top), multiple “threads”, two readers and one
writer, simultaneously access a shared multigrid memory.
The memory itself is located within the writer network
(blue), which is structured as a deep multigrid convolutional-
LSTM. The reader networks (red and orange), are merely
multigrid CNNs, containing no internal storage, but observ-
ing the hidden state of the multigrid memory network.

Figure 2 (bottom) diagrams a deep multigrid analogue of a
standard paired recurrent encoder and decoder. This design
substantially expands the amount of memory that can be
manipulated when learning sequence-to-sequence tasks.

4. Experiments
We evaluate our multigrid neural memory architecture on
a diverse set of domains. We begin with a reinforcement
learning-based navigation task, in which memory provides
a representation of the environment (i.e., a map). To demon-
strate the generalizability of our memory architecture on
domains decoupled from spatial geometry, we also con-
sider various algorithmic and NLP tasks previously used to
evaluate the performance of NTMs and DNCs.

4.1. Mapping & Localization

We first consider a navigation problem, in which an agent
explores a priori unknown environments with access to only

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

Reader

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

Reader

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

Writer

xt

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

Encoder

yt−1 yt

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

Decoder

copy

memory state

E

x0

E

x1

E

x2

E

x3

E

x4

E

x5

copy

D

∅

y0

D

y0

y1

D

y1

y2

D

y2

y3

D

y3

y4

D

y4

y5

Figure 2. Memory interfaces. Top: Multiple readers (red, or-
ange) and a single writer simultaneously manipulate a multigrid
memory. Readers are multigrid CNNs; each convolutional layer
views the hidden state of the corresponding grid in memory by
concatenating it as an additional input. Bottom: Distinct encoder
and decoder networks, each structured as a deep multigrid mem-
ory mesh, cooperate to perform a sequence-to-sequence task. We
initialize the memory pyramid (LSTM internals) of each decoder
layer by copying it from the corresponding encoder layer.

observations of its immediate surroundings. Effective navi-
gation requires maintaining a consistent representation of
the environment (i.e., a map). Using memory as a form of
map, an agent must learn where and when to perform write
and read operations as it moves, while retaining the map over
long time periods. This task mimics partially observable
spatial navigation scenarios considered by memory-based
deep reinforcement learning (RL) frameworks.

Problem Setup: The agent navigates an unknown n×n 2D
maze and observes only the local m × m grid (m � n)
centered at the agent’s position. It has no knowledge of its
absolute position. Actions consist of one-step motion in the
four cardinal directions. While navigating, we query the
network with a randomly chosen, previously seen k × k
patch (m ≤ k � n) and ask it to identify every location
matching that patch in the explored map. See Figure 3.

Multigrid Architecture: We use a deep multigrid network
with multigrid memory and multigrid CNN subcomponents
(Figure 3). Our memory (writer subnet) consists of seven
MG-conv-LSTM layers, with pyramid spatial scales pro-

Multigrid Neural Memory

observation

query

World Map

Agent-Relative,

Partially Explored Map

x2 x2

M
G

-c
o

n
v

x2

M
G

-c
o

n
v

x1

M
G

-c
o

n
v

x2

M
G

-c
o

n
v

x2

M
G

-c
o

n
v

x2

M
G

-c
o

n
v

M
G

-c
o

n
v

state-value

FC

actions

FC

loss

Reward

Reader

M
G

-c
o

n
v

M
G

-c
o

n
v

M
G

-c
o

n
v

M
G

-c
o

n
v

M
G

-c
o

n
v

M
G

-c
o

n
v

M
G

-c
o

n
v

M
G

-c
o

n
v

Agent-Relative

Groundtruth Locations

lossReader

M
G

-c
o

n
v

-L
S

T
M

M
G

-c
o

n
v

-L
S

T
M

M
G

-c
o

n
v

-L
S

T
M

M
G

-c
o

n
v

-L
S

T
M

Pyramid LSTM Cell State
(deepest layer shown)

Writer

Figure 3. Mapping, localization, and exploration. An agent is comprised of a deep multigrid memory, and two deep multigrid CNNs
(query and policy subnetworks), which have memory read access. Navigating a maze, the agent makes a local observation at each time
step, and chooses a next action, receiving reward for exploring unseen areas. Given a random local patch, the query subnet must report all
previously observed maze locations whose local observations match that patch. Subnet colors reflect those in Figure 2.

Observation: 3×3, Query: 3×3 Observation: 3×3, Query: 9×9

Figure 4. Memory Visualization. Memory contents (hidden
states {ht} on deepest, highest-resolution grid) mirror the map ex-
plored with spiral motion (top), vividly showing the interpretable
strategy for self-organizing, implicit attentional addressing (read-
ing/writing) of highly specific memory cells when training local-
ization tasks, without having hand-designed attention mechanisms.

gressively increasing from 3 × 3 to 48 × 48. The reader,
structured similarly, has an output attached to its deepest
48 × 48 grid, and is tasked with answering localization
queries. Section 4.2 experiments with an additional reader
network that predicts actions, driving the agent to explore.

