

Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin *Heliocidaris erythrogramma*

Running head: Expression response to OA across life cycle

Hannah R. Devens^{1*}, Phillip L. Davidson^{1*}, Dione J. Deaker², Kathryn E. Smith³, Gregory A. Wray^{1,4**}, and Maria Byrne^{2,5**}

1. Department of Biology, Duke University, Durham, NC 27708, USA.

10 2. School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia

11 3. The Laboratory, The Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK

13 4. Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.

13 4. Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.

15

17 **Corresponding authors: ggray@duke.edu; maria.byrne@sydney.edu.au

18 **ABSTRACT**

19 Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs
20 development in marine invertebrates, particularly in calcifying species. Plasticity in gene
21 expression is thought to mediate many of these physiological effects, but how these responses
22 change across life history stages remains unclear. The abbreviated lecithotrophic development of
23 the sea urchin *Heliocidaris erythrogramma* provides a valuable opportunity to analyze gene
24 expression responses across a wide range of life history stages, including the benthic, post-
25 metamorphic juvenile. We measured the transcriptional response to OA in *H. erythrogramma* at
26 three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The
27 results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including
28 changes in the number and identity of affected genes; the magnitude, sign, and variance of their
29 expression response; and the developmental trajectory of expression. The impact of OA on
30 transcription was notably modest in relation to gene expression changes during unperturbed
31 development and much smaller than genetic contributions from parentage. The latter result
32 suggests that natural populations may provide an extensive genetic reservoir of resilience to OA.
33 Taken together, these results highlight the complexity of the molecular response to OA, its
34 substantial life history stage specificity, and the importance of contextualizing the transcriptional
35 response to pH stress in light of normal development and standing genetic variation to better
36 understand the capacity for marine invertebrates to adapt to OA.

37 **Keywords:** climate change, echinoid, direct development, ocean acidification, RNA-seq,
38 transcriptomics

39 **INTRODUCTION**

40 Increased ocean uptake of carbon dioxide (CO_2) due to rising anthropogenic emissions is
41 causing rapid alterations to the biological, chemical, and physical composition of the marine
42 environment (Gattuso et al., 2015; IPCC, 2014). These changes have resulted in a multidimensional
43 set of stressors for marine life as the ocean becomes more hypercapnic (increasing pCO_2), more
44 acidic, and less saturated in calcium carbonate minerals (Albright et al., 2016; Gattuso et al., 2015;
45 IPCC, 2014). Calcifying marine invertebrates such as corals, mollusks, and echinoderms are
46 particularly vulnerable to the reduced availability of carbonate ions (Byrne & Hernandez, 2020;
47 Kroeker et al., 2013; A. M. Smith, Clark, Lamare, Winter, & Byrne, 2016). Several studies have
48 shown the negative effect of decreasing carbonate mineral saturation on skeletogenesis in these
49 animals (Byrne & Fitzer, 2019; Byrne, Lamare, Winter, Dworjanyn, & Uthicke, 2013; Collard,
50 Catarino, Bonnet, Flammang, & Dubois, 2013; Stumpp, Wren, Melzner, Thorndyke, & Dupont,
51 2011). Hypercapnic seawater conditions and reduced pH can also disrupt metabolism, resulting in
52 the prioritization of energy reserves toward the maintenance of essential physiological processes
53 (e.g., acid-base homeostasis) rather than growth and calcification (Byrne et al., 2013; Carey,
54 Hariant, & Byrne, 2016; Collard et al., 2013; Liu et al., 2020; Stumpp et al., 2011; Todgham &
55 Hofmann, 2009).

56 The impact of OA on the reproduction, development, and physiology of marine
57 invertebrates differs between species (Kroeker et al., 2013; Przeslawski, Byrne, & Mellin, 2015),
58 and gene expression studies indicate that the affected physiological and molecular pathways also
59 differ (Strader, Wong, & Hofmann, 2020). The ability to measure the expression of all genes
60 simultaneously through transcriptomic analyses provides a powerful approach to understanding
61 organism responses and differences among taxa, as this approach affords a comprehensive and

62 unbiased view of stress response at the molecular level. Several studies have used this approach to
63 examine the effects of OA in diverse marine invertebrates, with a major focus on calcifiers, as they
64 are the most vulnerable (Davies, Marchetti, Ries, & Castillo, 2016; De Wit, Durland, Ventura, &
65 Langdon, 2018; Evans, Chan, Menge, & Hofmann, 2013; Griffiths, Pan, & Kelly, 2019; Maas,
66 Lawson, Bergan, & Tarrant, 2018; Pan, Applebaum, & Manahan, 2015; Strader et al., 2020). To
67 date, no study has examined the transcriptomic response to OA spanning the planktonic to benthic
68 transition in any marine invertebrate (for a recent review, see Strader et al., 2020). To address this
69 gap in knowledge, we carried out transcriptomic analyses of the response to OA at three life history
70 stages (embryos, larvae, and metamorphosing juveniles) under control and OA conditions in the
71 sea urchin *Heliocidaris erythrogramma*.

72 *H. erythrogramma* is abundant in shallow benthic habitats around temperate Australia
73 where, like many sea urchin species, it is ecologically important in structuring subtidal habitats as
74 a major grazer of macroalgae (Keesing, 2020). Prior studies of the impact of OA on survivorship
75 and morphogenesis of *H. erythrogramma* demonstrate that fertilization, embryos, and early
76 larvae are robust to projected OA conditions (pH 7.6-7.8) (Byrne et al., 2010; Hardy & Byrne,
77 2014), while later metamorphic stages are more sensitive to these pH levels (Byrne et al., 2011).
78 *H. erythrogramma* develops rapidly through a lecithotrophic (nonfeeding) larva (Williams &
79 Anderson, 1975), providing an opportunity to examine the effects of OA on gene expression
80 across the life cycle from embryo to early juvenile for the first time in a marine invertebrate.

81 Because the evolution of lecithotrophy in *H. erythrogramma* involved substantial changes
82 in maternal provisioning, developmental physiology, and larval anatomy (Byrne & Sewell, 2019;
83 Davidson et al., 2019; Henry, Wray, & Raff, 1990; M. S. Smith, Collins, & Raff, 2009; Williams
84 & Anderson, 1975), the response of development in this species to OA would be expected to

85 differ with respect to the larval stage (i.e. feeding vs non-feeding sea urchin larvae). In particular,
86 the larval skeleton is reduced to vestigial spicules in *H. erythrogramma* compared with the well-
87 developed skeleton of echinoplutei (Emlet, 1995; Williams & Anderson, 1975) and so may be
88 less susceptible to the effects of OA during pre-metamorphic stages of the life cycle. For the
89 Echinodermata, species with nonfeeding and noncalcifying larvae have exhibited differential
90 survival through past extinction events, including those linked to altered climate (Uthicke,
91 Schaffelke, & Byrne, 2009). Furthermore, genomic resources are available for *H.*
92 *erythrogramma*, including developmental transcriptomes (Israel et al., 2016; Wygoda, Yang,
93 Byrne, & Wray, 2014), as well as metabolic and proteomic mass spectrometry datasets (Davidson
94 et al., 2019), making this a particularly valuable species for studying transcriptomic responses to
95 OA.

96 Besides carrying out conventional analyses to identify differences in transcript abundance,
97 we examined two other informative features of the gene expression response to OA. First, we
98 measured variance in gene expression, both for individual genes based on variance partitioning and
99 for the transcriptome as a whole based on the variance-to-mean ratio (VMR). Because increased
100 variance can reflect misregulation (Felix & Barkoulas, 2015; Lopez-Maury, Marguerat, & Bahler,
101 2008), these measures provide a way to gauge whether OA disrupts the regulation of gene
102 expression as distinct from the reaction norm. Second, we measured changes in the shape of gene
103 expression profiles across developmental stages, based on soft clustering (Kumar & Futschik,
104 2007) and changes in cluster membership (Israel et al., 2016). Such "cluster jumps" provide an
105 objective method for identifying large changes in the temporal trajectory of gene expression
106 independent of expression level (e.g., progressive increase *vs* central peak). Finally, we took
107 advantage of the controlled breeding design to measure genetic contributions to the transcriptomic

108 response to OA using male parent as a factor in a mixed linear model (Runcie et al., 2016). Taken
109 together, the results of these analyses illustrate the value of examining diverse facets of the
110 molecular response to a stressor, sampling multiple life history stages, and measuring the relative
111 magnitude of genetic and environmental influences on gene expression.

112

113 **MATERIALS AND METHODS**

114 ***Experimental design and set up***

115 *Helicidaris erythrogramma* adults were collected near Sydney, Australia and maintained
116 in flow-through filtered natural seawater (FSW, 20 μ m) at the Sydney Institute of Marine Sciences.
117 A controlled breeding design consisting of three crosses was used, with each cross derived from
118 eggs pooled from the same five females and sperm from a different male. Pooling eggs from five
119 females provided sufficient biological material for sampling multiple time points, while fertilizing
120 with sperm from different males provided biological replication as well as the ability to estimate
121 male genetic contributions to variation in gene expression among samples (Runcie et al., 2016).
122 An asymmetric breeding design was used because female genetic contributions are difficult to
123 measure during development due to differences in egg quality that often overwhelm genetic
124 differences, while male contributions are considered nearly equivalent to genetic contributions as
125 sperm bring few nutrients and mRNAs to the zygote (Lynch & Walsh, 1998).

126 Spawning was induced by injecting 0.5 ml of 0.5 M KCl into the coelom. Eggs and sperm
127 were microscopically checked for quality and motility and the sperm of three males was stored dry
128 until use. Equal portions of eggs from five females were combined in a 5 L beaker of FSW and
129 aliquots were counted to determine egg concentration. Eggs were then divided equally across three
130 5 L beakers of FSW at experimental pH_T levels (8.0 and 7.6; see below for details). To generate

131 three biological replicates, eggs were fertilized in each beaker with sperm from a different male at
132 a concentration of 10^4 sperm/mL (determined by hemocytometer counts), resulting in three distinct
133 crosses for each pH condition with fertilization rate $> 90\%$. Embryos were reared at a concentration
134 of 1/mL in 100 mL plastic containers in a flow-through seawater system (1.0 μm FSW) with water
135 at experimental pH_T levels and temperature at 20°C.

136 The two pH_T conditions in our experiment, pH_T 8.0 and pH_T 7.6, represent current and
137 projected future ocean pH_T (2100) (IPCC, 2014). The shallow subtidal environments in eastern
138 Australian coastal areas, where *H. erythrogramma* are typically found, fluctuate between pH_T
139 7.87 - 8.30 (Wolfe, Nguyen, Davey, & Byrne, 2020); thus, a pH_T of 7.6 is likely to be outside
140 their natural pH range. The pH_T of seawater was maintained using a mixed CO₂ system, in which
141 a thermally compensated, low-flow controller valve (Parker Hannifin, OH, USA) and a
142 proportional-integral-derivative controller, updated every 10 s, were used to inject food-grade
143 CO₂ into ambient air that had been scrubbed of CO₂. CO₂ was vigorously and continuously
144 bubbled into the header tank, using ceramic diffusers to supply pH_T 7.6 water. Ambient seawater
145 in the controls was not manipulated. A thermocouple-solenoid feedback system that
146 automatically mixed warm and cold water in a mixing chamber was used to supply water at
147 stable temperature (20°C) at the desired pH_T. Seawater pH was measured spectrophotometrically
148 on the total scale (pH_T) with a custom-built sampling system connected to an Ocean Optics
149 USB4000+fiber optic spectrometer using m-Cresol dye indicator (Acros Argonics lot
150 #A0321770) and pH_T was calculated according to Liu, Patsavas, and Byrne (2011).

151 Measurements were calibrated to certified reference material (CRM) for CO₂ in seawater
152 (Batch 139 (A. G. Dickson, Sabine, C.L., & Christian, J.R., 2007)). In parallel with pH
153 monitoring (see below), samples (330 mL) of source water were collected daily over the five

154 days of rearing to determine total alkalinity (TA) by potentiometric titration (Titrand, Metrohm)
155 (see Supp. Table 1) calibrated using seawater CRMs (Batch 139 (A. G. Dickson, Sabine, C.L., &
156 Christian, J.R., 2007); carbonate system parameters, $p\text{CO}_2$, calcite and aragonite saturation states
157 were calculated using CO2SYS (Pierrot, 2006) (Supp. Table 1). Dissociation constants for these
158 calculations were calculated following Mehrbach, Culberson, Hawley, and Pytkowicx (1973) as
159 refit by A. G. Dickson and Millero (1987) for K1/K2 and Andrew G. Dickson (1990) for KHSO_4 ,
160 and Uppström (1974) for total boron. Temperature and pH were monitored daily in all treatments
161 in numerous randomly selected rearing containers at the level of the developing H.
162 erythrogramma using a WTW multimeter (Wissenschaftlich-TechnischeWerkstatten GmbG P4)
163 and SenTix_ 41 pH electrode; precision_0.01 pH units) to ensure conditions remained on
164 target. The probes were calibrated using NIST high precision buffers pH 4.0, 7.0 and 10.0
165 (ProSciTech, Australia) with pH on the total scale determined through calibration with TRIS sea
166 water buffer using the millivolt scale (A. G. Dickson, Sabine, C.L., & Christian, J.R., 2007). The
167 pH_T levels were the same across all rearing containers per treatment and so the daily pH_T
168 measure was used to determine the carbonate chemistry parameters (Supp. Table 1). FSW was
169 supplied at the appropriate pH_T by a dripper tap system to individual containers. FSW was
170 supplied at the appropriate pH_T by a dripper tap system to individual containers fitted with 150
171 μm mesh-covered windows that maintained 40-50 mL of water in the containers at all times, with
172 a flow rate of $\sim 3\text{-}4 \text{ mL/min}$.

173 Following fertilization, each of the three crosses was divided into two equal portions and
174 reared at the different pH_T levels, using 6-8 separate vessels for each cross X treatment in order to
175 achieve low culture densities. Samples were collected at three time points: embryo (gastrula stage,
176 26 hours post fertilization (hpf)), early larva (48 hpf), and newly settled juvenile (108 hpf) (see Fig.

177 1). Metamorphosis is not synchronous in *H. erythrogramma* cultures, so settled, post-metamorphic
178 individuals were hand-picked to sample the juvenile stage to ensure that they were at a similar
179 stage of development. Previous studies have shown that early embryos of *H. erythrogramma* are
180 resilient to OA with increased sensitivity to the juvenile stage and differential survival of resilient
181 progeny (Byrne et al., 2009; Byrne et al., 2011; Hardy & Byrne, 2014). In total, 18 samples were
182 collected for RNA-sequencing (3 developmental stages x 2 pH conditions x 3 biological replicates).
183 It was not possible to measure mortality, as dead embryos and larvae disintegrate quickly and were
184 washed out of the flow-through culture system used here. We monitored the developing stages
185 closely and did not note developmental delay in response to OA.

186 ***RNA extraction and sequencing***

187 Approximately 50 individuals were collected for each RNA sample and placed in TRIzol
188 (Invitrogen) for RNA extraction according to the manufacturer's instructions. Samples were
189 diluted in 40mL RNase-free water and stored at -80° C. RNA concentration was measured by Qubit
190 (Thermo Fisher Scientific) and RNA quality was determined with a Fragment Analyzer and
191 PROSize 2.0 (Agilent). In total, 17 samples were sequenced. One sample (8_1M1L: pH_T 8.0, Male
192 1, Larva) was not processed due to poor RNA quality. Library synthesis and sequencing of the
193 RNA samples were carried out at the Sequencing and Genomic Technology shared resource at the
194 Duke University Center for Genomic and Computational Biology. Sequencing libraries were
195 synthesized with KAPA Stranded mRNA-Seq kits (Roche). Paired-end sequencing greatly aids in
196 the construction of a de-novo transcriptome, but is cost-prohibitive to conduct on all samples;
197 therefore, samples were randomly subjected to either 150bp paired-end or 50bp single-end
198 sequencing (see Supp. Table 2 for sequencing scheme) on an Illumina HiSeq 4000 platform to
199 maximize transcriptome quality while optimizing cost.

