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ARTICLE INFO ABSTRACT —

Keywords: Biometric authentication systems are becoming more prevalent for commercial use with computers and smart

Spoofing mitigation devices. Biometric systems also have several vulnerable points that can be exploited by a hacker to gain unau-

Jls;wmelmc recognition thorized access to a system. Replay attacks focus on capturing feature extractors (FEs) during transmission,
eep learning

decrypting, and replaying for illegal access. The Genetic and Evolutionary Feature Extraction (GEFE) technique,
developed at North Carolina A&T State University, recently showed promising results in mitigating replay attacks
in combination with a feature selection algorithm. Biometric-based presentation attacks, the focus of this work, is
another biometric system vulnerability primarily focused on presenting a biometric sample of quality to illegally
gain access to secured data. Recently, deep learning techniques to mitigate presentation attacks have shown
promising results. However, the accuracy of deep learning-based biometric presentation attack detection (PAD)
methods are limited by the quality of the samples provided. In absence of large sets of original biometric sample
data, data augmentation has been shown to be successful in generating synthetic biometric image data and
improving the performance of deep learning techniques applied. The novelty of this paper lies in the following
two aspects: First, a data augmentation technique with Generative Adversarial Networks (GANSs) is used to
generate comparative synthetic (spoofing) dataset. With the proliferation of deep fakes in media, this technique
should provide insight on the GAN technique often used. Once properly trained, the synthetic images are used to
create spoofing datasets. Second, the GEFE technique is used in combination with the GANSs to generate improved
anti-spoofing feature extractors optimized to mitigate presentation attacks. The combination of GEFE and GANs is
used to identify those discriminative biometric features used to mitigate synthetic presentation attacks. The GEFE
+ GAN technique outperforms the LBP and GEFE techniques alone in overall identification and verification results
on spoofing datasets.

1. Introduction be taken and used maliciously [6,7]. A biometric-based authentication

system has an advantage over the two previously mentioned systems in

Biometric authentication systems are becoming more prevalent for
commercial use with computers and smart devices [1]. Biometric
authentication has inherent advantages over other authentication
methods such as token-based and knowledge based methods [2-5].
Token-based authentication systems use some form of token, such as a
driver’s license, or an ID card [5,6]. This form of authentication could be
considered the most vulnerable to compromise, due to the fact that to-
kens can be lost or stolen. Knowledge-based authentication systems have
a slight advantage from a security standpoint, in that authentication is
based on what a user knows, i.e. password or pin. A password cannot be
easily stolen, but if a user writes it down, or is seen entering it, then it can
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that biometric modalities are difficult to replicate and are unique to in-
dividuals [6-8]. The focus of this research is on evolving unique feature
extractors for cyber security.

Biometric systems have several vulnerable points that can be
exploited by a hacker to gain unauthorized access to a system. One
vulnerable point, and the focus of this work, is the acceptance of pre-
sentation attacks. Biometric-based presentation attacks are primarily
focused on gaining access to a counterfeit biometric sample and imple-
menting the same biometric to illegally gain access to secured data.
Although biometric authentication strengthens security protocols
through unique feature extraction, presenting a biometric sample of
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quality to illegally gain access to a biometric system is feasible. It is
known that any 2D face biometric system with no anti-spoofing measures
can be easily spoofed by presentation attacks [22].

Local Binary Patterns (LBP) is one of the more popular textural
techniques for facial recognition [26,27]. The LBP technique has also
been used for spoofing detection. In Chingovska et al. [23], anti-spoofing
efforts went towards creating a face-spoofing database. The database
followed guidelines for developing anti-spoofing algorithms. Despite its
simplicity, LBP has proven to be very powerful in texture classification. In
Gragnaniello et al. [17], LBP is used in combination with a liveness
detection algorithm on multimodal biometrics. Recently, deep learning
techniques to mitigate presentation attacks have shown promising results
[18-20]. The popularity of Convolutional Neural Networks (CNN) arose
after “AlexNet” [25] won the Large Scale Visual Recognition Challenge
(LSVRC) of 2012. AlexNet recorded a rank-5 error rate of 15.3% when
sorting over a million images into 1000 different classes. In Menotti et al.
[20], the focus in building an anti-spoofing system with convolutional
networks lead to in outstanding classification results. Results strongly
indicate that deep learning techniques can be used for robust spoofing
detection [24].

This proposes a few questions. How does training deep learning based
biometric system using deep learning generated images effect biometric
recognition? What are the distinct (discriminative) biometric features
used to mitigate presentation attacks? In this work, we contribute a more
complex and novel data augmentation technique to generate a synthetic
(spoofing) datasets. Using the deep learning technique of Generative
Adversarial Networks (GANs) [28], the generated images will be of
quality to spoof the popular texture-based feature extraction method,
LBP. Referred to by some as the most interesting idea in machine learning
in the last 10 years, GANs have the ability to generate realistic photos of
objects, scenes, and people that do not exist, yet are undetectable by
humans [35]. GANs are simple yet powerful. The generated spoofing
datasets will then be used to improve Genetic and Evolutionary Feature
Extraction (GEFE) feature extraction accuracies. The GEFE feature ex-
tractors will optimize the LBP feature extractors’ dimensions and
displacement. The proposed GEFE technique will use a fitness function
optimized for mitigation synthetic (generated) images. Through these
steps, a novel feature extraction technique to mitigate the effects of
presentation attacks is contributed. With the proliferation of deepfakes
[36,37] in media, this techngiue should provide insight on the GAN
technique often used. In combination with GEFE, the generated feature
extractors will also provide insight on which biometric features on the
samples has the higher discriminative capabilities with its optimize di-
mensions and displacement. The remainder of this work follows with a
literature review of popular techniques for mitigatigating presentation
attacks. This is followed by our methodology, experiments, and results.
Lastly, we have our discussion and future direction.