In order to understand the network’s ability to maintain a
“map” of the environment in memory, we first consider a
setting in which the agent executes a pre-defined navigation
policy, and evaluate its localization performance. We con-
sider different policies (spiraling outwards and a random
walk), different patch sizes for observation and localization
(3×3 or 9×9), as well as different trajectory (path) lengths.
We experiment in two regimes: small (8K) memory multi-
grid and DNC models, calibrated to the maximum trainable
DNC size, and larger memory multigrid and convolutional-
LSTM variants. We compare against:

• Differentiable Neural Computer (DNC) (Graves
et al., 2016): see details in Appendix C.

• Ablated MG: a multigrid architecture variant including

only the finest pyramid scale at each layer.

• ConvLSTM-deep: a network made of 23 convolutional-
LSTM layers, each on a 48× 48 grid, yielding the same
total grid count as our 7-layer multigrid network.

• ConvLSTM-thick: 7 layers of convolutional-LSTMs
acting on 48 × 48 grids. We set channel counts to the
sum of channels distributed across the corresponding
pyramid layer of our large multigrid network.

We train each architecture using RMSProp. We search over
learning rates in log scale from 10−2 to 10−4, and use 10−3

for multigrid and ConvLSTM, and 10−4 for DNC. We use
randomly generated maps for training and testing. Training
runs for 8 × 106 steps with batch size 32. Test set size is
5000 maps. We used a pixel-wise cross-entropy loss over
predicted and true locations (see Appendix B.1.2).

Table 1 reports performance in terms of localization accu-
racy on the test set. For the 25 × 25 world in which the
agent moves in a spiral (i.e., predictable) motion and the
observation and query are 3×3, our small multigrid network
achieves near perfect precision (99.33%), recall (99.02%),
and F-score (99.17%), while all baselines struggle. Both
ConvLSTM baselines fail to learn the task; simply stacking
convolutional-LSTM units does not work. DNC performs
similarly to Ablated MG in terms of precision (≈ 77.6%), at
the expense of a significant loss in recall (14.50%). Instead,
tasked with the simpler job of localization in a 15 × 15
world, the performance of the DNC improves, yet its scores
are still around 10% lower than those of multigrid on the
more challenging 25 × 25 environment. For the 25 × 25
map, efficiently addressing a large memory is required; the
DNC’s explicit attention strategy appears to fall behind our

Multigrid Neural Memory

25
Localization Loss (Random Walk)

2500

2000

1500

1000

500

0

lo
ss

3000

0 200
steps (x104)

400 600

2500

2000

1500

1000

500

0
lo

ss

3000

250

200

150

100

50

0

re
w

ar
d

300

350

0 2000
steps (x104)
4000 6000 8000 10000 0 2000

steps (x104)
4000 6000 8000 10000

Localization Loss (Exploration Policy) Exploration Reward

Figure 5. Generalization of localization. Fixing parameters after
training the query subnet on random motion (left), its localization
loss remains low while training the exploration policy (middle),
whose reward improves (right).

implicit routing mechanism. Trying to compensate by aug-
menting the DNC with more memory is difficult: without
a sparsifying approximation, the DNC’s temporal mem-
ory linkage matrix incurs a quadratic cost in memory size
(see Appendix C). Our architecture has no such overhead,
nor does it require maintaining auxiliary state. Even limit-
ing multigrid to 8K memory, it has no issue mastering the
25× 25 world.

Figure 4 visualizes the contents of the deepest and high-
resolution LSTM block within the multigrid memory net-
work of an agent moving in a spiral pattern. This memory
clearly mirrors the contents of the true map. The network
has learned a correct, and incidentally, an interpretable, pro-
cedure for addressing and writing memory.

In more complex settings for motion type and query size
(Table 1, bottom) our multigrid network remains accurate.
It even generalizes to motions different from those on which
it trained, including motion dictated by the learned policy
that we describe shortly. Notably, even with the very long
trajectory of 1500 time steps, our proposed architecture has
no issue retaining a large map memory.

4.2. Joint Exploration, Mapping, and Localization
We now consider a setting in which the agent learns an explo-
ration policy via reinforcement, on top of a fixed mapping
and localization network pre-trained with random walk mo-
tion. We implement the policy network as another multigrid
reader, and leverage the pre-trained mapping and localiza-
tion capabilities to learn a more effective policy.

We formulate exploration as a reinforcement learning prob-
lem: the agent receives a reward of 1 when visiting a new
space cell, −1 if it hits a wall, and 0 otherwise. We use
a discount factor γ = 0.99, and train the multigrid policy
network using A3C (Mnih et al., 2016).

Figure 5 (left) depicts the localization loss while pre-training
the mapping and localization subnets. Freezing these sub-
nets, we see that localization remains reliable (Figure 5,
middle) while reinforcement learning the policy (Figure 5,
right). The results demonstrate that the learned multigrid
memory and query subnets generalize to trajectories that dif-
fer from those in their training dataset, as also conveyed in

2525

20

15

10

5

0

lo
ss

 (
x1

03)

0 500 1000 1500 2000
steps (x103)

Spatial Mapping

lo
ss

20

40

60

80

100

120

140

0
0 500 1000 1500 2000

steps (x103)
0 500 1000 1500 2000

steps (x103)

0

lo
ss

10

20

30

40

50

60

70

80
Priority Sort + Classification Associative Recall + Classification

Figure 6. Multigrid memory architectures learn significantly
faster. Left: Maze localization task. Middle: Joint priority sort and
classification. Right: Joint associative recall and classification.

2
Figure 7. MNIST recall. A random sequence of images followed
by a repeat (green), output the class of the next image (red).