200 ***Read quality control***

201 Read quality and summary statistics were generated with FastQC (Andrews, 2010) and read
202 trimming and adapter removal performed using Trimmomatic v. 0.38 (Bolger, Lohse, & Usadel,
203 2014) with the following parameters: LEADING:10, TRAILING:10, SLIDINGWINDOW:4:15,
204 MINLEN:30. Putative ribosomal RNA (rRNA) reads were identified and removed from paired-
205 end reads (because these reads ultimately were used for *de-novo* transcriptome assembly) by
206 aligning reads with Bowtie2 v. 2.2.4 (Langmead & Salzberg, 2012) to reference metazoan rRNA
207 sequences retrieved from the Agalma transcriptome assembly pipeline (Dunn, Howison, & Zapata,
208 2013). In addition to the RNA-seq reads generated in this study, 50bp paired-end reads from
209 Wygoda et al., 2014 and Israel et al., 2016, which encompass egg through 10-day post-
210 metamorphosis in *H. erythrogramma*, were incorporated into our *de-novo* transcriptome assembly
211 workflow to generate a more comprehensive developmental transcriptomic reference. Raw reads
212 from these two studies were subjected to the same quality control measures as the sequencing reads
213 generated in this study prior to assembly.

214 ***Transcriptome assembly and transcript abundance estimation***

215 Trimmed forward and reverse paired-end reads were concatenated along with paired-end
216 reads from two previous studies (Israel et al., 2016; Wygoda et al., 2014) into “master” forward-
217 and reverse-oriented FASTQ files. To reduce the large computational demands of *de novo*
218 transcriptome assembly from ~1.3 billion reads, forward and reverse reads were subjected to *in*
219 *silico* normalization within Trinity v. 2.0.6 (Grabherr et al., 2011) (parameters: k-mer length = 25,
220 maximum read coverage = 50). These normalized reads were used as input for *de novo*
221 transcriptome assembly in Trinity v. 2.0.6 under default parameters. Following assembly, contigs
222 from putative non-metazoan contaminant reads were identified and removed from the

223 transcriptome with *alien_index* (Ryan, 2015). Highly similar contigs were clustered with the *cd-*
224 *hit-est* program of CD-HIT (Li & Godzik, 2006) to remove highly redundant reference sequences
225 within the transcriptome (parameters: $c = 0.90$, $n = 9$, $l = 10$). Transcriptome summary statistics
226 were generated by Transrate (Smith-Unna, Boursnell, Patro, Hibberd, & Kelly, 2016) and are
227 available in Supp. Table 3. Lastly, contigs were annotated with protein models from the well-
228 studied sea urchin species *Strongylocentrotus purpuratus* (Sea Urchin Genome Sequencing et al.,
229 2006) using BLAST-X (Altschul, Gish, Miller, Myers, & Lipman, 1990) at an e-value threshold of
230 1e-10. To minimize quantification bias between single-end and paired-end samples, only forward
231 reads from paired-end samples that were trimmed to 50 bp were used for mRNA abundance
232 estimation within these samples. Trimmed reads were aligned to the transcriptome and transcript
233 abundance estimates were made with Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017).
234 Transcript abundance estimates were imported into R via the *tximport* library (Soneson, Love, &
235 Robinson, 2015) for statistical analysis.

236 ***Count filtering and differential expression analyses***

237 Isoform-level contigs at the gene level were combined via *tximport* and counts from contigs
238 mapping to the same *S. purpuratus* gene model were summed together. The resulting dataset
239 contained 19,728 genes. Genes with fewer than 2 counts-per-million (CPM) were removed from
240 this list, leaving 15,322 genes for use in downstream analyses; these counts are available in Supp.
241 Data 1. Principal component analysis (PCA) was conducted using the *prcomp* function within R
242 on transposed *rlog*-transformed counts plus one pseudocount (*rlog*[count + 1]) to identify the
243 contribution of each factor in the experiment to variation among samples. Differential expression
244 analyses were performed using DESeq2 v1.20.0 (Love, Huber, & Anders, 2014). Specifically, a
245 DESeqDataSet was constructed on the 15,322 genes to test for differential transcript abundance

246 between pH conditions (model: ~group where “group” is pH and Stage combinations; i.e. CL =
247 control at larval stage). Individual differential expression results at each stage were then extracted
248 using the “contrast” argument of the *results* function in DESeq2. The use of groups and contrasts
249 allowed us to ensure that the loss of one sample (at the larval stage at control pH) did not bias our
250 stage-to-stage results. In testing the effects of the loss of one sample, we found that artificially
251 removing another sample from the same male at a different stage *did* affect the number of DE genes
252 at each stage, but that this effect was proportional and did not change our overall conclusions about
253 the relative number of DE genes among stages.

254 Because we anticipated that the effect of pH would be subtle relative to other factors of the
255 experiment based on our earlier study (Runcie et al., 2016), genes with FDR (false discovery rate)-
256 corrected *p*-values ≤ 0.10 were considered significantly differentially expressed between sample
257 groups (Supp. Data 2). Current RNA-seq best practices do not include recommendations for fold
258 change (FC) thresholds for differential expression so long as there is an appropriate number of
259 biological replicates (Conesa et al., 2016; Zhang et al., 2014). However, in order to provide a direct
260 comparison with previous OA studies, a $\log_2(\text{FC})$ threshold $>= 1.5$ in conjunction with our
261 significance cutoff was separately applied and examined independently in downstream analyses.
262 Considering differentially expressed genes both with and without FC thresholding guards against
263 the tendency of biological interpretations to change based on the threshold selected (Dalman,
264 Deeter, Nimishakavi, & Duan, 2012; Schurch et al., 2016). Lists of differentially expressed genes
265 at each stage are presented in Supp. Data 2 and overlaps between stages plotted as area-proportional
266 diagrams using eulerAPE 3.0 (Micallef & Rodgers, 2014). Differentially-expressed genes were
267 compared with 890 genes found to be OA-responsive in previous studies (Evans, Pespeni,

268 Hofmann, Palumbi, & Sanford, 2017; Evans & Watson-Wynn, 2014) to determine how many of
269 the genes found in our study had not previously been reported to be OA-sensitive.

270 ***Variance partitioning and VMR analyses***

271 Variance partitioning of transcript abundances was carried out using the R package
272 “variancePartition” (v1.12.1) (Hoffman & Schadt, 2016), which fits a linear mixed model to each
273 gene in the dataset and estimates the fraction of total variance attributable to each factor in the
274 experimental design. All variables (paternal effect; pH; the interaction of pH and paternal effects
275 (pH:Male)) were modeled as random effects in accordance with the recommendations of the
276 variancePartition manual, which suggests modeling categorical variables as random effects. Genes
277 for which at least 10% of expression variance could be attributed to pH were considered to have
278 significant variance changes due to pH (59 genes) (Supp. Data 3).

279 Variance-to-mean ratio analysis was carried out by first calculating the variance of each
280 gene at a given sample group (stage, pH), and then dividing this value by the mean expression of
281 that gene for that sample group. Density plots were created (using the *geom_density* function within
282 the R package *ggplot2*) for the VMR of all genes at each stage and pH condition. Statistically
283 significant differences between VMR density distributions were determined using the built-in R
284 function *ks.test* to perform Kolmogorov-Smirnov (K-S) tests for equality. To determine whether
285 the average VMR at each stage was significantly different between pH treatments, a two-sided
286 paired t-test was used.

287 ***Soft clustering time course analyses***

288 For comparative developmental time course analysis, raw counts of the 15,322 genes
289 included in the differential expression analyses (see above) were normalized with the DESeq2-
290 regularized log (*rlog*) transformation (Supp. Data 4). Soft clustering of temporal gene expression

291 profiles was carried out with the R package *Mfuzz* v. 2.40.0 (Kumar & Futschik, 2007). Prior to
292 clustering, mean expression values were calculated for each gene at each developmental stage and
293 genes with the lowest 5% standard deviation *across* development were filtered out so as to remove
294 genes whose expression changed minimally over time. This procedure yielded 14,595 genes to be
295 included in expression cluster profiling. Initially, samples from both pH treatment groups were
296 included to create a reference set of cluster profiles. The fuzzification coefficient (m) was
297 determined to be 3.601 via the *mestimate* function of the *Mfuzz* package. The *Dmin* function, which
298 calculates the minimum centroid distance between varying numbers of clusters, was used to
299 estimate the optimal number of clusters as 5 (Supp. Fig. 1).

300 Because the fuzzy clustering method employed here is not a deterministic process, the
301 clustering procedure was repeated 1,000 times and the cluster iteration with the lowest objective
302 function value was selected to maximize accuracy and representation of gene expression profiles
303 among the five clusters. Next, pH_T 8.0 and pH_T 7.6 samples were separately mapped to this
304 reference set of clusters to calculate membership values of every gene to one of five clusters. To
305 increase confidence of cluster assignments, genes in both pH_T 8.0 and pH_T 7.6 samples were
306 required to have a minimum membership score of at least 0.3 to be assigned a cluster. Genes whose
307 cluster membership differed between control and acidic treatments (termed “cluster jumpers”;
308 Israel et al., 2016) were identified, resulting in a set of 2,831 genes whose temporal expression
309 profile changed between pH conditions (Supp. Data 5: cluster memberships; Supp. Data 6: plots of
310 gene expression profiles).

311 ***Enrichment analyses of biological function***

312 Gene ontology (GO) enrichment analyses were performed on gene sets of interest via the
313 *runGSAhyper* function of the R package “piano” v. 1.22.0 (Varemo, Nielsen, & Nookaew, 2013),

314 including Benjamini-Hochberg FDR correction for multiple comparisons (Benjamini, Drai, Elmer,
315 Kafkafi, & Golani, 2001). Along with GO terms associated with *S. purpuratus* gene models
316 (retrieved from Echinobase: www.echinobase.org/Echinobase), we included additional sea urchin
317 specific gene sets in the enrichment analyses, including primary mesenchyme effector genes
318 (Rafiq, Shashikant, McManus, & Ettensohn, 2014) and genes categorized as putatively involved
319 in “biomineralization” (also retrieved from Echinobase). The latter two categories were included
320 to capture gene expression responses associated with the skeleton, which is an autapomorphy of
321 the phylum and thus not represented in GO and other general functional ontologies. See Supp. Data
322 7 for enrichment analysis results. Because GO annotations do not always correlate with biological
323 function in sea urchins (Evans et al. 2017), categorical enrichment tests were also performed using
324 functional categories from EchinoBase. These were run as 2-sample tests for equality of
325 proportions with continuity correction against the list of genes expressed in our entire dataset.

326 **Density plots of mean gene expression by parentage**

327 At a given stage, the mean normalized count was calculated for each gene across the three
328 genetic crosses. Then, the percent difference from this mean for each genotype was calculated as a
329 relative change, according to the equation

$$(Sire_n - Sire_{\bar{x}}) / Sire_{\bar{x}}$$

330 where $Sire_n$ is the normalized count from one of the three genotypes and $Sire_{\bar{x}}$ is mean the
331 normalized count across the three genotypes. The percent differences for all genes and genotypes
332 were then plotted in a density distribution for each stage and pH condition. To determine if the
333 density plots of each genotype within a stage were different from one another, we used two-way
334 K-S tests of equality (as described above) for each possible pair of male genotypes.
335

336

337 **RESULTS**338 ***Scope and magnitude of transcriptional responses to OA***

339 Reduced pH induced changes in the expression of 50, 61, and 797 genes in embryos, larvae,
340 and juveniles, respectively (Fig. 2; Supp. Data 2) using the standard dispersion-based approach to
341 identifying differential expression in RNA-seq data (Anders et al., 2013; Conesa et al., 2016; Love,
342 Anders, Kim, & Huber, 2015; Love et al., 2014; Mark et al., 2019; Walker et al., 2019; Zhang et
343 al., 2014). Only eight of these genes (< 1%) were differentially expressed at more than one
344 developmental stage, and just one was differentially expressed at all three stages (Fig. 3A).
345 Interestingly, the gene that was differentially expressed at all three stages, *Taf5L* (SPU_020698),
346 encodes a transcription co-factor. Of the eight genes that were differentially expressed at more than
347 one stage, the sign of the response differed (up- and down-regulated) among stages in three cases
348 (Supp. Table 6). These results indicate that OA induces changes in transcription among largely
349 distinct sets of genes at different stages of the life cycle.

350 Most changes in transcript abundance were modest, and rarely exceeded 1.5-fold (which
351 we consider to be a “large” fold change in this study). Each time point showed a markedly different
352 response to OA in terms of effect size: most of the large fold-changes in gene expression were
353 found in embryos, while larvae had only one gene with a large fold-change, and juveniles showed
354 a marked bias towards down-regulation among genes with the largest (for this stage, but not
355 overall) fold-changes (Fig. 2, red dots). These results indicate that OA induces quantitatively
356 distinct responses in gene expression at different stages of the life cycle. Of note, the largest
357 transcriptional responses to reduced pH are orders of magnitude smaller than the largest changes
358 in gene expression that take place during unperturbed development: in control cultures, the number
359 of genes showing \geq 100-fold change between stages was 50 (embryo to larva), 115 (larva to

360 juvenile), and 383 (embryo to juvenile) using an adjusted p-value of $\leq 10\%$. In contrast, no gene
361 showed such a large expression change in response to pH treatment at any of the three stages
362 examined.

363 Principal component analysis of normalized gene expression counts reinforced these
364 findings, indicating that most of the variance among the transcriptomes of *H. erythrogramma* was
365 attributable to developmental stage. Principal components 1 and 2 both discriminated samples by
366 stage, and together accounted for more than 91% of expression variance (Fig. 4A; Supp. Table 4).
367 A linear mixed model also found that developmental stage accounts for the majority of differences
368 in gene expression: an average of 48.9% of variation in expression per gene was explained by stage,
369 while male parent (a proxy for genetic effects; see Lynch and Walsh (1998)) and pH treatment
370 explained just 6.5% and 0.2% of variation, respectively (Supp. Data 3). These results indicate that
371 the response to OA involves far fewer genes, and much smaller changes in transcript abundance,
372 than the changes that take place during the course of normal development.

373 ***Effects of OA on stage-specific transcript abundance***

374 In embryos, 50 genes were differentially expressed in response to OA in *H. erythrogramma*
375 (Fig. 2A; Supp. Data 2). According to Echinobase functional categorizations, these included three
376 genes with biomineralization function (*Msp130* SPU_002088, *Msp120or4* SPU_014496,
377 *Msp130or5* SPU_015763), two calcium toolkit genes (*Hsp701B* SPU_005808, *Hsp701C*
378 SPU_009477), five encoding chaperone proteins (*DnaJ1/HSP40* SPU_002148, SPU_005807,
379 SPU_008985, SPU_009479, *Sap30L* SPU_027083), and four genes putatively involved in the
380 defensome (*HSP70_L2* SPU_009476, *HSP70_L* SPU_009478, *Cyp2L26* SPU_013039, *HSP701D*
381 SPU_016500). Among the most differentially expressed genes at pH_T 7.6 (log₂ fold change > 1.5)
382 were five genes coding for proteins in the heat shock protein family, including two encoding

383 paralogues of *HSP70* (SPU_009476, SPU_009478). These *HSP70* genes were down-regulated at
384 pH_T 7.6, similar to the response of *HSP70* reported for the planktotrophic larvae of *S. purpuratus*
385 (Todgham & Hofmann, 2009).