2. Literature review

Presentation attacks are the presentation of impersonated human
characteristics to the biometric capture subsystem. This is done to spoof
biometric recognition to illegally gain access to the biometric system.
Print photo attacks, 3-D masks, and image regeneration have all been
used to successfully gain access to biometric systems [17]. A 2D face
system with no anti-spoofing measures can be easily spoofed by pre-
sentation attacks. Multimodal systems are suggested in scenarios with
high probabilities of spoof attacks. Unfortunately, a biometric system
with several modes may not need all modalities to be spoofed to
compromise the entire multimodal system [22]. Multimodal biometrics
has shown to improve the performance of biometric systems, though they
are often expensive, and they can also increase the number of vulnera-
bilities that can be exploited by an intruder [22]. The next section of this
chapter will be an overview of some texture-based presentation attack
mitigation. LBP is texture-based and one of the more notable techniques
for biometric classification. In Section II-B, an overview of recent deep
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learning based mitigation techniques is given. With promising results
from deep learning techniques in image classification, similar findings in
spoofing detection and mitigation are favorable. The scope of this review
explores mitigation techniques for facial biometrics, excluding tech-
niques designed generally for image classification.

2.1. Texture-based mitigation techniques

Identify applicable funding agency here. If none, delete this text box.

The LBP feature extraction technique forms texture patterns from the
pixel intensity values of biometric images [26,27]. This method uses the
texture patterns to create Feature Vectors (FVs) associated with the im-
ages. The LBP method can be applied to any uniquely textured data, such
as facial and iris recognition. For biometric recognition, the first step is to
split an image into even sized regions. A histogram is associated with
each region, where the frequencies of texture patterns are stored. A FV is
formed from the concatenated histograms resulting from each region.

Texture patterns are measured by comparing pixel intensity values to
one another within a region. More specifically, each pixel that is inclu-
sively within a region will be compared with its nearest neighboring
pixels. A pixel on the border of a region cannot be considered as a center
pixel since it does not have pixels within its region surrounding it
entirely. Each texture pattern is represented as a binary string. Equations
(1) and (2) show how a binary string can be extracted from a region on an
image and converted into a decimal value denoting a histogram bin. The
term LBP(Ni,c), denotes the decimal value of a texture pattern for a
neighborhood of pixels. The term c represents the pixel intensity value of
the center pixel, N represents the set of neighboring pixel intensity values
for c, and i represents the ith neighboring pixel of c. Equation (2) signifies
the difference being taken between each neighboring pixel and the center
pixel.

i—1

LBP(Nj,c) = s(N, )2’ @)
i=0
_f0,ifNj—c<0
S(N”C)*{l,zjfzv,-fwo @

Some of the earlier techniques for biometric spoofing detection used
textural methods classification. In Chingovska et al. [23], anti-spoofing
efforts went towards creating a face-spoofing database. The database
followed guidelines for developing anti-spoofing algorithms. The data-
base should provide attacks capable of penetrating simple face recogni-
tion systems. Each database provided an evaluation of the scores that a
baseline face recognition system would be vulnerable for spoof attacks
[23]. LBP based face spoofing counter-measure, variants of LBP were
gauged for its efficiency against a variety of attacks. The LBP (3x3)
technique resulted in a 14.84% Half Total Error Rate (HTER) on the
training set and a 15.17% HTER on the test set. Results also showed that
the traditional LBP technique had the best performance/complexity
tradeoff [23]. Despite its simplicity, LBP has proven to be very powerful
in texture classification.

In Gragnaniello et al. [17], biometric spoofing detection explored
using the LBP technique in combination with face liveness detection
methods on multimodal biometrics. The multimodal system includes
samples from the fingerprint, the iris, and face biometrics. For the
experiment, protocol required a cropped small region (64x64 pixel to
80x80 pixel). The novel Histogram of Invariant Gradients (HIG), a
variant of Scale-Invariant Feature Transform (SIFT) and Histogram of
Oriented Gradients (HOG) are all textural methods tested with the intent
of preserving robustness. A linear Support Vector Machine (SVM) clas-
sifier was used to avoid feature selection. K-means clustering with
Euclidean distance was also used for the joint quantization of features.
Although some techniques reduce the average error by as much as 75%,
the overall analysis could not clearly distinguish a descriptor performing
uniformly better than others [17].
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Presentation Attack Detection (PAD) algorithms have also been pro-
posed exploring micro-texture variation using Binarized Statistical Image
Features (BSIF) and micro-frequency variations using 2D Cepstrum [24].
The 2D Ceptrum feature extraction is widely used in the domain of
speech and image processing. The BSIF method denotes each pixel as a
binary string obtained by computing its response to a filter. The filters are
trained utilizing the statistical properties of the natural images. The BSIF
and 2D Ceptrum feature vectors are concatenated to form a single vector
before obtaining a decision using linear SVM classifier. Experimental
results revealed that, the PAD algorithm’s best scheme was an Average
Classification Error Rate (ACER) of 10.21% on face and an ACER of 0%
on the iris modality [24].