Table 1 (last row). Meanwhile, the multigrid policy network
is able to utilize memory from the mapping subnet in order
to learn an effective exploration policy. See Appendix E for
visualizations of the exploratory behavior.

4.3. Algorithmic Tasks
We test the task-agnostic nature of our multigrid memory
architecture by evaluating on a series of algorithmic tasks,
closely inspired by those appearing in the original NTM
work (Graves et al., 2014). For each of the following tasks,
we consider two variants, increasing in level of difficulty.
See Appendix B.2 for complete details.

Priority Sort. In the first non-visual variant, the network
receives a sequence of twenty 9-dimensional vectors, along
with their priority. The task is to output the sequence of
vectors in order of their priority. Training and testing use
randomly generated data. Training takes 2 × 106 steps,
batch size 32, and testing uses 5000 sequences. Results
are computed over 10 runs. We tune hyperparameters as
done for the mapping task. We structure our model as
an encoder-decoder architecture (Figure 2, bottom). Our
network performs equivalently to DNC with equal memory,
with both achieving near-perfect performance (Table 2).

The second variant extends the priority sort to require recog-
nition capability. The input is a sequence of twenty 28× 28
MNIST images (Lecun et al., 1998). The goal is to output
the class of the input images in increasing order. A sam-
ple encoder-decoder architecture employed for this task is
presented in Figure 8. Table 2 reveals that our architecture
achieves much lower error rate compared to DNC on this
task (priority sort + classification), while also learning faster
(Figure 6) and with less memory.

Associative Recall. In the first formulation, the network re-
ceives a sequence of ten 9-element random vectors, followed
by a second instance of one of the first nine vectors. The
task is to output the vector that immediately followed the
query in the input sequence. We demonstrate this capability

Multigrid Neural Memory

Table 1. Mapping and localization.
Our network significantly outperforms
the DNC and other baselines. Efficient
memory usage, enabled by multigrid
connectivity, is essential; the DNC even
fails to master smaller 15×15 mazes.
Our network retains memory over thou-
sands of time-steps. Our localization
subnet, trained on random motion, gen-
eralizes to queries for a policy-driven
agent (last row).

Architecture Params Memory World Task Definition Path Localization Accuracy
(×106) (×103) Map FoV Motion Query Length Prec. Recall F

MG Mem+CNN 0.12 7.99 15×15

3×3 Spiral 3×3

169 99.79 99.88 99.83
DNC 0.75 8.00 91.09 87.67 89.35
MG Mem+CNN 0.17 7.99

25×25 529

99.33 99.02 99.17
DNC 0.68 8.00 77.63 14.50 24.44
MG Mem+CNN 0.65 76.97 99.99 99.97 99.98
Ablated MG 1.40 265.54 77.57 51.27 61.73
ConvLSTM-deep 0.38 626.69 43.42 3.52 6.51
ConvLSTM-thick 1.40 626.69 47.68 1.11 2.16

MG Mem+CNN

0.79 76.97

25×25

3×3 Spiral 9×9 529 97.34 99.50 98.41

0.65 76.97 3×3 Random 3×3 500 96.83 95.59 96.20
1500 96.13 91.08 93.54

0.66 78.12 9×9 Random 9×9 500 92.82 87.60 90.14
0.65 76.97 3×3 Policy 3×3 1000 95.65 90.22 92.86

Table 2. Algorithmic tasks. Multigrid
memory architectures achieve far lower
error on the classification variants of pri-
ority sort and associative recall, while
performing comparably to the DNC
on the simpler versions of these tasks.
Multigrid memory architectures also re-
main effective when dealing with long
sequences.

Architecture Params Memory Item List Data Task Error Rate± σ
(×106) (×103) Size Length

Standard
Sequence

MG Enc+Dec 0.12 7.99 1×9 20 Random Priority Sort 0.0043±0.0009
DNC 0.76 8.00 Patch 0.0039±0.0016

MG Enc+Dec 0.29 7.56 28×28 20 MNIST Priority Sort 0.0864±0.0016
DNC 1.05 8.00 + Classify 0.1659±0.0188

MG Mem+CNN 0.13 7.99 1×9 10 Random Assoc. Recall 0.0030±0.0002
DNC 0.76 8.00 Patch 0.0044±0.0001

MG Mem+CNN 0.21 7.56 28×28 10 MNIST Assoc. Recall 0.0736±0.0045
DNC 0.90 8.00 + Classify 0.2016±0.0161

Extended
Sequence

MG Enc+Dec 0.89 76.97 1×9 50 Random Priority Sort 0.0067±0.0001
MG Mem+CNN 0.65 76.97 20 Patch Assoc. Recall 0.0056±0.0003

Table 3. Question answering tasks. Despite using less
memory, multigrid architecture surpasses DNC’s mean per-
formance. While DNC performs slightly better in the best
result, its high deviation from the mean shows that DNC is
much more unstable compared to multigrid memory.

Architecture
Mean Result Best Result

Params Memory Mean Error± σ #Failed Tasks± σ Mean Error #Failed Tasks
(×106) (×103) (%) (Error > 5%) (%) (Error > 5%)

MG Mem 1.00 2.86 9.2 ± 1.0 5.4 ± 1.4 7.5 4
DNC 0.89 16.38 16.7± 7.6 11.2± 5.4 3.8 2
EMN N/A N/A N/A N/A 7.5 6

Table 4. Complete question answering results. Shown are re-
sults for all 20 question answering tasks.