386 In larvae, 61 genes showed differential expression in response to OA (Fig. 2B; Supp. Data
387 2). Only three of these overlapped with differentially expressed genes in embryos: *Msp130*
388 (SPU_002088) was upregulated at both stages, while *Wipf1L* (SPU_013094) and *Taf5L*
389 (SPU_020698) showed discordant responses. Nonetheless, several genes involved in similar
390 biological processes were differentially expressed under OA conditions at both embryonic and
391 larval stages (Supp. Data 2). Of particular interest are genes in the *Msp130* family, which encode
392 proteins essential for biomineralization (Anstrom, Chin, Leaf, Parks, & Raff, 1987; Karakostis et
393 al., 2016; Killian & Wilt, 2017; Leaf et al., 1987). *Msp130* (SPU_002088) expression was up-
394 regulated in embryos and larvae of *H. erythrogramma* in response to OA, while four paralogues,
395 *Msp130_1* (SPU_013821), *Msp130r3* (SPU_013823), *Msp130r4* (SPU_014496), and *Msp130r5*
396 (SPU_015763), were also up-regulated in either or both embryos and larvae. Several prior studies
397 have reported changes in *Msp130* expression in response to OA in sea urchin larvae, in one case
398 increasing (Martin et al., 2011) and in others decreasing (Di Giglio et al., 2020; Kurihara, Takano,
399 Kurokawa, & Akasaka, 2012; Stumpp et al., 2011).

400 In metamorphosing juveniles, the transcriptomic response to OA was notably distinct from
401 the two earlier stages: more than 10 times as many genes (797) were differentially expressed, and
402 there was a strong bias towards down-regulation (Fig. 2C; Supp. Data 2). Genes with altered
403 expression included several involved in transcriptional regulation, the calcium toolkit,
404 biomineralization, and immune response (Echinobase functional categorization; Supp. Data 2),
405 with statistically significant enrichments in the “cytoskeleton” and “calcium toolkit” functional

406 categories relative to the transcriptome as a whole ($p < 3.5\text{e-}12$ and $p < 3.98\text{e-}2$, respectively).
407 Many pH-responsive genes in *H. erythrogramma* juveniles were similar to those reported for sea
408 urchins with planktotrophic larvae, with 38 differentially expressed genes in *H. erythrogramma*
409 juveniles previously reported to be responsive to OA stress during pre-metamorphic development
410 in planktotrophic species (Evans & Watson-Wynn, 2014) (Supp. Table 5). (Direct comparison to
411 OA transcriptomic response in juveniles of a planktotrophic sea urchin is not possible as none have
412 been published.) The previously-reported genes that were also differentially regulated here include
413 two encoding beta-tubulin (*Btub3* SPU_000062 and *Btub2_1* SPU_001045) that showed decreased
414 expression at low pH in *H. erythrogramma* (this study) and *S. purpuratus* (Padilla-Gamino, Kelly,
415 Evans, & Hofmann, 2013), as well as three metabolic genes (*Ak9L2* SPU_020625, *Ak7*
416 SPU_010764, *Ckb* SPU_015323) and two calcium toolkit genes (*Slc8a1* SPU_006810, *CacTta1Hs*
417 SPU_014334) (Evans & Watson-Wynn, 2014). Although many genes and biological processes
418 previously reported to be OA-sensitive were also differentially expressed in our study (Supp. Table
419 5), the majority of the individual genes we report as differentially expressed have not been
420 previously reported to be OA-sensitive.

421 ***Effects of OA on stage-specific variance in gene expression***

422 Increased variance in gene expression in response to a stressor may point to compromised
423 transcriptional regulation (Felix & Barkoulas, 2015; Lopez-Maury et al., 2008) and can be
424 measured for the transcriptome as a whole as the variance-to-mean ratio (VMR). We found that
425 the overall VMR among biological replicates was higher at pH_T 7.6 than pH_T 8.0 at embryo and
426 larval stages, but not in juveniles (Fig. 5; Supp. Fig. 3; two-sided paired t-test p-value < 0.05). This
427 increase was most pronounced in larvae (p-value < 1x10⁻⁶, 31.4% overall increase in VMR). An
428 increase in VMR at lower pH was evident across several categories of gene function in larvae

429 (Supp. Fig. 4), indicating that this effect was not driven by a single biological pathway or process
430 but instead affected genes associated with a broad range of biological functions.

431 A stressor's impact on variance in expression of individual genes can be captured through
432 the linear mixed model mentioned earlier. This approach revealed that, while average contribution
433 of pH to variance was low relative to other factors, pH explained at least 10% of expression
434 variation for 59 genes (Supp. Data 3). Considering that the average pH contribution to variance for
435 all genes was just 0.2% (see above, *Scope and magnitude of transcriptional responses to OA*), this
436 result suggests that transcriptional regulation of these 59 genes is particularly sensitive to
437 acidification. Of these genes, four are associated with defensome functions (*Cyp4L1* SPU_005931,
438 *Cyp4L_2* SPU_007335, *Hsp701F* SPU_013289, *Osta* SPU_019774), seven with metabolism (*Sds*
439 SPU_013298, *Slc25a36* SPU_017892, *Slsp_5* SPU_018147, *Sgpl1_1* SPU_020002, SPU_023931,
440 *Scly* SPU_024173, *Ctso* SPU_027818) and two with immune function (*Ndufa13* SPU_024115, *Irf*
441 SPU_010404). Of note, many of these genes (32 of 59) for which OA contributed substantially to
442 expression variation were not identified as differentially expressed at any stage (Fig. 3B).

443 ***Effects of OA on multistage gene expression trajectories***

444 While measures of differential expression and expression variance at a single stage are
445 useful for identifying stress responses, they provide just one “snapshot” of the molecular response
446 to low pH exposure. Soft clustering (Kumar & Futschik, 2007) provides a tool for determining how
447 temporal patterns, rather than relative levels, of gene expression change under OA relative to
448 control conditions. Using this method, 14,595 genes expressed in both control and OA conditions
449 were assigned to one of five clusters representing temporal expression profiles (Fig. 6; Supp. Data
450 5). Comparison of the assigned cluster for each gene under control and OA conditions provides an

451 unsupervised method for distinguishing temporal patterns of gene expression that are unaffected
452 from those that are impacted by exposure to the stressor.

453 Most genes (80.6%) remained in the same cluster, indicating that their temporal expression
454 profiles were similar under both pH treatments (Fig. 6, boxes on the diagonal). The remaining
455 2,831 genes were assigned to a different cluster at reduced pH, indicating a change in the shape of
456 their gene expression trajectory during development (“cluster jump”; see Israel et al. 2016). As
457 expected, moderate changes in expression trajectory were the most common; for 240 genes,
458 however, the change was more substantial (Fig. 6; boxes directly adjacent to the diagonal *vs* those
459 further away). Relative to the transcriptome as a whole, cluster-jumping genes were significantly
460 enriched for the zinc finger and DNA functional categories, as well as for GO terms such as RNA-
461 dependent DNA replication, DNA repair, DNA-templated transcription, and ribosome biogenesis
462 (Supp. Data 7). Only 38.0%, 31.1%, and 18.7% of genes identified as differentially expressed
463 between pH conditions at the embryo, larva, and juvenile stages, respectively, were also classified
464 as cluster-jumping genes (Fig. 3B; Supp. Data 8).

465 ***Impact of genetic variation on transcription***

466 The linear mixed model mentioned earlier estimated that the impact of variation in male
467 genotype (a proxy for genetic influences) on variation in gene expression throughout the
468 transcriptome was approximately 325 times greater than the impact of reduced pH (Fig. 4B), even
469 though our experimental design is weakly powered to detect parent-of-origin effects. The
470 interaction of male genotype and pH was relatively modest, explaining only 0.3% of gene
471 expression variation throughout the transcriptome as a whole. However, this interaction term
472 explained at least 10% of the variation in expression for 131 individual genes (Supp. Data 3). Of

473 these genes, 11 encode hydrolases, eight are metabolic genes, eight are associated with immune
474 function, and eight encode transferases.

475 Plotting the density distribution for the deviation of each genetic cross from the mean
476 expression of each gene provides a way to understand how genotype influences transcriptomic
477 response to OA (see Methods). Applying this approach to our data suggests that the different
478 genotypes have varying sensitivities to low pH (Fig. 7). For example, the distribution of deviations
479 from mean gene expression at embryo for each genotype was approximately the same at control
480 pH but became clearly stratified by genotype at low pH. Specifically, expression in the offspring
481 of male 2 was shifted above the average expression of all three genotypes at lower pH, while
482 expression of the offspring of male 3 tended to be below the average expression of all three
483 genotypes. Expression deviations from the mean in larvae also became more stratified at low pH
484 compared to control pH, with some males also showing wider deviation from the mean than others
485 (i.e., offspring of male 1 tended to show expression above the mean expression of all three
486 genotypes, but also showed more spread in expression compared to the other two genotypes at low
487 pH). Loss of the culture from Male 1 at control pH makes it difficult to compare expression between
488 pH levels rigorously; however, the pattern of increased stratification by genotype at low pH was
489 maintained even when we removed the Male 1 culture at low pH from our analyses (data not
490 shown). Curiously, at the juvenile stage there was *more* stratification in expression between
491 genotypes at the control pH than at low pH (i.e., the opposite of the result from the early embryonic
492 stages). Thus, these results indicate that both genotype and genotype-by-environment interactions
493 influence transcription broadly under OA conditions, but this pattern may be restricted to early
494 embryos.

495

496 **DISCUSSION**497 ***OA elicits a complex transcriptional response in *H. erythrogramma****

498 Several previous studies have examined the gene expression response to OA in sea urchins
499 with planktotrophic larval development (Evans & Watson-Wynn, 2014; Strader et al., 2020) and
500 these differ in the life history stages and methodologies used (Table 1), making comparison of
501 transcriptomic results among studies challenging. Nonetheless, similarities as well as striking
502 differences are evident in our findings with *H. erythrogramma*. Some genes whose expression
503 change in development of sea urchins with feeding larvae under reduced pH conditions were also
504 affected in *H. erythrogramma*, including *HSP70* and *Msp130* (which encode a chaperone and a
505 biomineralization protein, respectively). Biological process categories enriched in differentially
506 expressed genes in *H. erythrogramma* also partially overlapped findings from prior studies,
507 including stress response, calcium toolkit, and biomineralization (Supp. Table 5). These results
508 point to the sensitivity to OA of key genes and cellular processes in sea urchin development.
509 Despite these similarities, most individual genes and a few biological process categories
510 differentially expressed in response to OA in *H. erythrogramma* have not been previously reported.
511 These unique features of the response to reduced pH in *H. erythrogramma* may reflect the range
512 of life history stages sampled here. This is particularly true for the metamorphosing juvenile stage,
513 which has not previously been examined in any sea urchin and which showed by far the greatest
514 number of OA responsive genes (Fig. 3A). Additional differences may reflect the highly derived
515 physiology and developmental mechanisms associated with the lecithotrophic life history of this
516 species (Byrne & Sewell, 2019; Davidson et al., 2019; Henry & Raff, 1990; Wray & Raff, 1990).
517 Differentially expressed genes related to lipid metabolism (*Sgp1_I*, SPU_020002) and

518 mitochondrial function (*Slc25a36*, SPU_017892) are especially interesting in light of the lipid-rich
519 eggs of *H. erythrogramma* and are prime candidates for future functional analysis.

520 Gene expression responses to stressors can manifest in ways other than changes in transcript
521 abundance. Increased variance in gene expression is an informative indicator of stress, and indeed
522 may be a more direct indicator of dysregulation than differential expression (Felix & Barkoulas,
523 2015; Lopez-Maury et al., 2008). The VMR is a useful measure of variance that can be applied to
524 the transcriptome as a whole. The VMR in transcript abundance increased under OA conditions in
525 embryos and even more so in larvae of *H. erythrogramma*. A general increase in variability of gene
526 expression at low pH could result from compromised mechanisms of transcriptional regulation
527 specifically or homeostatic mechanisms more generally; alternatively, it may reflect a genotype-
528 by-environment interaction, as has been shown in other invertebrates (Chen, Nolte, & Schlotterer,
529 2015; Webster, Jordan, Hibshman, Chitrakar, & Baugh, 2018). Genes with elevated variance can
530 therefore shed new light on the pH stress response by revealing additional molecular processes that
531 may be affected but did not result in differential expression (Figs. 3B and 7).

532 A third informative manifestation of the gene expression response to stress is a change in
533 the shape of a developmental trajectory. We used soft clustering to assign each gene to one of five
534 temporal expression profiles that are independent of magnitude, then identified genes whose
535 expression “jumped” to a different cluster under conditions of low pH. Because the expression
536 trajectory of most genes fits into just a few clusters, cluster reassignment reflects a large change in
537 the overall shape of the expression profile across development. Genes that cluster-jumped were
538 enriched in several biological processes, including DNA replication, transcription, and translation.
539 Of note, many genes whose expression profile changed in response to OA were not identified as
540 differentially expressed at any single stage (Fig. 3B). This result illustrates how examining

541 developmental trajectories can enrich understanding of the biological processes that may be
542 impacted by a stressor.

543 Both variance and clustering analyses of our results demonstrate that differential expression
544 analyses can miss informative aspects of the molecular response to OA (Figs. 3B and 7). This is
545 likely because each metric (mean, variance, and trajectory) captures somewhat distinct underlying
546 properties of the transcriptional response to the stressor. These results also indicate that OA can
547 affect genes involved in similar biological processes in different ways. For example, OA altered
548 the developmental trajectory of some DNA repair genes, while other DNA repair genes showed a
549 change in variance or transcript abundance in response to OA. Despite these effects, this functional
550 category was not flagged by differential expression analysis as showing differences in expression
551 level in response to OA. Although not widely applied in studies of stress response, analyses of
552 variance, effect size, and trajectory clustering can enrich understanding of stress response at the
553 molecular level, going beyond the insights gained from the traditional examination of differential
554 expression in response to a stressor.

555 ***OA impacts expression of echinoderm-specific biomineralization genes***

556 Biomineralization is a critical process for numerous marine organisms that use skeletons
557 for defense, feeding, motility, and other important functions. The trend seen in many marine
558 calcifiers in response to OA is production of less biomineral, resulting in smaller body size (Byrne
559 & Fitzer, 2019; Kroeker et al., 2013). Skeletons likely evolved independently in several metazoan
560 phyla, given their distinct biochemical, developmental, and genetic bases. This is almost certainly
561 true of echinoderms (Bottjer, Davidson, Peterson, & Cameron, 2006; Shashikant, Khor, &
562 Ettensohn, 2018a; A. M. Smith et al., 2016). Phylum-specific traits create a challenge when

563 interpreting transcriptomic results, because gene ontologies are based on annotations produced in
564 model organisms that lack the biological process or trait of interest.

565 Fortunately, echinoderm-specific biomineralization gene sets have been compiled based on
566 a wealth of molecular, biochemical, and developmental information (Ameye et al., 2001;
567 Karakostis et al., 2016; Killian & Wilt, 2008, 2017; Shashikant et al., 2018a). Two independently
568 derived gene sets are available (see Methods) and both showed enrichments in gene expression
569 responses to OA in *H. erythrogramma*. These encompassed embryo and larva, but not
570 metamorphosing juvenile (Table 2). The absence of enrichment of biomineralization in
571 metamorphosing juveniles is surprising, given that this stage appears more vulnerable to the effects
572 of OA (pHNIST 7.7) than earlier stages based on survivorship and skeletal morphology (Byrne et
573 al., 2011; Wolfe, Dworjanyn, & Byrne, 2013) and shows by far the largest number of differentially
574 expressed genes (Fig. 3A). The observation that both embryos and larvae show an OA-sensitive
575 enrichment in biomineralization genes is expected, as the developmental processes that produce
576 the larval skeleton begin in the early embryo (Shashikant, Khor, & Ettensohn, 2018b). Several prior
577 studies identified individual genes involved in biomineralization that are OA-responsive in sea
578 urchins (Di Giglio et al., 2020; Martin et al., 2011; O'Donnell et al., 2010; Stumpp et al., 2011) but
579 we are not aware of any prior study in echinoderms that found an enriched transcriptional response
580 to OA among biomineralization genes as a functional class using an unbiased approach.