2.2. Deep learning based mitigation techniques

The popularity of Convolutional Neural Networks (CNN) arose after
“AlexNet” [25] won the Large Scale Visual Recognition Challenge
(LSVRC) of 2012. AlexNet recorded a rank-5 error rate of 15.3% when
sorting over a million images into 1000 different classes. Deep learning
techniques have shown promising results in mitigating presentation at-
tacks [18-20].

In Bharati et al. [18], a novel algorithm for facial image retouching
detection using deep learning techniques. Digitally altered, “photo-
shopped”, images are common practice in the online/social media
communities. To detect digital retouching in facial images, the Super-
vised Restricted Boltzmann Machine (SRBM) based algorithm is pro-
posed [18]. The detection algorithm uses four local facial patches
extracted from a full facial image; the left and right periocular, mouth,
and nose regions. The size of each extracted facial patch is 64 x 64. Each
patch is trained on a three layer SDBM. The size of learned representation
for each SDBM is 256. Once the features are trained and concatenated, a
SVM classifier is trained for two-class classification. The proposed algo-
rithm showed significant advances in retouching detection. Experiments
yield a high of 55.7% classification accuracy for existing makeup
detection algorithm, with the proposed algorithm achieving nearly 87%
classification accuracy on the same dataset. Additionally, experiments
showed that the improvements in classification accuracy were attributed
to the supervised DBM and SVM classification [18].

In Yang et al. [19], spoofing mitigation relied on the deep Convolu-
tional Neural Network (CNN) to learn features of high discriminative
ability in a supervised manner. Combined with some data pre-processing,
the face anti-spoofing performance improves drastically [19]. First with
data preparation, spatial and temporal augmentation is performed on the
face, periocular and iris modalities [19]. After face localization, the
temporal augmentation extracts spatiotemporal texture features from
multi-frames in the video dataset. Temporal augmented data sets
generally contain more information about the images. The spatial
augmentation approach will employ a bottleneck approach to extract
more information from the background region [19]. A canonical CNN
structure is used for feature learning. The proposed network uses five
convolutional layers, followed by three fully-connected layers.
Response-normalization layers are used for the outputs of the first and
second convolutional layers. The max-pooling layers are plugged to
process the outputs of the first, second and fifth convolutional layers. The
ReLU (Rectified Linear Unit) non-linearity is applied to the output of all
convolutional and fully connected layers. To avoid over-fitting, two
dropout layers and a soft max function follows the first two fully con-
nected layers and the output layer, respectively. The LibSVM (Library for
Support Vector Machines) toolkit was used as the classifier for face
anti-spoofing [19]. Results displayed a better performance as the spatial
scale increased. The proposed method achieved HTERs (Half Total Error
Rates) lower than 5% on two datasets. These results prove the power of
CNN in anti-spoofing efforts. These results also indicate the positive ef-
fect of background region on face anti-spoofing task. The anti-spoofing
system achieves nearly perfect performance on the max scale [19].
Such results show the promise in deep learning techniques in
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discriminating features.

In Menotti et al. [20], the focus in building an anti-spoofing system
with convolutional networks resided on a combination of two ap-
proaches. The proposed architecture, spoofnet, entailed detecting
spoofing in different biometric modalities. The first approach focused on
learning the appropriate CNN architecture for each biometric modality.
The second approach consisted of learning filter weights via
back-propagation. Architecture optimization (AO) is based upon the CNN
architectures with stacked feedforward convolutional operations by
means of hyperparameter optimization. Filter optimization (FO) consists
of learning filter weights via the well-known back-propagation algorithm
[20]. The AO is used to adapt the architecture to the biometric samples,
as the FO is used to mold important discriminative features for real and
fake biometric classification. The AO and FO techniques are first evalu-
ated separately, then in combination. The results from this research
strongly indicate that convolutional networks can be used for robust
spoofing detection. The AO/FO approach resulted in accuracies of
98.93% and 99.38% on separate datasets with multiple biometric mo-
dalities [20]. The outstanding classification results emphasized the
interplay between the architecture and filter optimization approaches for
the spoofing problem [20].

With this review we identified a few similarities in the mitigation
techniques. The textured based methods are often used in combination in
with deep learning techniques. Deep learning based techniques showed
significant improvement from baseline in classification accuracies for
spoofing attacks. We also found similarities in the preprocessing of bio-
metric samples before the use of the techniques. Although we can iden-
tify the periocular region as a strength in biometric recognition, gaps
exist in finding the distinct features in the periocular region that mitigate
spoofing attacks.

3. Methodology

In this section, we provide an overview of our proposed methodology
including a novel deep learning approach to generate a synthetic
(spoofing) dataset. We will then address the feature extraction tech-
niques for biometric recognition. This research proposes to contribute
empirical findings in improving biometric recognition against presenta-
tion attacks using deep learning techniques.

3.1. Generating spoofing datasets

In our experiment, we will use Generative Adversarial Networks (GANs)
to generate a synthetic (spoofing) dataset. GANs to generate a synthetic
(spoofing) dataset. GANs are a novel and promising approach to various
problems that involve generating photorealistic images [28]. The basic
approach involves two competing neural networks. Fig. 1 shows an

 real or fake?

f

D

X, o (dataser) Xake

Z (noise)

Fig. 1. Illustration of competing neural networks, discriminator D and gener-
ator G, in Generative Adversarial Networks (GAN) technique.
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illustration of the GAN approach.