Task Mean± σ
MG Mem DNC

single supporting fact 0.3± 0.3 9.0± 12.6
two supporting facts 27.4± 7.8 39.2± 20.5
three supporting facts 51.8± 5.0 39.6± 16.4
two argument relations 0.1± 0.1 0.4± 0.7
three argument relations 3.4± 0.6 1.5± 1.0
yes/no questions 1.7± 1.0 6.9± 7.5
counting 5.2± 2.1 9.8± 7.0
lists/sets 4.5± 1.3 5.5± 5.9
simple negation 0.8± 0.6 7.7± 8.3
indefinite knowledge 5.9± 1.9 9.6± 11.4
basic coreference 0.5± 0.2 3.3± 5.7
conjunction 0.4± 0.3 5.0± 6.3
compound coreference 0.1± 0.1 3.1± 3.6
time reasoning 22.0± 1.9 11.0± 7.5
basic deduction 0.4± 0.5 27.2± 20.1
basic induction 51.6± 2.9 53.6± 1.9
positional reasoning 4.6± 2.1 32.4± 8.0
size reasoning 1.7± 0.7 4.2± 1.8
path finding 1.4± 1.2 64.6± 37.4
agents motivations 0.2± 0.4 0.0± 0.1

Mean Error (%) 9.2± 1.0 16.7± 7.6
Failed Tasks (Error > 5%) 5.4± 1.4 11.2± 5.4

using the multigrid reader/writer architecture (Figure 2, top).
Training is similar to the sorting task. Table 2 shows that
both DNC and our architecture achieve near-zero error rates.

In the second variant, the input is a sequence of ten 28× 28
randomly chosen MNIST images (Lecun et al., 1998), where

the network needs to output the class of the image immedi-
ately following the query (Figure 7). As shown in Table 2
and Figure 6, our multigrid memory network performs this
task with significantly greater accuracy than the DNC, and
also learns in fewer training steps.

To further test the ability of multigrid memory architectures
to deal with longer sequences, we experimented with sorting
and associative recall with sequence length of 50 and 20,
respectively. As can be seen in Table 2, multigrid memory
architectures remain effective with near-zero error rates.

The harder variants of both priority sort and associative re-
call require a combination of memory and a pattern recogni-
tion capability. The success of multigrid memory networks
(and notable poor performance of DNCs), demonstrates that
they are a unique architectural innovation. They are capa-
ble of learning to simultaneously perform representational
transformations and utilize a large distributed memory store.
Furthermore, as Figure 6 shows, across all difficult tasks,
including mapping and localization, multigrid memory net-
works train substantially faster and achieve substantially
lower loss than all competing methods.

Multigrid Neural Memory

Resize

E
n

c
o

d
e
r

x5

M
G

-c
o

n
v

-L
S

T
M

D
e
c
o

d
e
r

x5

M
G

-c
o

n
v

-L
S

T
M

x2

M
G

-c
o

n
v

x2

M
G

-c
o

n
v

x1

M
G

-c
o

n
v

FC

loss

target

Figure 8. Multigrid memory encoder-decoder architecture for MNIST sorting. After processing the input sequence, the encoder
(top) transfers memory into the decoder, which predicts the sequence of classes of the input digits in sorted order.

input

M
G

-c
o
n
v

-L
S

T
M

M
G

-c
o
n
v

-L
S

T
M

M
G

-c
o
n
v

-L
S

T
M

M
G

-c
o
n
v

-L
S

T
M

M
G

-c
o
n
v

M
G

-c
o
n
v

M
G

-c
o
n
v

M
G

-c
o
n
v

loss

target

Figure 9. Multigrid memory architecture for question answering. 1D multigrid architecture is employed for question answering tasks.
Input and output are 1× 1× 159 tensors representing the word vectors. At each time step, the model receives a word input and generates
the next word in the sequence.

4.4. Question Answering

To further investigate the generalizability of our multigrid
memory architecture well beyond spatial reasoning, we eval-
uate its performance on bAbI (Weston et al., 2015a), which
consist of 20 question answering tasks corresponding to
diverse aspects of natural language understanding. For each
task, the dataset contains 10000 questions for training and
1000 for testing. For parameter-efficiency, we employ a
1D multigrid architecture for this task, as shown in Fig-
ure 9. Results are shown in Table 3. Despite having only
a fraction of the memory available to the DNC (2.86K v.s.
16.38K), on average our architecture outperforms the DNC
in terms of both mean error rate (9.2% v.s. 16.7%) and
mean failed tasks (5.4 v.s. 11.2). On best results, while
DNC performs slightly better, multigrid memory still out-
performs EMN (Sukhbaatar et al., 2015) with fewer failed
tasks. Complete results for all tasks are presented in Ta-
ble 4. These results not only demonstrate the adaptability of
multigrid memory, but are also a testament to our design’s
effectiveness. See Appendix B.3 for further details.