581 Interestingly, while the details of the response in gene expression differ between studies,
582 the overall results point to biomineralization as a clear indicator of OA stress in *H. erythrogramma*,
583 as is generally the case for the life stages of sea urchins and other calcifiers, as expressed in
584 responses from molecular to morphological levels (Byrne & Fitzer, 2019; Byrne et al., 2013;
585 Kroeker et al., 2013; Maas et al., 2018; Strader et al., 2020).

586 ***Molecular responses to OA change substantially across the life cycle***

587 An important finding of this study is the substantial degree to which the molecular response
588 to OA changes across the life cycle. These differences among developmental stages were manifest
589 in every facet of the molecular response examined here: (1) transcript abundance changed markedly
590 in both overall magnitude and sign among stages (Figure 2), as did the identity of the genes
591 themselves (Figure 7); (2) the VMR changed for the transcriptome as a whole during development,
592 as did the specific transcripts whose VMR increased at low pH; 3) the portion of expression
593 variance attributable to pH across samples was elevated in dozens of genes; and (4) many
594 transcripts showed an altered developmental trajectory independent of abundance. While there was
595 some overlap among the specific transcripts that responded to OA between stages, most were
596 flagged as OA-responsive at only one stage (Fig. 3A; Fig. 8); this was true of all three criteria
597 examined (differential abundance, variance, trajectory). The three bulk metrics of OA response
598 reported here (average VMR, magnitude, and sign of response) also changed appreciably between
599 stages, indicating broad impacts on the transcriptome that differ across the life cycle (Fig. 8). Taken
600 together, these results indicate that examining any one developmental stage provides a strictly
601 limited view of the response to OA and that results from a single stage cannot be assumed to apply
602 to other phases of the life cycle.

603 This is not an unexpected result. Developmental and physiological processes change
604 substantially across the life cycle, and this is clearly reflected in developmental transcriptomes of
605 sea urchins under normal conditions (Israel et al., 2016; Tu, Cameron, & Davidson, 2014; Wong,
606 Gaitan-Espitia, & Hofmann, 2019; Wygoda et al., 2014). Importantly, these changing
607 developmental processes may render some life history stages particularly susceptible to stressors
608 (Hammond & Hofmann, 2012). This matters for OA because it is a chronic rather than an acute

609 stressor; examining one developmental stage may therefore miss important vulnerabilities. Indeed,
610 prior work demonstrates that developmental stages of *H. erythrogramma* differ in sensitivity to OA
611 (Byrne et al., 2009; Byrne et al., 2011; Hardy & Byrne, 2014). The distinct molecular responses to
612 pH stress at different developmental stages identified in this study provide an important first step
613 toward understanding why some stages of the life cycle are more vulnerable to OA than others.

614 Metamorphosis is particularly interesting as it is an exceptionally complex life stage in
615 marine invertebrates, involving intricate coordination of developmental processes, extensive
616 anatomical reorganization, and a major ecological transition from plankton to benthos. This life
617 stage is particularly sensitive to stressors and is considered to be a mortality bottleneck for
618 benthic species (Gosselin & Qian, 1997). Indeed, while early development of *H. erythrogramma*
619 is resilient to OA, survivorship declines during the larva to juvenile metamorphic transition
620 (Byrne et al., 2011; Wolfe et al., 2013), and spine development in the juveniles can be impaired
621 at low pH (Wolfe et al., 2013). Here we observed both a larger number of differentially expressed
622 genes and a marked bias towards down-regulation at pH_T 7.6 in metamorphosing juveniles (but
623 not at earlier stages), which may indicate especially adverse effects of OA on metamorphosis.
624 Due to the way we sampled (see Methods), individuals that developed through the larval stage to
625 the early juvenile likely represent a subset of stress tolerant survivors with potentially biased loss
626 of siblings according to genotype. Interestingly, however, juveniles also demonstrated deviations
627 from average gene expression that were *less* stratified by pH at low pH than at control pH. It is
628 possible that, while surviving juveniles are more susceptible to OA conditions than earlier stages,
629 they represent a more genetically homogeneous cohort due to the cumulative effect of OA stress
630 over developmental time, as well as the mortality bottleneck across the larva-to-juvenile
631 metamorphic transition.

632 ***Stress-induced decanalization can confound measurements of transcriptional responses***

633 The standard approach used to identify differential expression in RNA-seq data sets takes
634 into account variance among biological samples (Anders et al., 2013; Conesa et al., 2016; Love et
635 al., 2015; Zhang et al., 2014). While entirely appropriate in many situations, it is important to
636 recognize that in a study of stress response, this approach can directly confound an informative
637 biological response variable (i.e., loss of regulation) with the assessment of statistical significance.
638 Stressors can cause dysregulation or loss of canalization, which can be reflected in increased
639 variance in transcript abundance (Felix & Barkoulas, 2015; Lopez-Maury et al., 2008). To the
640 extent that a stressor increases variance in gene expression, the standard approach to identifying
641 differential expression introduces an ascertainment bias because it penalizes increased variance
642 when determining whether a gene is differentially expressed. This artifact is likely absent from
643 most transcriptomic analyses because the VMR does not change appreciably among samples (e.g.,
644 comparing successive developmental stages under normal conditions), but it is a clear concern
645 when measuring a stress response that may be decanalizing.

646 Many genes with an elevated VMR at pH_T 7.6 in our results were not identified as
647 differentially expressed by DESeq2 (despite showing a large change in mean), because variance
648 increased substantially. Genes with a substantially elevated VMR at low pH included *Unc44_175*
649 (SPU_025667), which encodes an ankyrin (proteins that connect integral membrane proteins to the
650 cytoskeleton); *Ndufa13* (SPU_024115), which encodes an oxidoreductase (specifically, part of a
651 protein complex that regulates cell death); and *Sushi* (SPU_002010) and *Egfi3* (SPU_011308), both
652 of which encode fibropellins (proteins that regulate cell proliferation) (Fig. 5). These genes are all
653 involved in regulatory processes, and two of the proteins bind calcium ions, making them
654 interesting candidates for functional analysis. These examples illustrate how applying variance-

655 based metrics can identify candidate genes that would be missed by standard tests for differential
656 expression when studying stress response.

657 ***Molecular responses to OA are modest relative to developmental changes***

658 A noteworthy feature of the transcriptomic response of *H. erythrogramma* development to
659 OA is its modest scale and scope. While thousands of genes rapidly change expression during
660 normal development in sea urchins (Israel et al., 2016; Tu et al., 2014; Wong et al., 2019; Wygoda
661 et al., 2014), fewer than 100 changed in response to OA in embryos and larvae, and fewer than
662 1,000 were altered in metamorphosing juveniles. Furthermore, the magnitude of expression
663 changes under conditions of reduced pH was modest, with only a small fraction exceeding 1.5-fold
664 (Fig. 2). In comparison, expression changes > 100-fold are common during development (Israel et
665 al., 2016; Tu et al., 2014; Wong et al., 2019; Wygoda et al., 2014).

666 The expression of *Msp130* (SPU_002088) provides an instructive example. This gene
667 encodes glycoprotein that plays a key role in transport of Ca^{2+} ions from the cell surface to the
668 growing biomineral matrix (Anstrom et al., 1987; Karakostis et al., 2016; Killian & Wilt, 2017;
669 Leaf et al., 1987; Mann, Poustka, & Mann, 2008). *Msp130* expression increased 1.82-fold and 1.54-
670 fold at pH_T 7.6 in *H. erythrogramma* embryos and larvae, respectively. Prior studies have reported
671 changes in *Msp130* expression of a comparable magnitude under OA conditions (Di Giglio et al.,
672 2020; Kurihara et al., 2012; Martin et al., 2011; Stumpp et al., 2011). However, these stress
673 responses are small compared to changes in *Msp130* expression levels during normal development
674 (Israel et al., 2016; Tu et al., 2014; Wong et al., 2019; Wygoda et al., 2014). In *H. erythrogramma*,
675 *Msp130* expression increased ~30-fold between embryo and larva and ~1000-fold between embryo
676 and juvenile under control conditions (Supp. Fig. 2; note log2 scale). These large changes in

677 *Msp130* transcription during normal development suggest that caution is warranted when
678 considering the biological implications of the much smaller expression responses to OA.

679 ***Molecular responses to OA are eclipsed by the impact of natural genetic variation***

680 Two independent analytical approaches, principal components analysis and linear mixed
681 models, both indicated that natural genetic variation had a much larger overall impact on gene
682 expression than pH stress. In the linear mixed model, developmental stage explained on average
683 48.9% of expression variation per gene, male parent 6.5%, and pH just 0.2% (Supp. Data 3). Since
684 male genotype can be considered a proxy for genetic effects (Lynch & Walsh, 1998), our results
685 suggest that natural populations of *H. erythrogramma* contain extensive genetic variation that alters
686 gene expression to a greater degree than does exposure to OA. This finding is consistent with
687 studies of development of sea urchins with planktotrophic larvae (Pespeni et al., 2013; Runcie et
688 al., 2016) and similar findings for a coral (Jury, Delano, & Toonen, 2019) and a bivalve (Bitter,
689 Kapsenberg, Gattuso, & Pfister, 2019). Collectively, these studies suggest that it is not uncommon
690 for standing genetic variation to contribute more to interindividual phenotypic variation in gene
691 expression across the transcriptome than does OA.

692 Genetic variation that influences gene expression during development could, in principle,
693 provide genotypes that facilitate adaptation to OA in natural populations (Glazier et al., 2020;
694 Goncalves et al., 2016; Pespeni et al., 2013; Runcie et al., 2016). A previous study found that
695 development and settlement success of *H. erythrogramma* under OA conditions were both strongly
696 influenced by male parent (Foo, Dworjanyn, Poore, Harianto, & Byrne, 2016). Further, the ability
697 of individual male *H. erythrogramma* sperm to fertilize eggs differs between OA and control
698 conditions (K. E. Smith et al., 2019), suggesting genotype-by-phenotype interactions based in
699 segregating variation. If health and survivorship under OA conditions are mediated in part by

700 changes in gene expression, resilience to OA may differ among individuals in a population based
701 in part on genetic variation. However, it should be noted that the interaction term (pH:Sire) in the
702 linear mixed model also explained only a very small amount of variation in gene expression (0.3%).
703 Furthermore, our experiment was not designed to detect such effects, as evidenced by the lack of
704 replication within each cross. Further experiments will therefore be necessary to determine whether
705 there exists sufficient genetic variation to provide the raw materials for natural selection to
706 overcome the impacts of OA.

707

708 **ACKNOWLEDGEMENTS**

709 We thank the Sydney Institute of Marine Science (SIMS) for facilities, as well as the SIMS staff
710 for their assistance. We also thank the staff of Duke's Sequencing and Genomic Technologies
711 Shared Resource for help with RNA-seq. Members of the Byrne and Wray lab groups provided
712 valuable input and advice throughout. This study was supported by a Graduate Research
713 Fellowship from the NSF to HD, IOS1457305 and IOS1929934 from the NSF to GW, and
714 DP150102771 from the ARC to MB. This is SIMS contribution number XXXX.

715 **REFERENCES**

716

717 [dataset] Devens, H., Davidson, P., Deaker, D., Smith, K.E., Wray, G., & Byrne, M.; 2020. Data
718 accompanying “Ocean acidification induces distinct transcriptomic responses across life
719 history stages of the sea urchin *Heliocidaris erythrogramma*.” Dryad Digital Repository;
720 doi:10.5061/dryad.3xsj3txdm

721 Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclare, J. K., Mason, B. M., . . . Caldeira,
722 K. (2016). Reversal of ocean acidification enhances net coral reef calcification. *Nature*,
723 531(7594), 362-365. doi:10.1038/nature17155

724 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
725 search tool. *J Mol Biol*, 215(3), 403-410. doi:10.1016/S0022-2836(05)80360-2

726 Ameye, L., De Becker, G., Killian, C., Wilt, F., Kemps, R., Kuypers, S., & Dubois, P. (2001).
727 Proteins and saccharides of the sea urchin organic matrix of mineralization:
728 characterization and localization in the spine skeleton. *J Struct Biol*, 134(1), 56-66.
729 doi:10.1006/jsb.2001.4361

730 Anders, S., McCarthy, D. J., Chen, Y. S., Okoniewski, M., Smyth, G. K., Huber, W., & Robinson,
731 M. D. (2013). Count-based differential expression analysis of RNA sequencing data using
732 R and Bioconductor. *Nature Protocols*, 8(9), 1765-1786. doi:10.1038/nprot.2013.099

733 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.

734 Anstrom, J. A., Chin, J. E., Leaf, D. S., Parks, A. L., & Raff, R. A. (1987). Localization and
735 expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the
736 sea urchin embryo. *Development*, 101(2), 255-265.

737 Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery
738 rate in behavior genetics research. *Behav Brain Res*, 125(1-2), 279-284.

739 Bitter, M. C., Kapsenberg, L., Gattuso, J. P., & Pfister, C. A. (2019). Standing genetic variation
740 fuels rapid adaptation to ocean acidification. *Nat Commun*, 10(1), 5821.
741 doi:10.1038/s41467-019-13767-1

742 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
743 sequence data. *Bioinformatics*, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170

744 Bottjer, D. J., Davidson, E. H., Peterson, K. J., & Cameron, R. A. (2006). Paleogenomics of
745 echinoderms. *Science*, 314(5801), 956-960. doi:10.1126/science.1132310

746 Byrne, M., & Fitzer, S. (2019). The impact of environmental acidification on the microstructure and
747 mechanical integrity of marine invertebrate skeletons. *Conserv Physiol*, 7(1), coz062.
748 doi:10.1093/conphys/coz062

749 Byrne, M., & Hernandez, J. C. (2020). Sea urchins in a high CO₂ world: impacts of climate
750 warming and ocean acidification across life history stages. In J. M. Laurence (Ed.), *Sea
751 Urchines: Biology and Ecology* (Fourth ed., pp. 281-297): Elsevier B.V.