One is a discriminator, D, that attempts to determine whether a
presented image is authentic or synthetic. The other is a generator, G,
that tries to generate images that can successfully deceive the discrimi-
nator. The generator begins with a random noise (Z) input and continues
generating samples with information from the discriminator. The two
networks are trained in tandem, competing against the other, and each
has information about the other’s successes or failures. As the generator
improves, the images become increasingly realistic to deceive the
discriminator. In unison, the discriminator continually improves its
discriminative capability, requiring the generated (spoofing) images to
become more detailed in order to remain undetected. Training is often
unstable with simple GANs, generating senseless noise for output [29,
30].

Advancements in GANs stability introduced a class of CNNs called
Deep Convolutional Generative Adversarial Networks (DCGANSs) [30,36,
37]. The proposed architecture is proven to be more stable in training
GANs for image generation [30]. The architectural guidelines for stable
DCGANS replace all pooling layers, in a typical CNN, with strided con-
volutions (discriminator) and fractionally-strided convolutions (gener-
ator). Batch normalization is used in both the generator and the
discriminator to normalize the inputs to nonlinearities. All fully con-
nected hidden layers are also removed. The use of ReLU and LeakyReLU
activations are also used in all layer of the generator and discriminator,
excluding the output. Fig. 2 shows a graphical model of the DCGAN ar-
chitecture [30] (see Fig. 3).

3.2. Genetic and evolutionary feature extraction (GEFE)

GEFE, a technique proposed in Shelton et al. [13], is a hybrid of a

Generator
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Fig. 2. DCGANs architecture uses a series of four fractionally-strided (5x5)
convolutions. The first layer of the GAN takes a 100 dimensional uniform noise
distribution as the input. For the discriminator, the last convolution layer is
flattened and then fed into a single sigmoid output [30].
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Fig. 3. Image samples from the same subject on iPhone5 inside and outside
datasets were focused and cropped around the periocular regions. Resulting an
image size of 64x64 pixel.

;&

GEFE+GAN
X = 25//Number of subjects

y = 4//Number of Instances per subject
FV = {fvo,0, £V, 1, L EVey )
numErrors = 0

G Eve,y, Vo,

closestSubj null, closestDist = MaxDist

for(i = 0; i < (x*y); i++){
for(j = 0; j < (x*y); j++){
iE(1 1= )
if (Dist (FV[i], FVI[j]) < CloseStDiSt){
closestSubj = FVI[]j].id;

closestDist = Dist(FVI[i]l, FVI[j]);

Iy
if (FV[i] .id != closestSubj) {
if (FV[i] .id == DCGAN sample) {
numErrors+=2
}else numErrors++

}

closestSubj=null, closestDist = MaxDist

Fig. 4. GEFE + GAN technique presented in psuedocode; The fitness doubles
the error value if the closest subject is a DCGAN (spoof) sample.

Genetic and Evolutionary Computations (GEC) to optimize the LBP
feature extractors. A GEC is a general problem solving technique based on
simulated evolution. A fitness function is used to compute the wellness of
a solution and the best solutions procreate to create better solutions. The
GEFE feature extractors (FE) optimize the texture-based feature extrac-
tors’ dimensions and displacement on the image sample [13-16].

The ith candidate feature extractor, fe;, consists of uniform patches.
The candidate is a six-tuple, <X; Y;, W;, H,M,.f;>, where X;= {0, X1, ...,
Xin-1} represents the x-coordinates of the center of the n possible patches
and Y= {y,0, ¥i1, ---» Yin-1} Tepresents the y-coordinates of center of the n
possible patches. The widths and heights of the n patches are represented
by VV,': {W,',o, Wit .- W'Ul_j} and Hi: {hi,O: hi’1, ey hi,n—l}' Because the
patches are uniform, Wi= {Wxo, Wk 1, ..., Wkn-1} is equivalent to wy o=
Wi 1, -.os Wign-2 Wign-1 and Hi= {hi o, h 1, ..., hin1} is equivalent to by o=
hi 1, .., Mign-2, i n1, meaning that the widths and heights of every patch
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REAL DCGAN GENERATED SAMPLES

B2

o

Vg

Fig. 5. Image samples from original Apple iPhone-inside (real) dataset and the
DCGAN generated (counterpart) datasets for spoofing.

are the same. Uniform sized patches are used because uniform sized
patches outperformed non-uniform sized patches [13]. Mi= {m;q, m;y, ...,
m; n.1} represents the masking values for each patch and f; represents the
fitness of fe;. The masking value determines whether a patch is activated
or deactivated, and by extension, whether certain pixels will be processed
or not. If a patch is deactivated, by setting m;= 0, then the sub-histogram
will not be considered in the distance measure, and the number of fea-
tures to be used is reduced. Otherwise, the patch is activated, with m;= 1
[13-16].

The fitness, fi, is determined by applying fei towards a dataset of
subject’s biometric images. A subject has a number of images that vary,
and these images are separated into a probe set and a gallery set (G). The
fe; is applied on these images to create FVs, and the FVs in the probe set
are compared to all of the FVs in the gallery set using the Manhattan
distance measure. The two FVs that have the least Manhattan distance
are considered to be matches. If a probe FV is incorrectly matched with a
gallery FV, then fe; is said to cause an error. The fe; also considers how
much surface area of the image it covers. The resulting fe; is the number
of errors (¢) added to the percent of patches not masked out (the sum-
mation of all masking values over the total number of patches, (n)). Both
the error and percentage of patches must be reduced so the fitness is
being minimized.