5. Conclusion
Multigrid memory represents a radical new approach to
augmenting networks with long-term, large-scale storage.
A simple principle, multigrid connectivity, underlies our
model. Residual networks (He et al., 2016), which provide
shortcut pathways across depth, have had enormous impact,
allowing very deep networks to be trained by facilitating
gradient propagation. Multigrid wiring is complementary,
improving connectivity across an orthogonal aspect of the
network: the spatial dimension. Its impact is equally signifi-
cant: multigrid wiring exponentially improves internal data
routing efficiency, allowing complex behaviors (attention)
and coherent memory subsystems to emerge from training
simple components. Our results are cause to rethink the pre-
vailing design principles for neural network architectures.

Acknowledgments. We thank Gordon Kindlmann for his
support in pursuing this project, Chau Huynh for her help
with the code, and Pedro Savarese and Hai Nguyen for
fruitful discussions. The University of Chicago CERES
Center contributed to the support of Tri Huynh. This work
was supported in part by the National Science Foundation
under grant IIS-1830660.

Multigrid Neural Memory

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation

by jointly learning to align and translate. arXiv:1409.0473,
2014.

Collins, J., Sohl-Dickstein, J., and Sussillo, D. Capacity and
trainability in recurrent neural networks. ICLR, 2017.

Das, S., Giles, C. L., and Sun, G.-Z. Learning context-free gram-
mars: Capabilities and limitations of a recurrent neural network
with an external stack memory. In CogSci, 1992.

Das, S., Giles, C. L., and Sun, G.-Z. Using prior knowledge in an
NNPDA to learn context-free languages. In NIPS, 1993.

Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S.,
Guadarrama, S., Saenko, K., and Darrell, T. Long-term re-
current convolutional networks for visual recognition and de-
scription. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

Fraccaro, M., Rezende, D. J., Zwols, Y., Pritzel, A., Eslami, S.
M. A., and Viola, F. Generative temporal models with spatial
memory for partially observed environments. ICML, 2018.

Gemici, M., Hung, C.-C., Santoro, A., Wayne, G., Mohamed, S.,
Rezende, D. J., Amos, D., and Lillicrap, T. Generative temporal
models with memory. arXiv:1702.04649, 2017.

Graves, A. Generating sequences with recurrent neural networks.
arXiv:1308.0850, 2013.

Graves, A., rahman Mohamed, A., and Hinton, G. Speech recogni-
tion with deep recurrent neural networks. In IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013.

Graves, A., Wayne, G., and Danihelka, I. Neural turing machines.
arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I.,
Grabska-Barwińska, A., Colmenarejo, S. G., Grefenstette, E.,
Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M., Zwols,
Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom,
P., Kavukcuoglu, K., and Hassabis, D. Hybrid computing using
a neural network with dynamic external memory. Nature, 2016.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blunsom, P.
Learning to transduce with unbounded memory. In NIPS, 2015.

Hausknecht, M. and Stone, P. Deep recurrent Q-learning for
partially observable MDPs. In AAAI Fall Symposium, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. CVPR, 2016.

Hermans, M. and Schrauwen, B. Training and analysing deep
recurrent neural networks. NIPS, 2013.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 1997.

Hölldobler, S., Kalinke, Y., and Lehmann, H. Designing a counter:
Another case study of dynamics and activation landscapes in
recurrent networks. In Annual Conference on Artificial Intelli-
gence, 1997.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns with
stack-augmented recurrent nets. In NIPS, 2015.

Kalchbrenner, N., Danihelka, I., and Graves, A. Grid long short-
term memory. arXiv:1507.01526, 2015.

Ke, T.-W., Maire, M., and Yu, S. X. Multigrid neural architectures.
CVPR, 2017.

Kurach, K., Andrychowicz, M., and Sutskever, I. Neural random-
access machines. arXiv:1511.06392, 2015.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 1998.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end training
of deep visuomotor policies. The Journal of Machine Learning
Research, 2016.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. Independently
recurrent neural network (indrnn): Building a longer and deeper
rnn. CVPR, 2018.

Mnih, V., Heess, N., Graves, A., et al. Recurrent models of visual
attention. In NIPS, 2014.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. Human-level control through deep rein-
forcement learning. Nature, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P.,
Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous
methods for deep reinforcement learning. ICML, 2016.

Mozer, M. C. and Das, S. A connectionist symbol manipulator
that discovers the structure of context-free languages. In NIPS,
1993.

Oh, J., Chockalingam, V., Singh, S., and Lee, H. Con-
trol of memory, active perception, and action in Minecraft.
arXiv:1605.09128, 2016.

Parisotto, E. and Salakhutdinov, R. Neural map: Structured mem-
ory for deep reinforcement learning. ICLR, 2018.

Pritzel, A., Uria, B., Srinivasan, S., Puigdomenech, A., Vinyals,
O., Hassabis, D., Wierstra, D., and Blundell, C. Neural episodic
control. ICML, 2017.

Reed, S. and de Freitas, N. Neural programmer-interpreters.
arXiv:1511.06279, 2015.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lil-
licrap, T. One-shot learning with memory-augmented neural
networks. arXiv:1605.06065, 2016.

Schmidhuber, J. Learning to control fast-weight memories: An
alternative to dynamic recurrent networks. Neural Computation,
1992.

Schmidhuber, J. A ‘self-referential’weight matrix. In ICANN,
1993.

Siegelmann, H. T. and Sontag, E. D. On the computational power
of neural nets. Journal of computer and system sciences, 1995.

Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end memory
networks. In NIPS, 2015.