752 Byrne, M., Ho, M., Selvakumaraswamy, P., Nguyen, H. D., Dworjanyn, S. A., & Davis, A. R. (2009).
753 Temperature, but not pH, compromises sea urchin fertilization and early development
754 under near-future climate change scenarios. *Proc Biol Sci*, 276(1663), 1883-1888.
755 doi:10.1098/rspb.2008.1935

756 Byrne, M., Ho, M., Wong, E., Soars, N. A., Selvakumaraswamy, P., Shepard-Brennan, H., . . .
757 Davis, A. R. (2011). Unshelled abalone and corrupted urchins: development of marine
758 calcifiers in a changing ocean. *Proc Biol Sci*, 278(1716), 2376-2383.
759 doi:10.1098/rspb.2010.2404

760 Byrne, M., Lamare, M., Winter, D., Dworjanyn, S. A., & Uthicke, S. (2013). The stunting effect of
761 a high CO₂ ocean on calcification and development in sea urchin larvae, a synthesis from

762 the tropics to the poles. *Philos Trans R Soc Lond B Biol Sci*, 368(1627), 20120439.
763 doi:10.1098/rstb.2012.0439

764 Byrne, M., & Sewell, M. A. (2019). Evolution of maternal lipid provisioning strategies in echinoids
765 with non-feeding larvae: selection for high-quality juveniles. *Marine Ecology Progress Series*
766 Series, 616, 95-106. doi:10.3354/meps12938

767 Byrne, M., Soars, N. A., Ho, M. A., Wong, E., McElroy, D., Selvakumaraswamy, P., . . . Davis, A.
768 R. (2010). Fertilization in a suite of coastal marine invertebrates from SE Australia is robust
769 to near-future ocean warming and acidification. *Marine Biology*, 157(9), 2061-2069.
770 doi:10.1007/s00227-010-1474-9

771 Carey, N., Harianto, J., & Byrne, M. (2016). Sea urchins in a high-CO₂ world: partitioned effects
772 of body size, ocean warming and acidification on metabolic rate. *Journal of Experimental
773 Biology*, 219(8), 1178-1186. doi:10.1242/jeb.136101

774 Chen, J., Nolte, V., & Schlotterer, C. (2015). Temperature stress mediates decanalization and
775 dominance of gene expression in *Drosophila melanogaster*. *PLoS Genet*, 11(2),
776 e1004883. doi:10.1371/journal.pgen.1004883

777 Collard, M., Catarino, A. I., Bonnet, S., Flammang, P., & Dubois, P. (2013). Effects of CO₂-induced
778 ocean acidification on physiological and mechanical properties of the starfish *Asterias*
779 *rubens*. *Journal of Experimental Marine Biology and Ecology*, 446, 355-362.
780 doi:10.1016/j.jembe.2013.06.003

781 Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., . . .
782 Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. *Genome Biol*,
783 17, 13. doi:10.1186/s13059-016-0881-8

784 Dalman, M. R., Deeter, A., Nimishakavi, G., & Duan, Z. H. (2012). Fold change and p-value cutoffs
785 significantly alter microarray interpretations. *Bmc Bioinformatics*, 13 Suppl 2, S11.
786 doi:10.1186/1471-2105-13-S2-S11

787 Davidson, P. L., Thompson, J. W., Foster, M. W., Moseley, M. A., Byrne, M., & Wray, G. A. (2019).
788 A comparative analysis of egg provisioning using mass spectrometry during rapid life
789 history evolution in sea urchins. *Evolution & Development*, 21(4), 188-204.
790 doi:10.1111/ede.12289

791 Davies, S. W., Marchetti, A., Ries, J. B., & Castillo, K. D. (2016). Thermal and pCO(2) Stress Elicit
792 Divergent Transcriptomic Responses in a Resilient Coral. *Frontiers in Marine Science*, 3.
793 doi:10.3389/fmars.2016.00112

794 De Wit, P., Durland, E., Ventura, A., & Langdon, C. J. (2018). Gene expression correlated with
795 delay in shell formation in larval Pacific oysters (*Crassostrea gigas*) exposed to
796 experimental ocean acidification provides insights into shell formation mechanisms. *Bmc
797 Genomics*, 19(1), 160. doi:10.1186/s12864-018-4519-y

798 Di Giglio, S., Spatafora, D., Milazzo, M., M'Zoudi, S., Zito, F., Dubois, P., & Costa, C. (2020). Are
799 control of extracellular acid-base balance and regulation of skeleton genes linked to
800 resistance to ocean acidification in adult sea urchins? *Science of The Total Environment*,
801 137443. doi:<https://doi.org/10.1016/j.scitotenv.2020.137443>

802 Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 12H₂(g) = Ag(s) + HCl(aq),
803 and the standard acidity constant of the ion HSO₄⁻ in synthetic sea water from 273.15
804 to 318.15 K. *The Journal of Chemical Thermodynamics*, 22(2), 113-127.
805 doi:[https://doi.org/10.1016/0021-9614\(90\)90074-Z](https://doi.org/10.1016/0021-9614(90)90074-Z)

806 Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the
807 dissociation of carbonic acid in seawater media. *Deep Sea Research Part A
808 Oceanographic Research Papers*, 34(10), 1733-1743. doi:[https://doi.org/10.1016/0198-0149\(87\)90021-5](https://doi.org/10.1016/0198-0149(87)90021-5)

810 Dickson, A. G., Sabine, C.L., & Christian, J.R. (2007). Guide to best practices for ocean CO₂
811 measurements. *ICES Special Publication*, 3, 191.

812 Dunn, C. W., Howison, M., & Zapata, F. (2013). Agalma: an automated phylogenomics workflow.
813 *BMC Bioinformatics*, 14, 330. doi:10.1186/1471-2105-14-330

814 Emlet, R. B. (1995). Larval spicules, cilia, and symmetry as remnants of indirect development in
815 the direct developing sea urchin *Heliocidaris erythrogramma*. *Developmental Biology*,
816 167(2), 405-415. doi:10.1006/dbio.1995.1037

817 Evans, T. G., Chan, F., Menge, B. A., & Hofmann, G. E. (2013). Transcriptomic responses to
818 ocean acidification in larval sea urchins from a naturally variable pH environment.
819 *Molecular Ecology*, 22(6), 1609-1625. doi:10.1111/mec.12188

820 Evans, T. G., Pespeni, M. H., Hofmann, G. E., Palumbi, S. R., & Sanford, E. (2017). Transcriptomic
821 responses to seawater acidification among sea urchin populations inhabiting a natural pH
822 mosaic. *Molecular Ecology*, 26(8), 2257-2275. doi:10.1111/mec.14038

823 Evans, T. G., & Watson-Wynn, P. (2014). Effects of seawater acidification on gene expression:
824 resolving broader-scale trends in sea urchins. *Biol Bull*, 226(3), 237-254.
825 doi:10.1086/BBLv226n3p237

826 Felix, M. A., & Barkoulas, M. (2015). Pervasive robustness in biological systems. *Nature Reviews
827 Genetics*, 16(8), 483-496. doi:10.1038/nrg3949

828 Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianti, J., & Byrne, M. (2016). Adaptive capacity
829 of the sea urchin *Heliocidaris erythrogramma* to ocean change stressors: responses from
830 gamete performance to the juvenile. *Marine Ecology Progress Series*, 556, 161-172.

831 Gattuso, J. P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., . . . Turley, C.
832 (2015). Contrasting futures for ocean and society from different anthropogenic CO₂
833 emissions scenarios. *Science*, 349(6243). doi:10.1126/science.aac4722

834 Glazier, A., Herrera, S., Weinnig, A., Kurman, M., Gomez, C. E., & Cordes, E. (2020). Regulation
835 of ion transport and energy metabolism enables certain coral genotypes to maintain
836 calcification under experimental ocean acidification. *Molecular Ecology*.
837 doi:10.1111/mec.15439

838 Goncalves, P., Anderson, K., Thompson, E. L., Melwani, A., Parker, L. m., Ross, P. M., & Raftos,
839 D. A. (2016). Rapid transcriptional acclimation following transgenerational exposure of
840 oysters to ocean acidification. *Molecular Ecology*, 25(19), 4836-4849.
841 doi:10.1111/mec.13808

842 Gosselin, L. A., & Qian, P.-Y. (1997). Juvenile mortality in benthic marine invertebrates. *Marine
843 Ecology Progress Series*, 146(1/3), 265-282.

844 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., . . . Regev, A.
845 (2011). Full-length transcriptome assembly from RNA-Seq data without a reference
846 genome. *Nat Biotechnol*, 29(7), 644-652. doi:10.1038/nbt.1883

847 Griffiths, J. S., Pan, T.-C. F., & Kelly, M. W. (2019). Differential responses to ocean acidification
848 between populations of *Balanophyllia elegans* corals from high and low upwelling
849 environments. *Molecular Ecology*, 28(11), 2715-2730. doi:10.1111/mec.15050

850 Hammond, L. M., & Hofmann, G. E. (2012). Early developmental gene regulation in
851 *Strongylocentrotus purpuratus* embryos in response to elevated CO₂ seawater
852 conditions. *J Exp Biol*, 215(Pt 14), 2445-2454. doi:10.1242/jeb.058008

853 Hardy, N. A., & Byrne, M. (2014). Early development of congeneric sea urchins (*Heliocidaris*) with
854 contrasting life history modes in a warming and high CO₂ ocean. *Mar Environ Res*, 102,
855 78-87. doi:10.1016/j.marenvres.2014.07.007

856 Henry, J. J., & Raff, R. A. (1990). Evolutionary change in the process of dorsoventral axis
857 determination in the direct developing sea urchin, *Heliocidaris erythrogramma*.
858 *Developmental Biology*, 141(1), 55-69.

859 Henry, J. J., Wray, G. A., & Raff, R. A. (1990). The dorsoventral axis is specified prior to first
860 cleavage in the direct developing sea urchin *Heliocidaris erythrogramma*. *Development*,
861 110(3), 875-884.

862 Hoffman, G. E., & Schadt, E. E. (2016). variancePartition: interpreting drivers of variation in
863 complex gene expression studies. *Bmc Bioinformatics*, 17(1), 483. doi:10.1186/s12859-
864 016-1323-z

865 IPCC. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III
866 to the fifth assessment report of the Intergovernmental Panel on Climate Change. *Geneva, Switzerland: IPCC*.

867 Israel, J. W., Martik, M. L., Byrne, M., Raff, E. C., Raff, R. A., McClay, D. R., & Wray, G. A. (2016).
868 Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved
869 Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus
870 *Heliocidaris*. *PLoS Biol*, 14(3), e1002391. doi:10.1371/journal.pbio.1002391

871 Jury, C. P., Delano, M. N., & Toonen, R. J. (2019). High heritability of coral calcification rates and
872 evolutionary potential under ocean acidification. *Sci Rep*, 9(1), 20419.
873 doi:10.1038/s41598-019-56313-1

874 Karakostis, K., Zanella-Cleon, I., Immel, F., Guichard, N., Dru, P., Lepage, T., . . . Marin, F. (2016).
875 A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test
876 matrix of adult specimens of the sea urchin *Paracentrotus lividus*. *J Proteomics*, 136, 133-
877 144. doi:10.1016/j.jprot.2016.01.001

878 Keesing, J. K. (2020). *Heliocidaris erythrogramma*. In J. M. Lawrence (Ed.), *Sea Urchins: Biology
879 and Ecology* (Fourth ed., pp. 537-552). Elsevier B.V.

880 Killian, C. E., & Wilt, F. H. (2008). Molecular aspects of biomineralization of the echinoderm
881 endoskeleton. *Chem Rev*, 108(11), 4463-4474. doi:10.1021/cr0782630

882 Killian, C. E., & Wilt, F. H. (2017). Endocytosis in primary mesenchyme cells during sea urchin
883 larval skeletogenesis. *Exp Cell Res*, 359(1), 205-214. doi:10.1016/j.yexcr.2017.07.028

884 Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., . . . Gattuso, J. P.
885 (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and
886 interaction with warming. *Glob Chang Biol*, 19(6), 1884-1896. doi:10.1111/gcb.12179

887 Kumar, L., & Futschik, E. (2007). Mfuzz: a software package for soft clustering of microarray data.
888 *Bioinformation*, 2(1), 5-7.

889 Kurihara, H., Takano, Y., Kurokawa, D., & Akasaka, K. (2012). Ocean acidification reduces
890 biomineralization-related gene expression in the sea urchin, *Hemicentrotus pulcherrimus*.
891 *Marine Biology*, 159(12), 2819-2826. doi:10.1007/s00227-012-2043-1

892 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature
893 Methods*, 9(4), 357-U354. doi:10.1038/Nmeth.1923

894 Leaf, D. S., Anstrom, J. A., Chin, J. E., Harkey, M. A., Showman, R. M., & Raff, R. A. (1987).
895 Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary
896 mesenchyme-specific cell surface protein of the sea urchin embryo. *Developmental
897 Biology*, 121(1), 29-40. doi:10.1016/0012-1606(87)90135-7

898 Li, W., & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of
899 protein or nucleotide sequences. *Bioinformatics*, 22(13), 1658-1659.
900 doi:10.1093/bioinformatics/btl158

901 Liu, Z., Zhang, Y., Zhou, Z., Zong, Y., Zheng, Y., Liu, C., . . . Song, L. (2020). Metabolomic and
902 transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during
903 initial shell formation and under experimental ocean acidification. *Sci Rep*, 10(1), 6111.
904 doi:10.1038/s41598-020-62963-3

905

906

907 Lopez-Maury, L., Marguerat, S., & Bahler, J. (2008). Tuning gene expression to changing
908 environments: from rapid responses to evolutionary adaptation. *Nature Reviews Genetics*,
909 9(8), 583-593. doi:10.1038/nrg2398

910 Love, M. I., Anders, S., Kim, V., & Huber, W. (2015). RNA-Seq workflow: gene-level exploratory
911 analysis and differential expression. *F1000Res*, 4, 1070.
912 doi:10.12688/f1000research.7035.1

913 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion
914 for RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550. doi:10.1186/s13059-014-0550-
915 8

916 Lynch, M., & Walsh, B. (1998). *Genetics and analysis of quantitative traits* (Vol. 1): Sinauer
917 Sunderland, MA.

918 Maas, A. E., Lawson, G. L., Bergan, A. J., & Tarrant, A. M. (2018). Exposure to CO₂ influences
919 metabolism, calcification and gene expression of the thecosome pteropod *Limacina*
920 *retroversa*. *J Exp Biol*, 221(Pt 3). doi:10.1242/jeb.164400

921 Mann, K., Poustka, A. J., & Mann, M. (2008). The sea urchin (*Strongylocentrotus purpuratus*) test
922 and spine proteomes. *Proteome Sci*, 6, 22. doi:10.1186/1477-5956-6-22

923 Mark, S., Weiss, J., Sharma, E., Liu, T., Wang, W., Claycomb, J. M., & Cutter, A. D. (2019).
924 Genome structure predicts modular transcriptome responses to genetic and environmental
925 conditions. *Molecular Ecology*, 28(16), 3681-3697. doi:10.1111/mec.15185

926 Martin, S., Richier, S., Pedrotti, M. L., Dupont, S., Castejon, C., Gerakis, Y., . . . Gattuso, J. P.
927 (2011). Early development and molecular plasticity in the Mediterranean sea urchin
928 *Paracentrotus lividus* exposed to CO₂-driven acidification. *J Exp Biol*, 214(Pt 8), 1357-
929 1368. doi:10.1242/jeb.051169

930 Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicz, R. M. (1973). MEASUREMENT OF
931 THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER
932 AT ATMOSPHERIC PRESSURE1. *Limnology and Oceanography*, 18(6), 897-907.
933 doi:10.4319/lo.1973.18.6.0897

934 Micallef, L., & Rodgers, P. (2014). eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using
935 Ellipses. *Plos One*, 9(7). doi:ARTN e101717
936 10.1371/journal.pone.0101717

937 O'Donnell, M. J., Todgham, A. E., Sewell, M. A., Hammond, L. M., Ruggiero, K., Fangue, N. A., .
938 . . Hofmann, G. E. (2010). Ocean acidification alters skeletogenesis and gene expression
939 in larval sea urchins. *Marine Ecology Progress Series*, 398, 157-171.
940 doi:10.3354/meps08346

941 Padilla-Gamino, J. L., Kelly, M. W., Evans, T. G., & Hofmann, G. E. (2013). Temperature and CO₂
942 additively regulate physiology, morphology and genomic responses of larval sea urchins,
943 *Strongylocentrotus purpuratus*. *Proceedings of the Royal Society B-Biological Sciences*,
944 280(1759). doi:ARTN 20130155
945 10.1098/rspb.2013.0155

946 Pan, T. C., Applebaum, S. L., & Manahan, D. T. (2015). Experimental ocean acidification alters
947 the allocation of metabolic energy. *Proc Natl Acad Sci U S A*, 112(15), 4696-4701.
948 doi:10.1073/pnas.1416967112

949 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and
950 bias-aware quantification of transcript expression. *Nat Methods*, 14(4), 417-419.
951 doi:10.1038/nmeth.4197

952 Pespeni, M. H., Sanford, E., Gaylord, B., Hill, T. M., Hosfelt, J. D., Jaris, H. K., . . . Palumbi, S. R.
953 (2013). Evolutionary change during experimental ocean acidification. *Proc Natl Acad Sci
954 U S A*, 110(17), 6937-6942. doi:10.1073/pnas.1220673110

955 Pierrot, D., E. Lewis, and D. Wallace. (2006). MS Excel program developed for CO₂ system
956 calculations, ORNL/CDIAC-105a. U.S. Dep. of Energy, Oak Ridge, Tenn.: Oak Ridge Natl.
957 Lab.