Traditionally, GEFE is applied on a simulation of a biometric identi-
fication system. To simulate this, K biometric images are collected from N
different individuals. One image per individual will represent a biometric
sample being identified and the K-1 images of all N individuals represents
the database of known individuals. A GEFE FE is applied on every image
and feature vectors (FVs) are created for each. Each FV that is to be
identified is compared to the database of FVs and the most similar match
is considered the identity of the unknown FV. If there is a mismatch, the
fitness of the FE is penalized. With this scheme, there are N*(N*(K-1))
comparisons made.

The fitness is based on the number of correct matches between in-
stances, so the best fitness occurs when discriminating features are
extracted from each instance. The more discriminating the features, the
more likely that the resulting FVs from the same individuals will have a
better similarity score than FVs from different individuals. The GEFEyany
scheme, proposed in Jenkins et al. [15], compares every instance in a
dataset into every other instance. The instances involved do not change
from the dataset used by the traditional GEFE method, but the number of
comparisons is now (N*K)*((N*K)-1). The number of comparisons is
now greater, thus allowing for a more complex environment to evolve
FEs in. Though the number of instances has not changed, the increase of
instance comparisons results in FEs that have a superior identification
performance.

The proposed methodology for this work is to use the DCGAN
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architecture as a data augmentation technique to generate a spoofing
dataset. The generated spoofing dataset will be tested for its quality and
used in the GEFE technique to generate improved feature extractors that
can mitigate presentation attacks. Similar to the combination of BSIF and
2D Ceptrum [24], the GEFE technique has been used previously to
optimize LBP FEs to mitigate replay attacks with high biometric recog-
nition accuracy. The proposed GEFE technique will be optimized to
mitigate synthetic images. The GEFE FEs also will provide insight on
which biometric features have the higher discriminative capabilities as
GEFE optimizes the dimensions and displacement of FEs on the biometric
sample.

4. Experiment

This research applies the DCGAN and GEFE techniques to periocular
images from the BIPLab MICHE-I dataset [32]. The periocular images
from the BIPLab MICHE-I datasets are taken from the Apple iPhone5 and
Samsung GalaxyS4 smartphones. From this dataset, we form two subsets:
the iPhone5 dataset and the Galaxy dataset. For the iPhone5 datasets,
images were taken from the FaceTime HD (front) camera of 1.2 mega-
pixels (MP). For the GalaxyS4 datasets, images were taken from the
CMOS (front) camera of 2.0 MP. For the BIPLab dataset, 25 subjects were
used with 8 periocular samples per subject. Image samples consisted of 4
indoors using artificial light and 4 taken outdoors using natural light. All
images from the BIPLab dataset were, taken 10 cm away from the device.
Comparisons among image data were done using the approach described
in the Methodology section where there are K images collected from N
different individuals.

Originally, images from iPhone5 & GalaxyS4 datasets had a resolu-
tion of 480x640 pixel or greater. For ease of image generation, classifi-
cation, and recognition, all images were resized and cropped to 64x64
pixel; similar to protocols in previous research [17,18]. The images were
zoomed in to ensure coverage of the periocular region. In cropping the
image, superfluous noise, such as the shirt textures, hair textures, and
other background noises are removed. Cropping also allows flexibility
when images are not taken exactly as directed. The 64x64 pixel size also
works best for this experiment as the DCGAN technique generates four
64x64 pixel sized images as the output. All four samples for each subject
are used for input comparison (discriminator) in the DCGAN technique.
This DCGAN is trained for 2500 epochs. The DCGAN techniques will use
a learning rate of 0.0005. This process generates four unique synthetic
samples for each subject. These generate samples are placed in the gallery
set of the original datasets to test the technique’s accuracy.

First we test the quality of the images generated by the DCGAN
technique. The spoofing samples will be added to the gallery set of a
simple LBP-3x3 identification system. An LBP 3x3 system means that
images are split into three rows and three columns of even sized regions
where features are extracted from each region and concatenated to form
the feature vector for an image. The identification and verification ac-
curacies will be recorded and compared, that with the original dataset
and the spoofing datasets as well. These results will show us the quality of
DCGAN generated samples and the power of Generative Adversarial
Networks. Next, we will use the spoofing datasets for training with the
GEFE technique to generate improved feature extractors. During this
process, the GEFE technique will not only be looking for distinct features
for periocular recognition, but also features to mitigate presentation at-
tacks. GEFE uses the Estimation of Distribution Algorithm (EDA) [31] as
the GEC with 250 function evaluations with a population size of 20
candidates FEs.