Multigrid Neural Memory

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence
learning with neural networks. In NIPS, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all
you need. NeurIPS, 2017.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks. In
NIPS, 2015.

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer,
B., Joulin, A., and Mikolov, T. Towards AI complete question
answering: A set of prerequisite toy tasks. arXiv:1502.05698,
2015a.

Weston, J., Chopra, S., and Bordes, A. Memory networks. ICLR,
2015b.

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and
Woo, W.-c. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. NIPS, 2015.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R.,
Zemel, R., and Bengio, Y. Show, attend and tell: Neural image
caption generation with visual attention. arXiv:1502.03044,
2015.

Zeng, Z., Goodman, R. M., and Smyth, P. Discrete recurrent
neural networks for grammatical inference. IEEE Transactions
on Neural Networks, 1994.

Multigrid Neural Memory

A. Information Routing
Proposition 1: For the setup in Figure 10, suppose that the
convolutional kernel size is 3 × 3, and upsampling is 2×
nearest-neighbor sampling. Consider location (1, 1) of the
source grid at [layer 1, level 1]. For a target grid at [layer
m, level n], where m ≥ n, the information from the source
location can be routed to any location (i, j), where 1 ≤ i,
j ≤ (m− n+ 2) · 2n−1 − 1.

Proof of Proposition 1: Induction proof on level n.

• For level n = 1: Each convolution of size 3 × 3 can
direct information from a location (i, j) at layer k to any
of its immediate neighbors (i′, j′) where i − 1 ≤ i′ ≤
i + 1, j − 1 ≤ j′ ≤ j + 1 in layer k + 1. Therefore,
convolutional operations can direct information from
location (1, 1) in layer 1 to any locations (i′, j′) in layer
k = m where 1 ≤ i′ , j′ ≤ m = (m−1+2) ·20−1 =
(m− n+ 2) · 2n−1 − 1.

• Assume the proposition is true for level n (∀m ≥ n), we
show that it is true for level n+ 1. Consider any layer
m+ 1 in level n+ 1, where m+ 1 ≥ n+ 1:

We have, m + 1 ≥ n + 1 ⇒ m ≥ n. Therefore, we
have that at [layer m, level n], the information from
the source location can be routed to any location (i, j),
where 1 ≤ i, j ≤ (m−n+2) ·2n−1−1. Now, consider
the path from [layer m, level n] to [layer m + 1, level
n+ 1]. This path involves the upsampling followed by
a convolution operator, as illustrated in Figure 10.

Nearest-neighbor upsampling directly transfers informa-
tion from index i to 2 · i and 2 · i − 1, and j to 2 · j
and 2 · j − 1 by definition. For simplicity, first consider
index i separately. By transferring to 2 · i, informa-
tion from location 1 ≤ i ≤ (m − n + 2) · 2n−1 − 1
in level n will be transferred to all even indices in
[2, ((m − n + 2) · 2n−1 − 1) · 2] at level n + 1. By
transferring to 2 · i− 1, information from location 1 ≤
i ≤ (m−n+2) ·2n−1−1 in level n will be transferred
to all odd indices in [1, ((m−n+2) ·2n−1−1) ·2−1] at
level n+1. Together, with 2 · i and 2 · i− 1 transferring,
the nearest-neighbor upsampling transfers information
from location 1 ≤ i ≤ (m− n+ 2) · 2n−1 − 1 in level
n to all indices in [1, ((m − n + 2) · 2n−1 − 1) · 2] at
level n+ 1.

Furthermore, the following convolution operator with
3 × 3 kernel size can continue to transfer information
from [1, ((m−n+2) ·2n−1−1) ·2] to [1, ((m−n+2) ·
2n−1−1) ·2+1] at level n+1. We have ((m−n+2) ·
2n−1−1)·2+1 = (m+1−(n+1)+2) ·2n−1. Taking
together indices i and j, information from location (i, j)
where 1 ≤ i, j ≤ (m − n + 2) · 2n−1 − 1 in level n
can be transferred to (i′, j′) in level n+1, where 1 ≤ i′,
j′ ≤ (m+ 1− (n+ 1) + 2) · 2n − 1. �

B. Experiment Details
B.1. Spatial Navigation

B.1.1. ARCHITECTURE

All experiments related to spatial navigation tasks use multi-
grid writer-reader(s) architectures. Figure 11 visualizes this
architecture and problem setup. At each time step during
training, the agent takes a one-step action (e.g., along a spi-
ral trajectory) and observes its 3 × 3 surroundings. This
observation, together with its location relative to the starting
point, are fed into the writer, which must learn to update its
memory. The agent has no knowledge of its absolute loca-
tion in the world map. Two random 3× 3 and 9× 9 patches
within the explored map are presented to the agent as queries
(some experiments use only 3× 3 queries). These queries
feed into two readers, each viewing the same memory built
by the writer; they must infer which previously seen loca-
tions match the query. Since the agent has no knowledge
of its absolute location in the world map, the agent builds
a map relative to its initial position (map re-centered in
Figure 11) as it navigates.

During training, the writer learns to organize and update
memory from localization losses simultaneously backprop-
agated from the two readers. During inference, only the
writer updates the memory at each time step, and the readers
simply view (i.e., without modification) the memory to infer
the query locations. It is also worth noting that only 3× 3
patches are fed into the writer at each time step; the agent
never observes a 9× 9 patch. However, the agent success-
fully integrates information from the 3 × 3 patches into a
coherent map memory in order to correctly answer queries
much larger than its observations. Figure 4 shows that this
learned memory strikingly resembles the actual world map.