958 Przeslawski, R., Byrne, M., & Mellin, C. (2015). A review and meta-analysis of the effects of
959 multiple abiotic stressors on marine embryos and larvae. *Glob Chang Biol*, 21(6), 2122-
960 2140. doi:10.1111/gcb.12833

961 Rafiq, K., Shashikant, T., McManus, C. J., & Ettensohn, C. A. (2014). Genome-wide analysis of
962 the skeletogenic gene regulatory network of sea urchins. *Development*, 141(4), 950-961.
963 doi:10.1242/dev.105585

964 Runcie, D. E., Dorey, N., Garfield, D. A., Stumpp, M., Dupont, S., & Wray, G. A. (2016). Genomic
965 Characterization of the Evolutionary Potential of the Sea Urchin *Strongylocentrotus*
966 *droebachiensis* Facing Ocean Acidification. *Genome Biology and Evolution*, 8(12), 3672-
967 3684. doi:10.1093/gbe/evw272

968 Ryan, J. F. (2015). Alien Index (Version 1.0): Zenodo.

969 Schurch, N. J., Schofield, P., Gierlinski, M., Cole, C., Sherstnev, A., Singh, V., . . . Barton, G. J.
970 (2016). How many biological replicates are needed in an RNA-seq experiment and which
971 differential expression tool should you use? *RNA*, 22(6), 839-851.
972 doi:10.1261/rna.053959.115

973 Sea Urchin Genome Sequencing, C., Sodergren, E., Weinstock, G. M., Davidson, E. H., Cameron,
974 R. A., Gibbs, R. A., . . . Wright, R. (2006). The genome of the sea urchin *Strongylocentrotus*
975 *purpuratus*. *Science*, 314(5801), 941-952. doi:10.1126/science.1133609

976 Shashikant, T., Khor, J. M., & Ettensohn, C. A. (2018a). From genome to anatomy: The
977 architecture and evolution of the skeletogenic gene regulatory network of sea urchins and
978 other echinoderms. *Genesis*, 56(10), e23253. doi:10.1002/dvg.23253

979 Shashikant, T., Khor, J. M., & Ettensohn, C. A. (2018b). Global analysis of primary mesenchyme
980 cell cis-regulatory modules by chromatin accessibility profiling. *Bmc Genomics*, 19(1), 206.
981 doi:10.1186/s12864-018-4542-z

982 Smith, A. M., Clark, D. E., Lamare, M. D., Winter, D. J., & Byrne, M. (2016). Risk and resilience:
983 variations in magnesium in echinoid skeletal calcite. *Marine Ecology Progress Series*, 561,
984 1-16. doi:10.3354/meps11908

985 Smith, K. E., Byrne, M., Deaker, D., Hird, C. M., Nielson, C., Wilson-McNeal, A., & Lewis, C.
986 (2019). Sea urchin reproductive performance in a changing ocean: poor males improve
987 while good males worsen in response to ocean acidification. *Proceedings of the Royal
988 Society B-Biological Sciences*, 286(1907). doi:10.1098/rspb.2019.0785

989 Smith, M. S., Collins, S., & Raff, R. A. (2009). Morphogenetic mechanisms of coelom formation in
990 the direct-developing sea urchin *Heliocidaris erythrogramma*. *Development Genes and
991 Evolution*, 219(1), 21-29. doi:10.1007/s00427-008-0262-8

992 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate: reference-
993 free quality assessment of de novo transcriptome assemblies. *Genome Res*, 26(8), 1134-
994 1144. doi:10.1101/gr.196469.115

995 Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: transcript-
996 level estimates improve gene-level inferences. *F1000Res*, 4, 1521.
997 doi:10.12688/f1000research.7563.2

998 Strader, M. E., Wong, J. M., & Hofmann, G. E. (2020). Ocean acidification promotes broad
999 transcriptomic responses in marine metazoans: a literature survey. *Front Zool*, 17, 7.
1000 doi:10.1186/s12983-020-0350-9

1001 Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. C., & Dupont, S. T. (2011). CO₂ induced
1002 seawater acidification impacts sea urchin larval development I: elevated metabolic rates

1003 decrease scope for growth and induce developmental delay. *Comp Biochem Physiol A Mol*
1004 *Integr Physiol*, 160(3), 331-340. doi:10.1016/j.cbpa.2011.06.022

1005 Todgham, A. E., & Hofmann, G. E. (2009). Transcriptomic response of sea urchin larvae
1006 *Strongylocentrotus purpuratus* to CO₂-driven seawater acidification. *J Exp Biol*, 212(Pt
1007 16), 2579-2594. doi:10.1242/jeb.032540

1008 Tu, Q., Cameron, R. A., & Davidson, E. H. (2014). Quantitative developmental transcriptomes of
1009 the sea urchin *Strongylocentrotus purpuratus*. *Developmental Biology*, 385(2), 160-167.
1010 doi:10.1016/j.ydbio.2013.11.019

1011 Uppström, L. R. (1974). *The boron/chlorinity ratio of deep-sea water from the Pacific Ocean*.
1012 <https://ui.adsabs.harvard.edu/abs/1974DSROA..21..161U>

1013 Uthicke, S., Schaffelke, B., & Byrne, M. (2009). A boom–bust phylum? Ecological and evolutionary
1014 consequences of density variations in echinoderms. *Ecological Monographs*, 79(1), 3-24.
1015 doi:10.1890/07-2136.1

1016 Varemo, L., Nielsen, J., & Nookaew, I. (2013). Enriching the gene set analysis of genome-wide
1017 data by incorporating directionality of gene expression and combining statistical
1018 hypotheses and methods. *Nucleic Acids Research*, 41(8), 4378-4391.
1019 doi:10.1093/nar/gkt111

1020 Walker, N. S., Fernández, R., Sneed, J. M., Paul, V. J., Giribet, G., & Combosch, D. J. (2019).
1021 Differential gene expression during substrate probing in larvae of the Caribbean coral
1022 *Porites astreoides*. *Molecular Ecology*, 28(22), 4899-4913. doi:10.1111/mec.15265

1023 Webster, A. K., Jordan, J. M., Hibshman, J. D., Chitrakar, R., & Baugh, L. R. (2018).
1024 Transgenerational Effects of Extended Dauer Diapause on Starvation Survival and Gene
1025 Expression Plasticity in *Caenorhabditis elegans*. *Genetics*, 210(1), 263-274.
1026 doi:10.1534/genetics.118.301250

1027 Williams, D., & Anderson, D. (1975). The reproductive system, embryonic development, larval
1028 development and metamorphosis of the sea urchin *Heliocidaris erythrogramma* (Val.)
1029 (Echinoidea : Echinometridae). *Australian Journal of Zoology*, 23(3), 371-403.
1030 doi:<https://doi.org/10.1071/ZO9750371>

1031 Wolfe, K., Dworjanyn, S. A., & Byrne, M. (2013). Effects of ocean warming and acidification on
1032 survival, growth and skeletal development in the early benthic juvenile sea urchin
1033 (*Heliocidaris erythrogramma*). *Global Change Biology*, 19(9), 2698-2707.
1034 doi:10.1111/gcb.12249

1035 Wolfe, K., Nguyen, H. D., Davey, M., & Byrne, M. (2020). Characterizing biogeochemical
1036 fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face
1037 of global change. *Glob Chang Biol*, 26(7), 3858-3879. doi:10.1111/gcb.15103

1038 Wong, J. M., Gaitan-Espitia, J. D., & Hofmann, G. E. (2019). Transcriptional profiles of early stage
1039 red sea urchins (*Mesocentrotus franciscanus*) reveal differential regulation of gene
1040 expression across development. *Mar Genomics*, 48, 100692.
1041 doi:10.1016/j.margen.2019.05.007

1042 Wong, J. M., Johnson, K. M., Kelly, M. W., & Hofmann, G. E. (2018). Transcriptomics reveal
1043 transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling
1044 conditions alters the response of their progeny to differential pCO₂ levels. *Molecular*
1045 *Ecology*, 27(5), 1120-1137. doi:10.1111/mec.14503

1046 Wray, G. A., & Raff, R. A. (1990). Novel origins of lineage founder cells in the direct-developing
1047 sea urchin *Heliocidaris erythrogramma*. *Developmental Biology*, 141(1), 41-54.

1048 Wygoda, J. A., Yang, Y., Byrne, M., & Wray, G. A. (2014). Transcriptomic Analysis of the Highly
1049 Derived Radial Body Plan of a Sea Urchin. *Genome Biology and Evolution*, 6(4), 964-973.
1050 doi:10.1093/gbe/evu070

1051 Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., . . . Zhao,
1052 Q. Y. (2014). A comparative study of techniques for differential expression analysis on
1053 RNA-Seq data. *Plos One*, 9(8), e103207. doi:10.1371/journal.pone.0103207
1054

1055 **TABLE LEGENDS**1056 **Table 1.** Previous gene expression studies on various sea urchin species in response to
1057 experimental ocean acidification.1058 **Table 2.** Enrichment of Gene Ontology (GO) and echinoderm-specific gene sets and pathways
1059 (see *Methods*) in the set of differentially-expressed genes between the two pH levels used in this
1060 study. PMC effector genes (Rafiq, Shashikant, McManus, & Ettensohn, 2014) are marked with
1061 an asterisk.

1062

1063 **FIGURE LEGENDS**1064 **Figure 1.** Experimental design (left) and analytical pipeline of RNA-seq data (right).1065 **Figure 2.** Stage-by-stage differential gene expression at A) embryo, B) larvae, and C) juvenile.

1066 Pink represents differentially expressed genes supported by an adjusted p-value < 10% and

1067 $\log_2(\text{FC}) < 1.5$. Red represents differentially expressed genes supported by an adjusted p-value1068 <10% and $\log_2(\text{FC}) \geq 1.5$. Grey represents genes that were not differentially expressed. Positive1069 FC values are genes more highly expressed at pH_T 8.0; negative FC values are genes more highly1070 expressed at pH_T 7.6.1071 **Figure 3.** Overlap between stage- and criterion-specific sets of transcriptional responses to

1072 OA. Exact area-proportional Euler diagrams (scaled Venn diagrams) are shown representing the

1073 total number of genes identified and their overlaps. A) Differentially expressed (DE) genes at

1074 three life history stages. B) Gene expression responses to reduced pH_T according to three distinct1075 criteria: change in transcript abundance (DE), increased proportion of variance explained by pH_T

1076 (variance) and altered developmental trajectory (cluster jump). See text for an explanation of

1077 inclusion criteria.

1078 **Figure 4.** A) Principal component analysis of transcript abundances across all samples. B)

1079 Variance partitioning of gene expression attributed to each factor of the experimental design. PC:

1080 principal component.

1081 **Figure 5.** Average variance-to-mean (VMR) ratio for pH_T 8.0 (blue) and 7.6 (red) at A) embryo,

1082 B) larva, and C) juvenile. VMR is significantly higher at for embryo and larval stages (two-sided

1083 paired t-test; *: p-value < 5e-2; **: p-value < 5e-7). Mean vs variance plots at D) embryo, E)

1084 larva, and F) juvenile showing that difference in VMR between pH_T conditions at the larval stage1085 is attributable to lower variance (y-axis) at pH_T 8.0, not changes in mean expression (x-axis). G-

1086 H) Examples of genes with higher expression variance among replicates at pH_T 7.6 relative to
1087 pH_T 8.0, highlighted in panels D-F. G) *sushi*; H) *ankyrin2,3*; I) NADH–ubiquinone
1088 oxidoreductase B16.6 subunit; J) fibropellin 1. Blue: pH_T 8.0. Red: pH_T 7.6.

1089 **Figure 6.** Comparative soft clustering analyses of 10,404 genes between pH_T 8.0 and 7.6. Time
1090 course plots on each axis describe five temporal expression patterns at pH_T 8.0 (blue) and pH_T 7.6
1091 (red), respectively. Each grid entry represents the number of genes with a change (or lack thereof)
1092 in developmental expression pattern between pH_T 8.0 and 7.6. For example, 2270 genes (top left)
1093 had no change in developmental expression pattern at pH_T 8.0 and pH_T 7.6. In contrast, 2 genes
1094 (top right) that decreased in expression through development at pH_T 8.0 instead increased in
1095 expression at pH_T 7.6. Purple shading describes the proportion of genes with each expression
1096 trajectory change between pH_T conditions.

1097 **Figure 7.** Density distribution of the deviation for each male parental genotype from the mean
1098 expression across all genotypes, for all genes. Deviation was calculated as relative change. K-S
1099 tests were performed for each combination of genotypes at each stage; the distribution of each
1100 genotype (in both pH conditions and at all stages) was found to be statistically different from that
1101 of all other genotypes within the stage and pH condition ($p < 0.05$).

1102 **Figure 8.** Subset of pH_T sensitive genes identified by three independent types of analyses carried
1103 out in this study: stage-by-stage differential expression, variance partitioning of factor
1104 contribution to expression, and comparative time course “cluster jumping” genes.

1105

1106 **SUPPLEMENTARY TABLE LEGENDS**

1107 **Supplementary Table 1.** Carbonate chemistry parameters describing set up of flow-through sea
1108 water system in which *Helicidaris erythrogramma* was reared. Data displayed as averages \pm SE,
1109 n = 5.

1110 **Supplementary Table 2.** Sequencing strategy and sample information of each RNA-seq sample
1111 collected. One sample, 8_1M1L, was not sequenced due to poor RNA quality.

1112 **Supplementary Table 3.** Summary statistics of *de-novo* assembled transcriptome. “mean ORF
1113 %” denotes mean percentage of contig covered by an open reading frame (ORF), for those
1114 contigs with an ORF. Statistics generated with Transrate (Smith-Unna et al., 2016).

1115 **Supplementary Table 4.** Summary of variance explained by principal components from PCA.

1116 **Supplementary Table 5.** Differentially expressed genes in our study that were also found to be
1117 differentially expressed in other species and/or stages in other studies (See *Methods* for studies
1118 used). 890 OA-responsive genes from other studies were compared to 908 DE genes in this
1119 study; 131 genes were common to the two sets.

1120 **Supplementary Table 6.** Genes that were differentially expressed at more than one stage. Sign
1121 indicates the direction of expression change at pH_T 7.6 relative to control pH_T 8.0.