All subject samples are used for input in DCGAN technique to
generate corresponding spoofing datasets. This DCGAN technique trains
on a GPU for 2500 epochs. The DCGAN techniques will use a learning
rate of 0.0005. This DCGAN technique generates equal unique synthetic
samples for each subject. These generate samples are then placed in the
gallery set of the original datasets to test the technique’s accuracy;
doubling the original dataset in size.
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For the GEFE experiments, we will use a 60/40 training/testing set
split. GEFEpany is applied on the original datasets for a baseline accuracy;
referred as GEFE in our experiments. The GEFE technique is then applied
on the spoofing datasets with the DCGAN generated samples added to the
gallery set; referred to as GEFE + GAN in our experiments. GEFE + GAN
is optimized for DCGAN generated presentation attacks. The original
GEFE (GEFEa5y) technique applies an equal value of error for all non-
matching subjects. In the GEFE + GAN2 technique, the error value is
double for matching a subject with a DCGAN generated sample during
the evolutionary process. By doubling the error value for matching sub-
jects with a DCGAN generated samples, the evolved feature extractors are
less likely to match a presentation attack over real subjects. This is pro-
posed to optimize the anti-spoofing fitness of the generated feature ex-
tractors. This is also shown in the pseudocode below.

The identification performance will be presented using Cumulative
Match Characteristic (CMC) curves. As each probe sample is compared
against all gallery samples, the resulting scores are sorted and ranked.
This determines the True Positive Identification Rate (TPIR); the rank at
which a true match occurs. CMC curves plot the TPIR against ranks. The
verification performance will be presented using Receiver Operator
Characteristic (ROC) curves. As each probe sample is compared against
all gallery samples, the True Accept Rate (TAR) and False Accept Rate
(FAR) of subjects are calculated at multiple thresholds. TAR is the mea-
sure of likelihood that the biometric security system will correctly ver-
ifies a true claim of identity. The FAR is the measure of likelihood a
system incorrectly accepts an access attempt by an unauthorized user.
The TAR and FAR are stated as the ratio of the number of true and false
acceptances divided by the number of identification attempts.

5. Results and discussion

This research applied the LBP feature extraction technique on data-
sets with samples generated from the DCGAN (see Fig. 4). For the LBP
identification system, the first sample of each subject is placed into a
probe set. All other samples are placed in a gallery set. The system
compares each subject’s probe sample to the gallery set, containing the
other samples of the current subject as well as the samples of other
subjects in the system. For calculating the identification fitness for the
LBP histograms, the Manhattan distance metric was used.

Figs. 6-13, below, shows the Cumulative Match Characteristic (CMC)
curves and the Receiver Operator Characteristic (ROC) curves on the
iPhone5 datasets (see Fig. 5). The CMC curve plots the identification
accuracies of each method, while the ROC curve plots the verification
accuracies. The CMC curve plots the rank at which a true match occurs
The ROC curve plots the True Accept Rate (TAR) and False Accept Rate
(FAR) of subjects calculated at multiple thresholds.

Fig. 6 shows the CMC results of GEFE generated feature extractors on
the iPhone5-inside dataset. GEFE + GAN is the first technique to reach
100% at Rank 4, followed by GEFE at Rank 5. LBP reaches 100% at Rank
14. Fig. 7 shows the ROC results (Loged Scaled) of the GEFE generated
feature extractors on the iPhone5-inside dataset. LBP has a TAR of 0.8 at
a FAR of 0.04. GEFE has a TAR of 0.811 at a FAR of 0.0402. GEFE + GAN
has a TAR of 0.757 at a FAR of 0.04.

GEFE Experiments for iPhone5 (inside)
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Fig. 6. CMC results for LBP and GEFE techniques on the iPhone5-inside dataset.
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Fig. 7. ROC results for LBP and GEFE techniques on the iPhone5-inside dataset.
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Fig. 8. CMC results for LBP and GEFE techniques on the iPhone5-inside dataset
with DCGAN samples added.
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Fig. 9. ROC results for LBP and GEFE techniques on the iPhone5-inside dataset
with DCGAN samples added.
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Fig. 10. CMC results for LBP and GEFE techniques on the iPhone5-
outside dataset.

Fig. 8 shows the CMC results of GEFE generated feature extractors on
the iPhone5-inside dataset with DCGAN samples added. GEFE + GAN is
the first technique to reach 100% at Rank 6, followed by GEFE at Rank 7.
LBP reaches 100% at Rank 14. Fig. 9 shows the ROC results (Log Scaled)
of the GEFE generated feature extractors on the iPhone5-inside dataset
with DCGAN samples added. LBP has a TAR of 0.787 at a FAR of 0.0452.
GEFE has a TAR of 0.811 at a FAR of 0.0402. GEFE + GAN has a TAR of
0.757 ata FAR 0f 0.0461. Soon after, GEFE has a TAR of 0.892 at a FAR of
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Fig. 11. ROC results for LBP and GEFE techniques on the iPhone5-
outside dataset.
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Fig. 12. CMC results for LBP and GEFE techniques on the iPhone5-outside
dataset with DCGAN samples added.
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Fig. 13. ROC results for LBP and GEFE techniques on the iPhone5-outside
dataset with DCGAN samples added.

0.138 while GEFE + GAN has a TAR of 0.865 at a FAR of 0.143.

Fig. 10 shows the CMC results of GEFE generated feature extractors
on the iPhone5-outside dataset. GEFE is the first technique to reach 100%
at Rank 4, followed by GEFE + GAN at Rank 5. LBP doesn’t reaches 100%
until Rank 22. Fig. 11 shows the ROC results (Log Scaled) of the GEFE
generated feature extractors on the iPhone5-outside dataset. LBP has a
TAR of 0.947 at a FAR of 0.0194. GEFE has a TAR of 0.824 at a FAR of
0.0225. GEFE + GAN has a TAR of 0.797 at a FAR of 0.0231.