B.1.2. LOSS

Given predicted probabilities and the ground-truth location
mask (Figure 11), we employ a pixel-wise cross-entropy
loss as the localization loss. Specifically, letting S be the
set of pixels, pi be the predicted probability at pixel i, and
yi be the binary ground-truth at pixel i, the pixel-wise cross-
entropy loss is computed as follows:

−
∑
i∈S

yi log(pi) + (1− yi) log(1− pi) (1)

B.2. Algorithmic Tasks

B.2.1. ARCHITECTURE

Priority Sort Tasks: We employ encoder-decoder archi-
tectures for the priority sort tasks.

• Standard variant. The encoder is a 5-layer multigrid
memory architecture, structured similar to the writer

Multigrid Neural Memory

Figure 10. Information routing. Top: Paths depicting information flow in a multigrid architecture. Progressing from one layer to the
next, information flows between grids at the same level (via convolution, green), as well as to adjacent grids at higher resolution (via
upsampling and convolution, red) and lower resolution (via downsampling and convolution, orange). Information from a sample location
(26, 26) (blue) of the source grid at [layer 1, level 4] can be propagated to all locations rendered in blue in subsequent layers and levels,
following the indicated paths (among others). Information quickly flows from finer levels to coarser levels, and then to any location in just
a few layers. Receptive field size grows exponentially with depth. In practice, the routing strategy is emergent—routing is determined by
the learned network parameters (convolutional filters). Multigrid connectivity endows the network with the potential to quickly route from
any spatial location to any other location just a few layers deeper. Bottom: Information flow in a standard architecture. Without multigrid
connections, information from the same source location is propagated much more slowly across network layers. Receptive fields expand
at a constant rate with depth, compared to the multigrid network’s exponential growth.

in Figure 11, progressively scaling 3× 3 inputs at the
coarsest resolution into 24 × 24 resolution. For the
decoder, the first half of the layers (MG-conv-LSTM)
resemble the encoder, while the second half employ
MG-conv layers to progressively scale down the output
to 3× 3.

• MNIST sort + classification. Figure 8 depicts the
encoder-decoder architecture for the MNIST variant.

Associative Recall Tasks: We employ writer-reader ar-
chitectures for the associative recall tasks. The architectures
are similar to those for the spatial navigation and priority
sort tasks depicted in Figure 11, with some modifications
appropriate to the tasks:

• Standard variant. In the standard version of the task,
the writer architecture is similar to the encoder in the

standard variant of the priority sort task. For the reader,
after progressing to the finest resolution corresponding
to the memory in the writer, the second half of MG-
conv layers progressively scale down the output to 3×3
to match the expected output size.

• MNIST recall + classification. For the MNIST variant,
we resize the 28×28 images to three scales from 3×3
to 12× 12 and maintain the same three-scale structure
for five layers of the writer. The writer architecture
is similar to the encoder architecture in MNIST prior-
ity sort task, as depicted in Figure 8. The reader for
the MNIST variant is similar to the reader in the stan-
dard variant, with the final layer followed by a fully
connected layer to produce a 10-way prediction vector
over MNIST classes.

Multigrid Neural Memory

Explored Map

Map Re-centered

Groundtruth Locations

(3x3 Query)

Groundtruth Locations

(9x9 Query)

+
agent’s

relative location

Observation

3x3 Query

9x9 Query

x2

M
G

-
c
o
n
v

x2

M
G

-
c
o
n
v

x2

M
G

-
c
o
n
v

x1

M
G

-
c
o
n
v

x2

M
G

-
c
o
n
v

x2

M
G

-
c
o
n
v

x2

M
G

-
c
o
n
v

M
G

-
c
o
n
v

lossReader

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

M
G

-
c
o
n
v

lossReader

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

M
G

-
c
o
n
v

-
L
S

T
M

Writer

Figure 11. Multigrid memory writer-reader(s) architecture for spatial navigation. At each time step, the agent moves to a new
location and observes the surrounding 3× 3 patch. The writer receives this 3× 3 observation along with the agent’s relative location
(with respect to the starting point), updating the memory with this information. Two readers receive randomly chosen 3× 3 and 9× 9
queries, view the current map memory built by the writer, and infer the possible locations of those queries.

B.2.2. LOSS

Standard variants: We use pixel-wise cross-entropy loss
for the standard variants, as described in Section B.1.2.

MNIST variants: For MNIST variants, we use cross-
entropy loss over a softmax prediction of the classes. Specifi-
cally, letting C be the set of available classes, pc the softmax
output for class c, and y a one-hot vector of the ground-truth
label, we compute the loss as:

−
∑
c∈C

yc log(pc) (2)

B.3. Question Answering

B.3.1. ARCHITECTURE

We employ a 1D multigrid memory architecture for question
answering tasks, where the spatial dimensions progressively

scale from 1× 1 to 1× 16 through MG-conv-LSTM layers,
and gradually scale back to 1× 1 through MG-conv layers,
as demonstrated in Figure 9. Inputs and outputs are 1 ×
1× |V | tensors representing the word vectors, where V is
the set of words in the vocabulary and |V | = 159. All 20
question answering tasks are jointly trained, with batch size
1, and sequence-wise normalization. At each time step, the
model receives a word input and generates the next word in
the sequence. During training, only the losses from words
corresponding to answers are backpropagated, others are
masked out, as specified next.