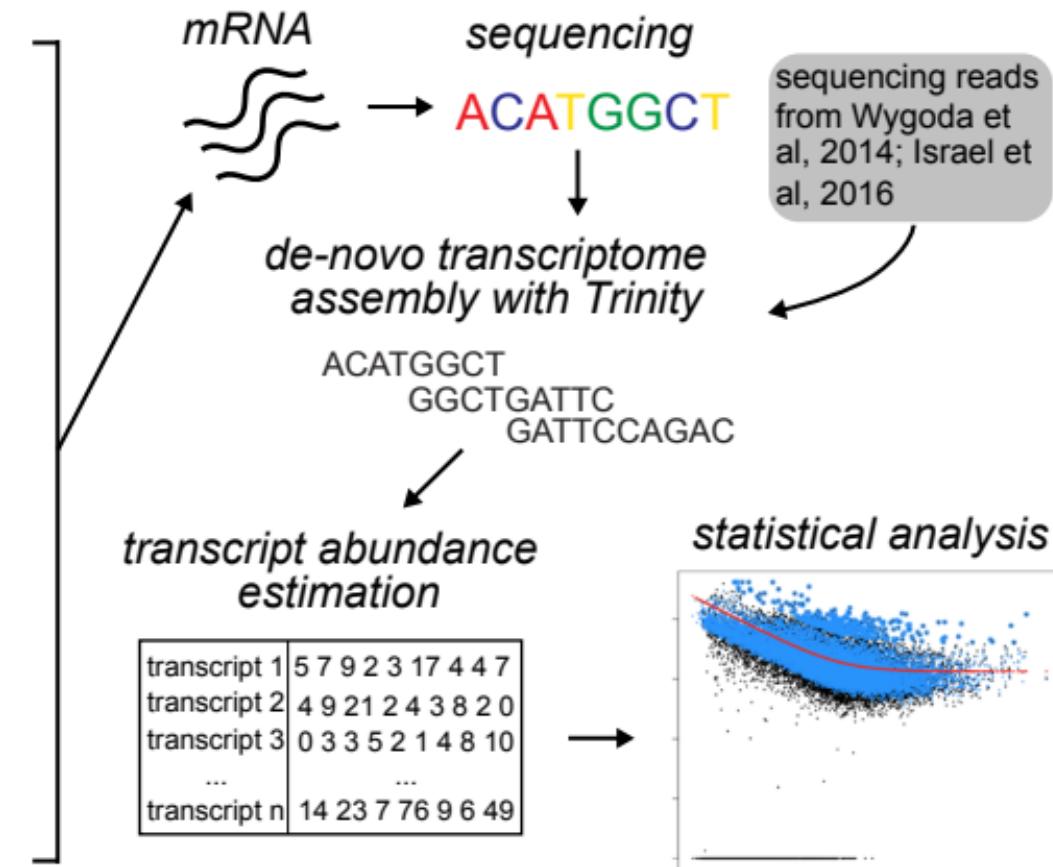
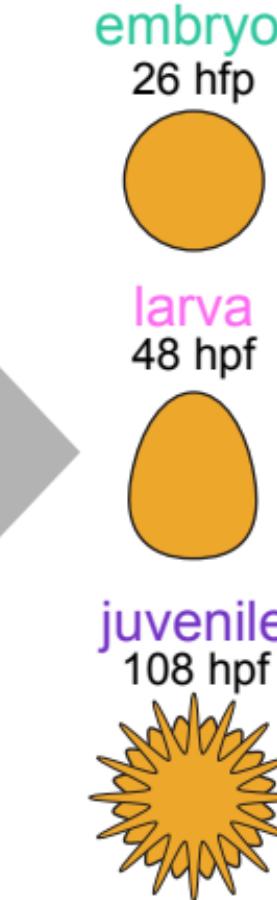
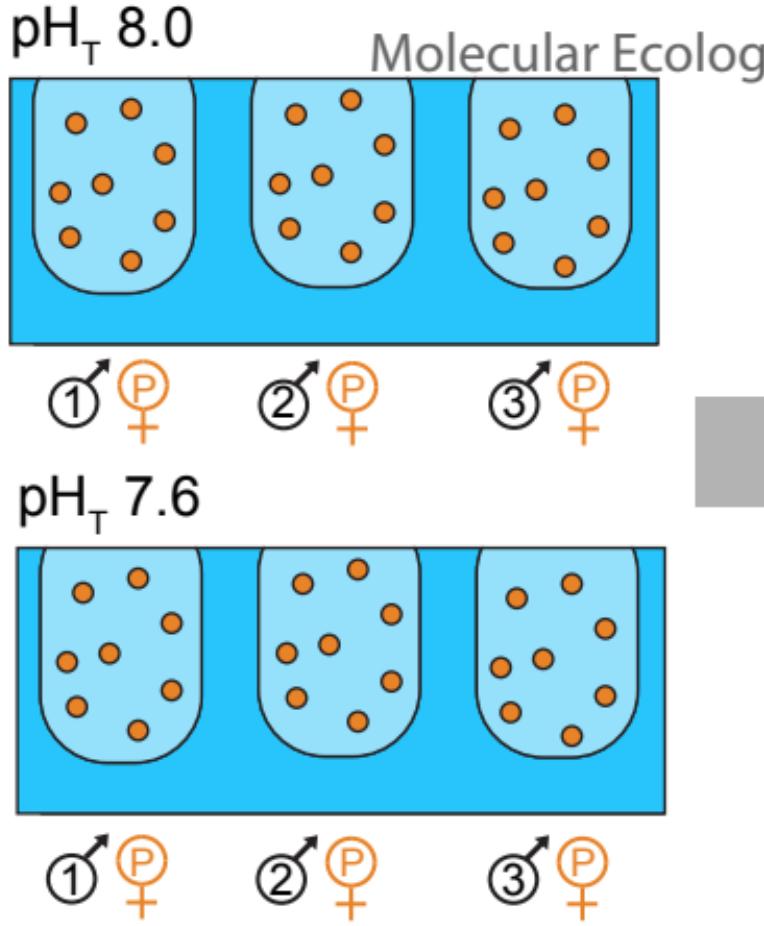
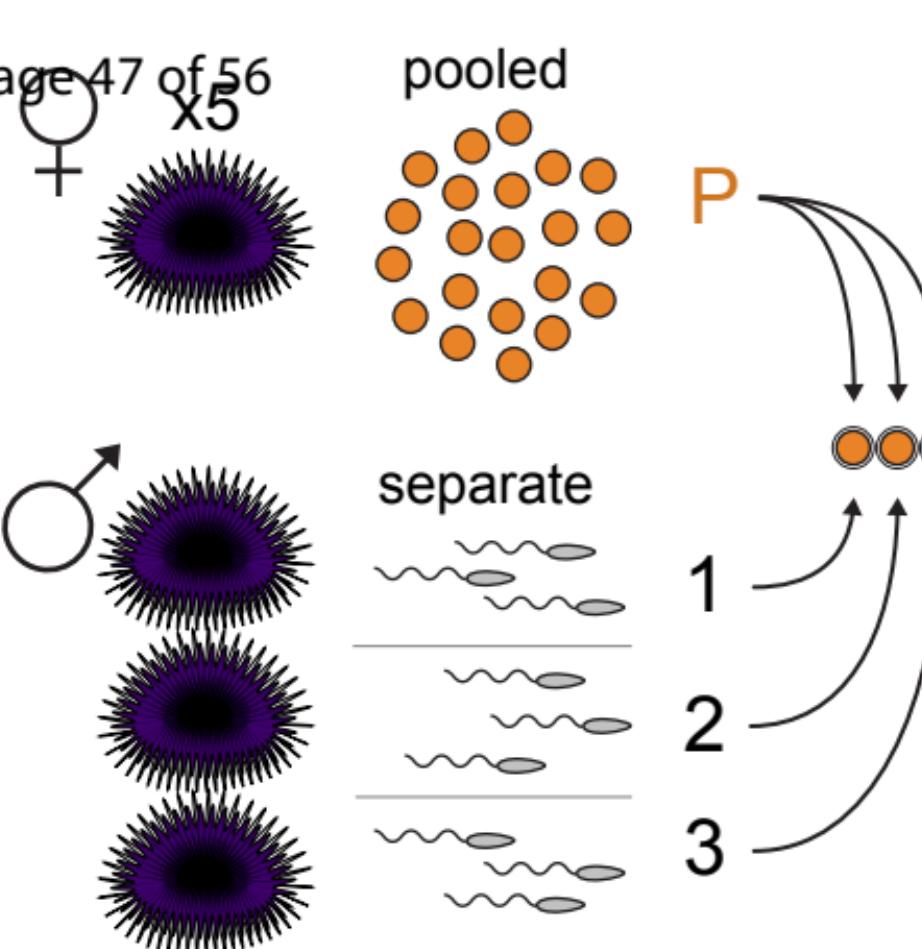
1122

1123 **SUPPLEMENTARY FIGURE LEGENDS**1124 **Supplementary Figure 1.** Timecourse cluster profiles generated by the *Mfuzz* package (Kumar
1125 & Futschik, 2007) based on gene expression from all stages and pH conditions studied.1126 **Supplementary Figure 2.** Expression timecourse of *Msp130* in control (pH_T 8.0; blue) and OA
1127 (pH_T 7.6; red) conditions.1128 **Supplementary Figure 3.** Density plots of VMR (also known as “dispersion index”) for pH_T 8.0
1129 (blue) and 7.6 (red) at each developmental stage: A) embryo, B) larva, C) juvenile1130 **Supplementary Figure 4.** Density plots of VMR (also known as “dispersion index”) for all
1131 genes, broken down by gene functional category according to Echinobase.

1132

1133

1134





1135

1137 **DATA ACCESSIBILITY**

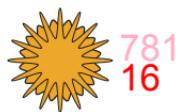
1138 Sequencing reads and the transcriptome generated in this study are publicly available on Dryad
1139 Digital Repository (doi:10.5061/dryad.3xsj3txdm). Transcript abundances and gene sets are
1140 available in the Supplementary Data online.

1141 **AUTHOR CONTRIBUTIONS**

1142 M.B. conceived the study. D.J.D., K.E.S., and M.B. designed and set up the experiment. P.L.D.,
1143 D.J.D., K.E.S., and M.B. performed the sample collection. H.R.D. and P.L.D. analyzed the data.
1144 H.R.D., P.L.D., G.A.W., and M.B. wrote the paper.

sequencing reads from Wygoda et al, 2014; Israel et al, 2016

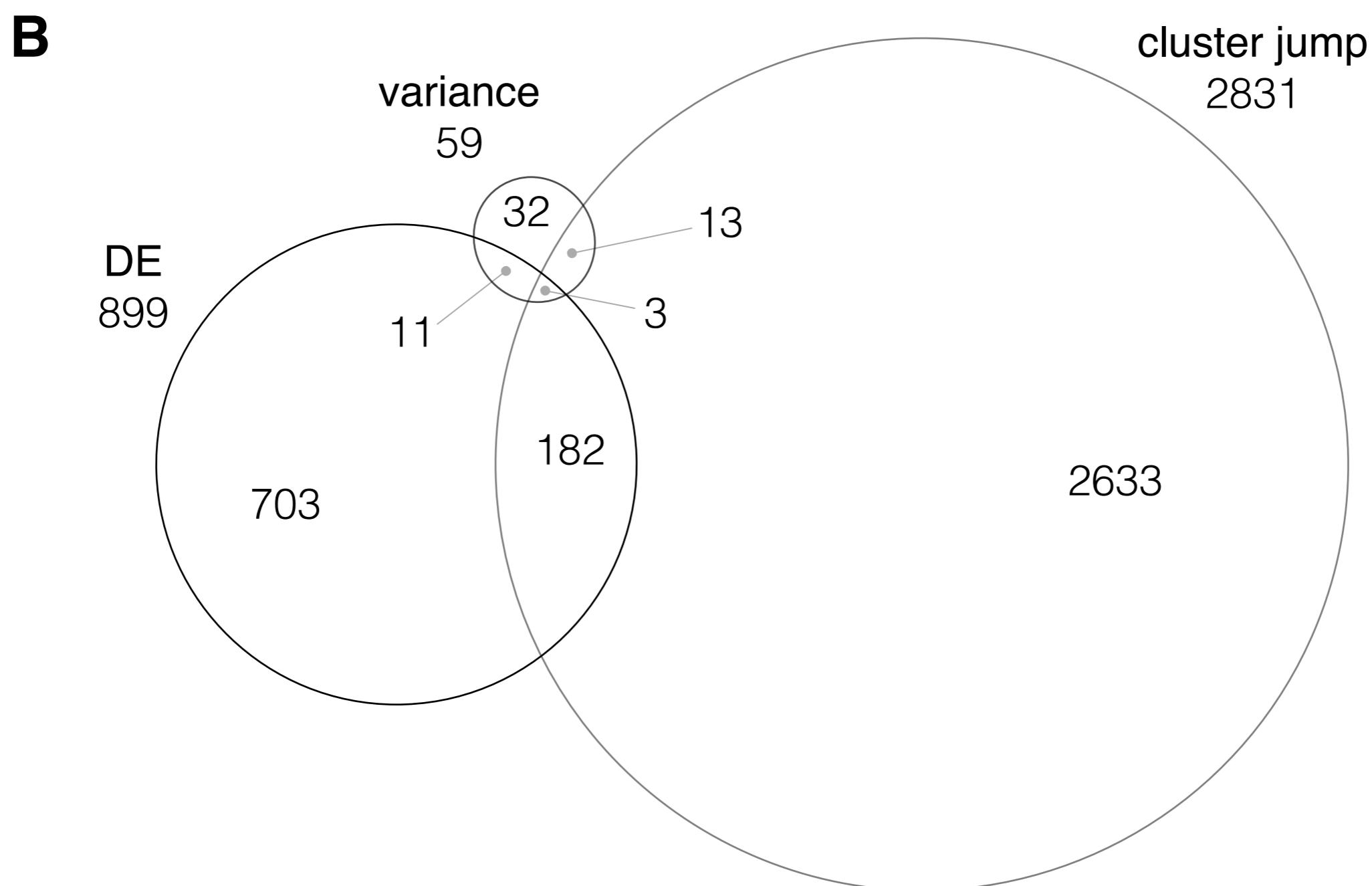
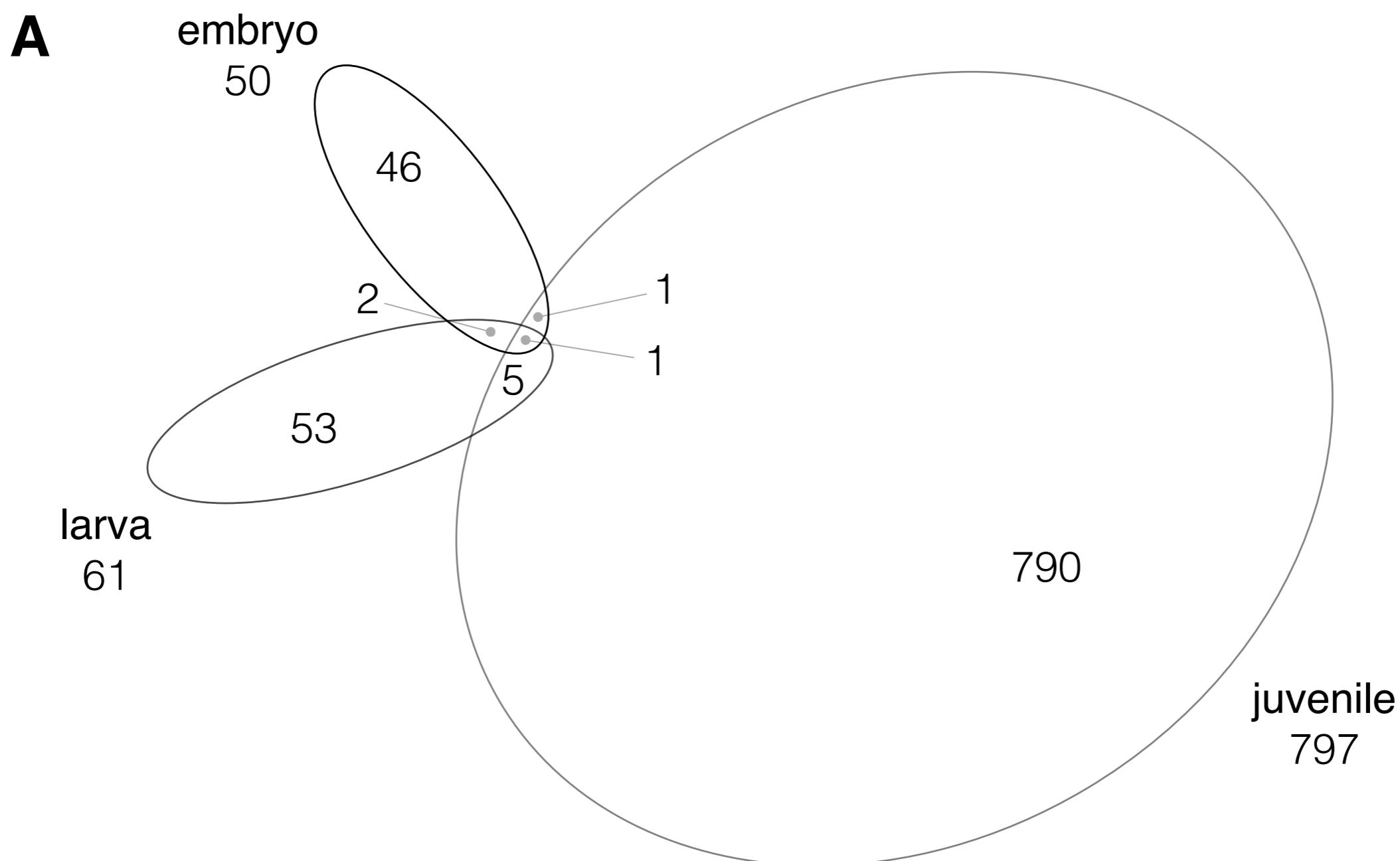
A $-\log(\text{padj})$