Fig. 12 shows the CMC results of GEFE generated feature extractors
on the iPhone5-outside dataset with DCGAN samples added. At Rank 5,
GEFE reach 96% as GEFE + GAN reaches 92%. GEFE is the first technique
to reach 100% at Rank 8, followed by GEFE + GAN at Rank 11. LBP
doesn’t reaches 100% until Rank 25. Fig. 14 shows the ROC results (Log
Scaled) of the GEFE generated feature extractors on the iPhone5-outside
dataset with DCGAN samples added. LBP has a TAR of 0.950 at a FAR of
0.0392. GEFE has a TAR of 0.824 at a FAR of 0.0450. GEFE + GAN has a
TAR of 0.851 at a FAR of 0.0493.

Figs. 14-20, below, shows the Cumulative Match Characteristic
(CMCQ) curves and the Receiver Operator Characteristic (ROC) curves on
the GalaxyS4 datasets. The CMC curve plots the identification accuracies
of each method, while the ROC curve plots the verification accuracies.
The CMC curve plots the rank at which a true match occurs The ROC
curve plots the True Accept Rate (TAR) and False Accept Rate (FAR) of
subjects calculated at multiple thresholds.

Fig. 14 shows the CMC results of the GEFE generated feature ex-
tractors on the GalaxyS4-inside dataset. GEFE + GAN is the first
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Fig. 14. CMC results for LBP and GEFE techniques on the GalaxyS4-
inside dataset.

technique to reach 100% at Rank 8. All other techniques are 96% at Rank
8. The GEFE technique reaches 100% at Rank 14, followed by LBP at
Rank 15. Fig. 15 shows the ROC results (Log Scaled) of the GEFE
generated feature extractors on the GalaxyS4-inside dataset. LBP has a
TAR of 0.7733 at a FAR of 0.08611. GEFE has a TAR of 0.8378 at FAR of
0.0895. GEFE + GAN has a TAR of 0.8108 at a FAR of 0.0957. The ROC
curves begin to alter as GEFE + GAN technique surpasses the GEFE
techniques. GEFE + GAN technique has a TAR of 0.8649 at a FAR of
0.128. The GEFE technique has a TAR of 0.8514 at a FAR of 0.1402.

Fig. 16 shows the CMC results of the GEFE generated feature ex-
tractors on the GalaxyS4-inside dataset with DCGAN (synthetic) samples
added. GEFE + GAN is the first technique to reach 100% at Rank 17. This
is followed by the GEFE techniques reaching 100% at Rank 20 and LBP at
Rank 25. The GEFE technique is the first reach 92% at Rank 5, followed
by GEFE + GAN at Rank 11. Fig. 17 shows the ROC (Log Scaled) of the
GEFE generated feature extractors on the GalaxyS4-inside dataset with
DCGAN (synthetic) samples added. LBP has a TAR of 0.82667 at a FAR of
0.1333. GEFE has a TAR of 0.8514 at a FAR of 0.1235. GEFE + GAN has a
TAR of 0.7838 at a FAR of 0.130.

Fig. 18 shows the CMC results of the GEFE generated feature ex-
tractors on the GalaxyS4-outside dataset. GEFE + GAN is the first tech-
nique to reach 100% at Rank 2, followed by GEFE at Rank 3. The LBP
technique reaches 100% at Rank 19. Fig. 19 shows the ROC results
(Loged Scaled) of the GEFE generated feature extractors on the GalaxyS4-
outside dataset. LBP has a TAR of 0.8133 at a FAR of 0.03944. GEFE has a
TAR of 0.8514 at a FAR of 0.0376. GEFE + GAN has a TAR of 0.8649 at a
FAR of 0.0355.

Fig. 20 shows the CMC results of the GEFE generated feature ex-
tractors on the GalaxyS4-outside dataset with DCGAN (synthetic) sam-
ples added. Both GEFE and GEFE + GAN reach 100% at Rank 5. LBP
reach 96% at Rank 13, but doesn’t reach 100% until Rank 23. Fig. 21
shows the ROC (Log Scaled) of the GEFE generated feature extractors on
the GalaxyS4-outside dataset with DCGAN (synthetic) samples added.
LBP has a TAR of 0.8 at a FAR of 0.0373. GEFE has a TAR of 0.8243 ata
FAR of 0.0355. GEFE + GAN has a TAR of 0.7973 at a FAR of 0.0337 (see
Fig. 22).

The GEFE (GEFEpany) and GEFE + GAN techniques are applied to a
total of eight datasets (real and spoofing). Both GEFE techniques used an
EDA as the GEC, with 250 function evaluations, and a population size of
20 candidates FEs. The identification performances are presented using
Cumulative Match Characteristic (CMC) curves. CMC curves plot the
True Positive Identification Rate (TPIR), the rank at which a true match
occurs. Table 1 shows a summary of the identification accuracies for
GEFE experiments on iPhone5 datasets. For the iPhone5-inside datasets,
GEFE reaches 100% at Rank 5. For the iPhone5-inside spoofing datasets,
100% is reached at Rank 7. Also for the iPhone5-inside dataset, GEFE +
GAN reaches 100% at Rank 4, and Rank 6 on spoofing dataset. For the
iPhone5-outside datasets, GEFE reaches 100% at Rank 4, and Rank 8 on
the spoofing dataset. Also for the iPhone5-outside dataset, GEFE + GAN
reaches a 100% at Rank 5. GEFE + GAN reaches 100% on iPhone5-
outside spoofing dataset at Rank 11.