B.3.2. LOSS

Let V be the set of words in the vocabulary, and y ∈
{0, 1}|V | be a one-hot vector that represents the ground-
truth word. For a word sequence S, we define a mask m as:

Multigrid Neural Memory

Figure 12. Visualization of DNC memory in mapping task.
Due to its defined addressing mechanism, the DNC always al-
locates a new continuous memory slot at each time-step. It does
not appear to maintain an interpretable structure of the map.

mi =

{
1 if word i in the sequence S is an answer
0 otherwise

(3)

Letting p ∈ (0, 1)|V | be the softmax output, we compute
the loss for question answering as follows:

−
|S|∑
i=1

mi

|V |∑
j=1

yij log(p
i
j) (4)

C. DNC Details
We use the official DNC implementation (https://
github.com/deepmind/dnc), with 5 controller heads
(4 read heads and 1 write head). For spatial navigation and
algorithmic tasks, we use a memory vector of 16 elements,
and 500 memory slots (8K total), which is the largest mem-
ory size permitted by GPU resource limitations. Controllers
are LSTMs, with hidden state sizes chosen to make to-
tal parameters comparable to other models in Table 1 and
Table 2. DNC imposes a relatively small cap on the ad-
dressable memory due to the quadratic cost of the temporal
linkage matrix (https://github.com/deepmind/
dnc/blob/master/dnc/addressing.py#L163).

A visualization of DNC memory in the spatial mapping task
(15× 15 map) is provided in Figure 12.

For question answering tasks, the DNC memory is com-
prised of 256 memory slots, with a 64-element vector for
each slot (16, 384 total). The use of a smaller number of
memory slots and batch size allows for the allocation of
larger total memory.

D. Runtime
On spatial mapping (with 15 × 15 world map), the run-
times for one-step inference with the Multigrid Memory
architecture (0.12M parameters and 8K memory) and DNC
(0.75M parameters and 8K memory) are (mean ± std):
0.018± 0.003 seconds and 0.017± 0.001 seconds, respec-
tively. These statistics are computed over 10 runs on a
NVIDIA Geforce GTX Titan X.

E. Demos
• Instructions for interpreting the video demos:
https://drive.google.com/file/d/

18gvQRhNaEbdiV8oNKOsuUXpF75FEHmgG

• Mapping & localization in spiral trajectory, with 3× 3
queries:
https://drive.google.com/file/d/

1VGPGHqcNXBRdopMx11_wy9XoJS7REXbd

• Mapping & localization in spiral trajectory, with 3× 3
and 9× 9 queries:
https://drive.google.com/file/d/

18lEba0AzpLdAqHhe13Ah3fL2b4YEyAmF

• Mapping & localization in random trajectory:
https://drive.google.com/file/d/

19IX93ppGeQ56CqpgvN5MJ2pCl46FjgkO

• Joint exploration, mapping & localization:
https://drive.google.com/file/d/

1UdTmxUedRfC-E6b-Kz-1ZqDRnzXV4PMM

https://github.com/deepmind/dnc
https://github.com/deepmind/dnc
https://github.com/deepmind/dnc/blob/master/dnc/addressing.py#L163
https://github.com/deepmind/dnc/blob/master/dnc/addressing.py#L163
https://drive.google.com/file/d/18gvQRhNaEbdiV8oNKOsuUXpF75FEHmgG
https://drive.google.com/file/d/18gvQRhNaEbdiV8oNKOsuUXpF75FEHmgG
https://drive.google.com/file/d/1VGPGHqcNXBRdopMx11_wy9XoJS7REXbd
https://drive.google.com/file/d/1VGPGHqcNXBRdopMx11_wy9XoJS7REXbd
https://drive.google.com/file/d/18lEba0AzpLdAqHhe13Ah3fL2b4YEyAmF
https://drive.google.com/file/d/18lEba0AzpLdAqHhe13Ah3fL2b4YEyAmF
https://drive.google.com/file/d/19IX93ppGeQ56CqpgvN5MJ2pCl46FjgkO
https://drive.google.com/file/d/19IX93ppGeQ56CqpgvN5MJ2pCl46FjgkO
https://drive.google.com/file/d/1UdTmxUedRfC-E6b-Kz-1ZqDRnzXV4PMM
https://drive.google.com/file/d/1UdTmxUedRfC-E6b-Kz-1ZqDRnzXV4PMM

	1 Introduction
	2 Related Work
	3 Multigrid Memory Architectures
	3.1 Multigrid Memory Layer
	3.2 Memory Interfaces

	4 Experiments
	4.1 Mapping & Localization
	4.2 Joint Exploration, Mapping, and Localization
	4.3 Algorithmic Tasks
	4.4 Question Answering

	5 Conclusion
	A Information Routing
	B Experiment Details
	B.1 Spatial Navigation
	B.1.1 Architecture
	B.1.2 Loss

	B.2 Algorithmic Tasks
	B.2.1 Architecture
	B.2.2 Loss

	B.3 Question Answering
	B.3.1 Architecture
	B.3.2 Loss

	C DNC Details
	D Runtime
	E Demos