Table 2 shows a summary of the identification accuracies for GEFE
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Fig. 15. ROC results for LBP and GEFE techniques on the GalaxyS4-
inside dataset.

GEFE Experiments for GalaxyS4 (inside & synthetic)

100 288888

o —x
) PA

8 — ~4~LBP [in]
& n
E ~8=GEFE [in]

a0
3]
S ==GEFE+GAN [in]

0

12 3 4 5 6 7 8 91011 1213141516 1718 1920222832425
RANK

Fig. 16. CMC results for LBP and GEFE techniques on the GalaxyS4-inside
dataset with DCGAN samples added.
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Fig. 17. ROC results for LBP and GEFE techniques on the GalaxyS4-inside
dataset with DCGAN samples added.
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Fig. 18. CMC results for LBP and GEFE techniques on the GalaxyS4-
outside dataset.

experiments on GalaxyS4 datasets. For the GalaxyS4-inside datasets,
GEFE reaches 100% at Rank 14 (96% at Rank 8). For the iPhone5-inside
spoofing datasets, 100% is reached at Rank 20 (92% at Rank 5). Also for
the GalaxyS4-inside dataset, GEFE + GAN reaches 100% at Rank 8, and
Rank 17 on spoofing dataset. For the GalaxyS4-outside datasets, GEFE
reaches 100% at Rank 3, and Rank 5 on the spoofing dataset. Also for the
GalaxyS4-outside dataset, GEFE + GAN reaches a 100% at Rank 2. GEFE
+ GAN reaches 100% on GalaxyS4-outside spoofing dataset at Rank 5.
The GEFE + GAN technique showed promising results with higher
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Fig. 19. ROC results for LBP and GEFE techniques on the GalaxyS4-
outside dataset.
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Fig. 20. CMC results for LBP and GEFE techniques on the GalaxyS4-outside
dataset with DCGAN samples added.
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Fig. 21. ROC results for LBP and GEFE techniques on the GalaxyS4-
outside dataset.

Fig. 22. GEFE (left) and GEFE + GAN (right) generated feature extractors (FEs)
illustrated on biometric samples.

identification accuracies than the GEFE technique on six out of eight
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Fig. 23. GEFE (red) and GEFE + GAN (blue) generated feature extractors (FEs)
transposed a detailed illustration of the periocular region. The illustration de-
tails the surface anatomy [34].

Table 1
Summary of Identification Accuracies for. GEFE Experiments on iPhone5
datasets.

Dataset Technique CMC Rank at 100%
Real Spoof
iPhone5-inside LBP 14 14
GEFE 5 7
GEFE + GAN 4 6
iPhone5-outside LBP 22 25
GEFE 4 8
GEFE + GAN 5 11
Table 2

Summary of Identification Accuracies for. GEFE Experiments on GalaxyS4
datasets.

Dataset Technique CMC Rank at 100%
Real Spoof

GalaxyS4-inside LBP 15 25
GEFE 14 20
GEFE + GAN 8 17

GalaxyS4-outside LBP 19 23
GEFE 3 5
GEFE + GAN 2 5

datasets. Verification results are also comparable on all datasets. The
results shows that the GEFE + GAN technique optimizes the anti-spoofing
fitness of the generated feature extractors. (see Fig. 23).

For the GEFE FEs, the experimental results show that the majority of
the eyes and eyelids are chosen for extraction. The FEs tends to favor the
upper and lower lid folds. The suprabrow and upper eyelid are covered
by the FEs. The FEs also covers the most of the nasal area. For the GEFE +
GAN FEs, one could extrapolate from the displacement that the canthi
(eye corners) are keys to identification and presentation attack mitiga-
tion. The generated FEs favor the lateral and medial canthus over using
the entire eye area. The malar fold is the defined groove extending from
the lateral canthus. The nasojungal crease is also a defined groove in the
lower lid fold, between the medial canthus and the nose [34]. The
nasofacial sulcus is covered by both GEFE FEs, but more significantly on
the outside dataset; instead of the entire nose. It seems the natural light in
the iPhone5-outside datasets exposes the periocular features better for
discriminative capabilities. These areas could all be outlining features
used to mitigate presentation attacks with synthetic images.

Array 7 (2020) 100029

6. Conclusion and future reasearch

In this paper, we apply a data augmentation technique with GANs to
generate comparative synthetic (spoofing) dataset. We trained the syn-
thetic images using GAN and created spoofing datasets. The GEFE tech-
nique is then used in combination with the GANs to generate improved
anti-spoofing feature extractors optimized in an attempt to mitigate
presentation attacks. The combination of GEFE and GANs is used to
identify those discriminative biometric features used to mitigate syn-
thetic presentation attacks. The GEFE + GAN technique outperforms the
LBP and GEFE techniques alone in overall identification and verification
results on spoofing datasets.

To improve upon the GEFE + GAN technique, we would continue by
applying experiments on images taken from the UBI periocular recog-
nition datasets [38]. The UBI dataset uses images taken from a profes-
sional camera, the Canon EOS 5D (12.8 MP). The UBI dataset also has 15
periocular samples per subject. With an increase of samples, the DCGAN
generated samples should be more accurate. With higher quality syn-
thetic samples, the GEFE experiments should increase the quality of
discriminative feature extraction.
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