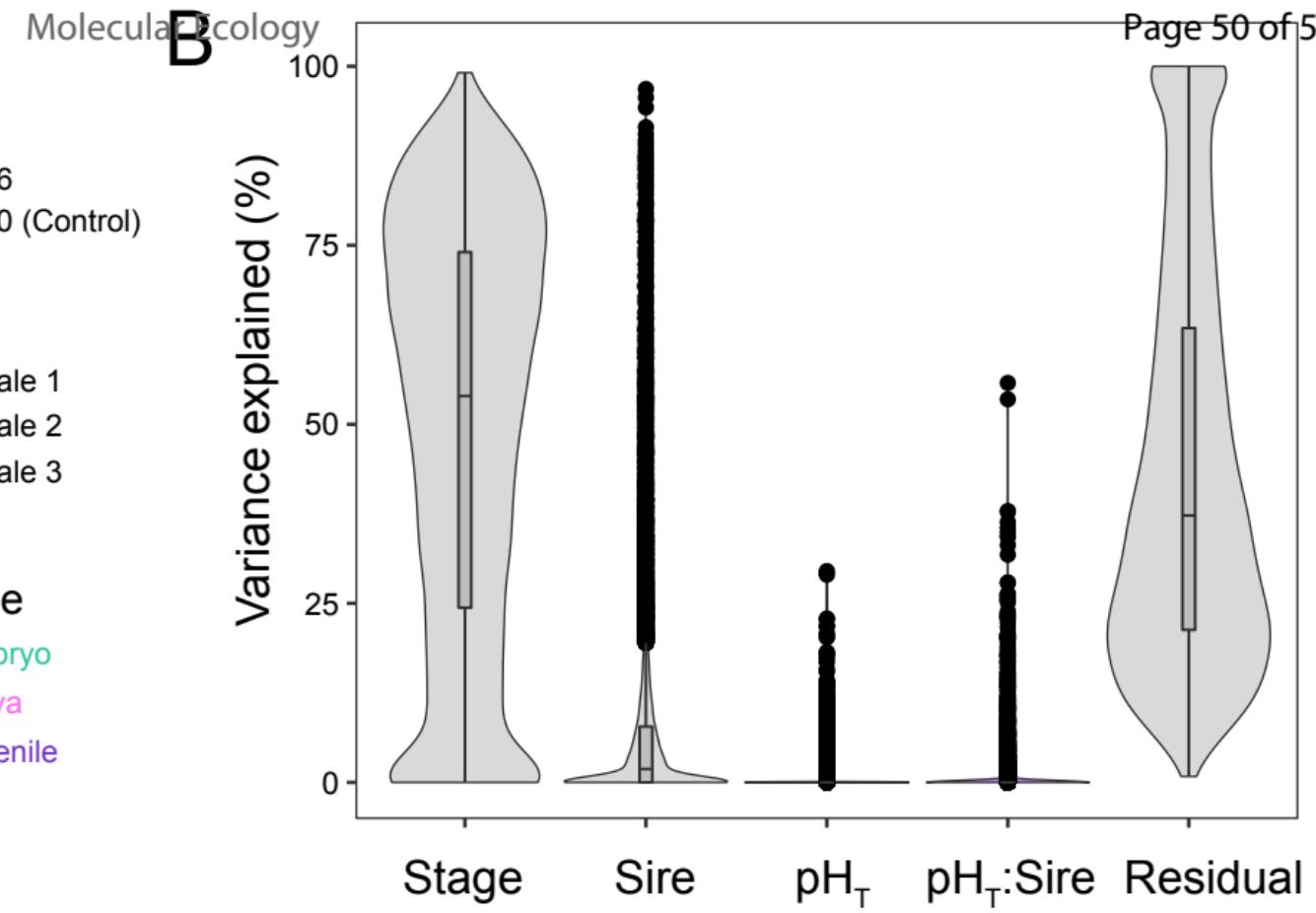
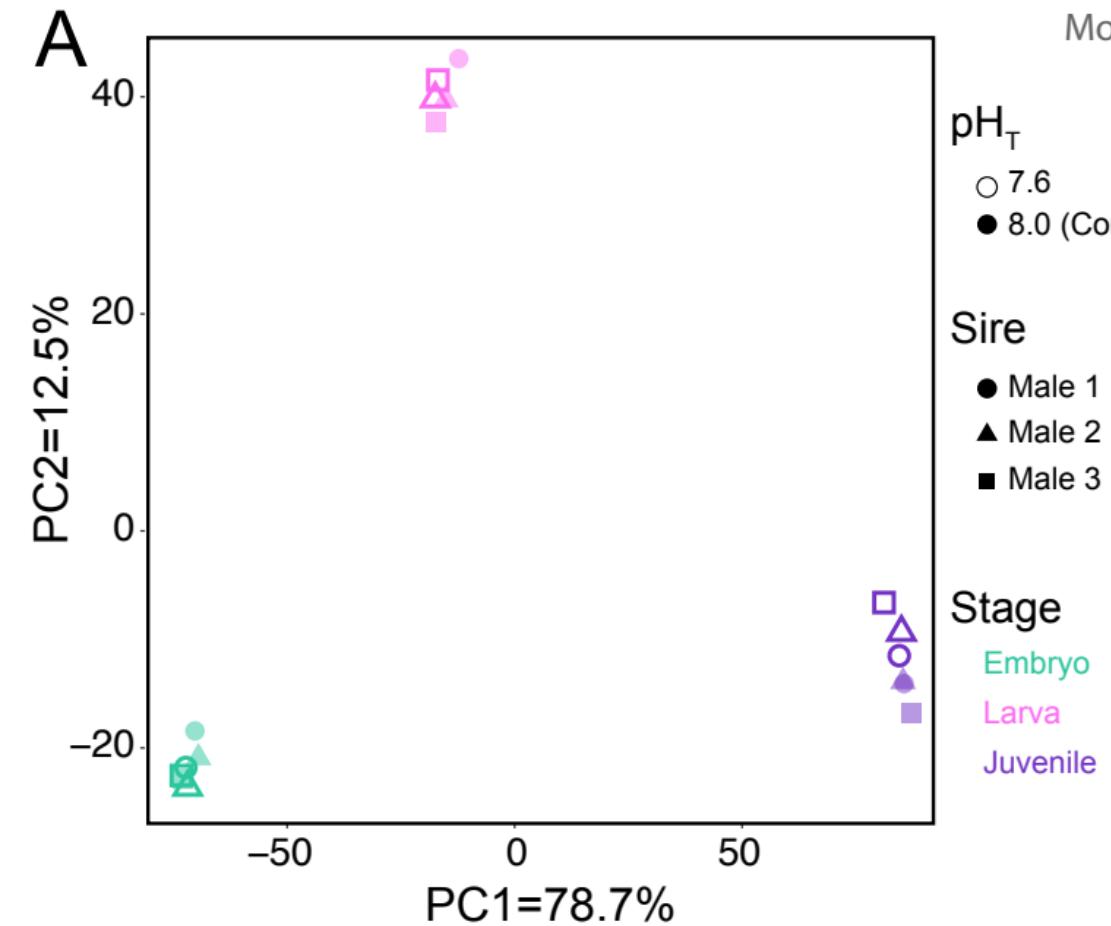

25
20
15
10
5
0

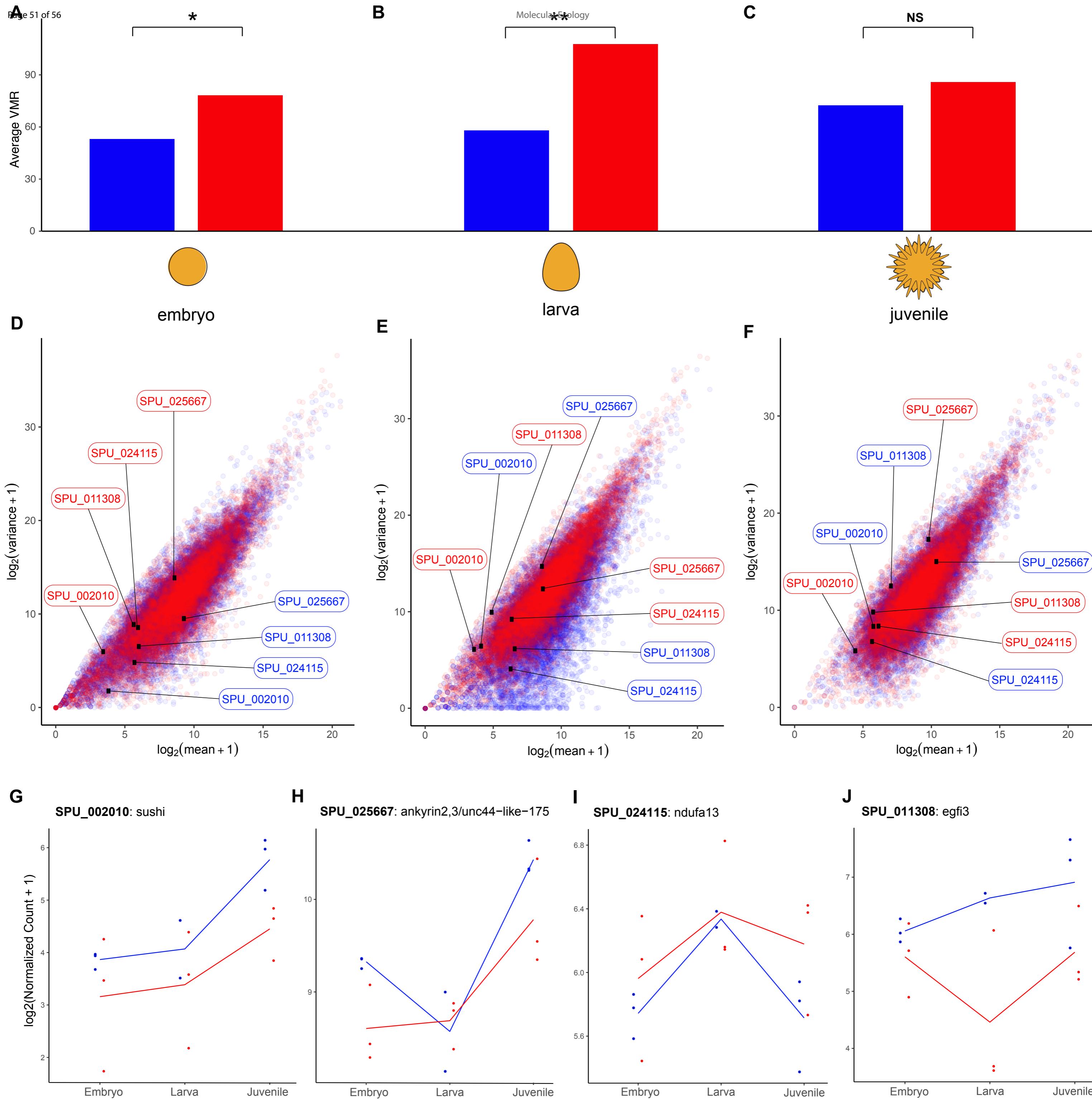
-10 -5 0 5 10

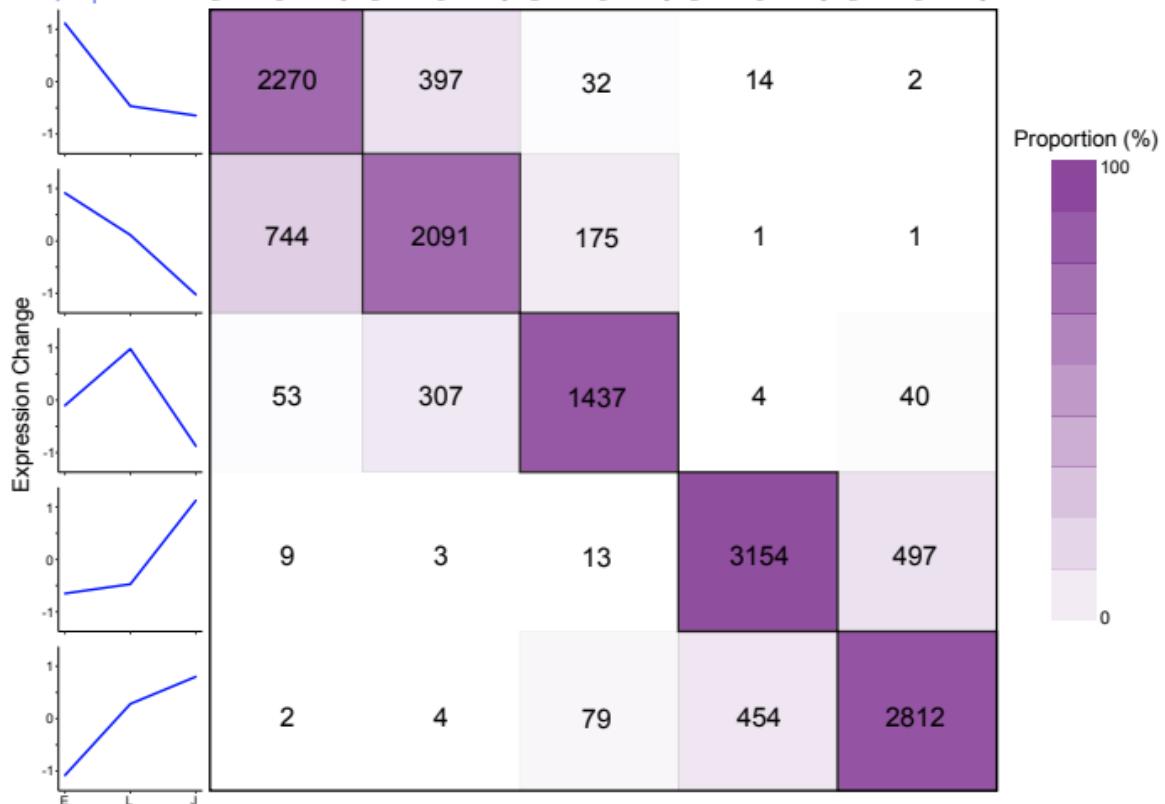
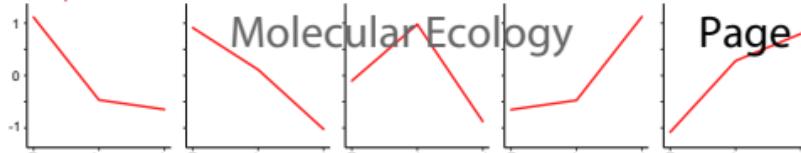
B $-\log(\text{padj})$

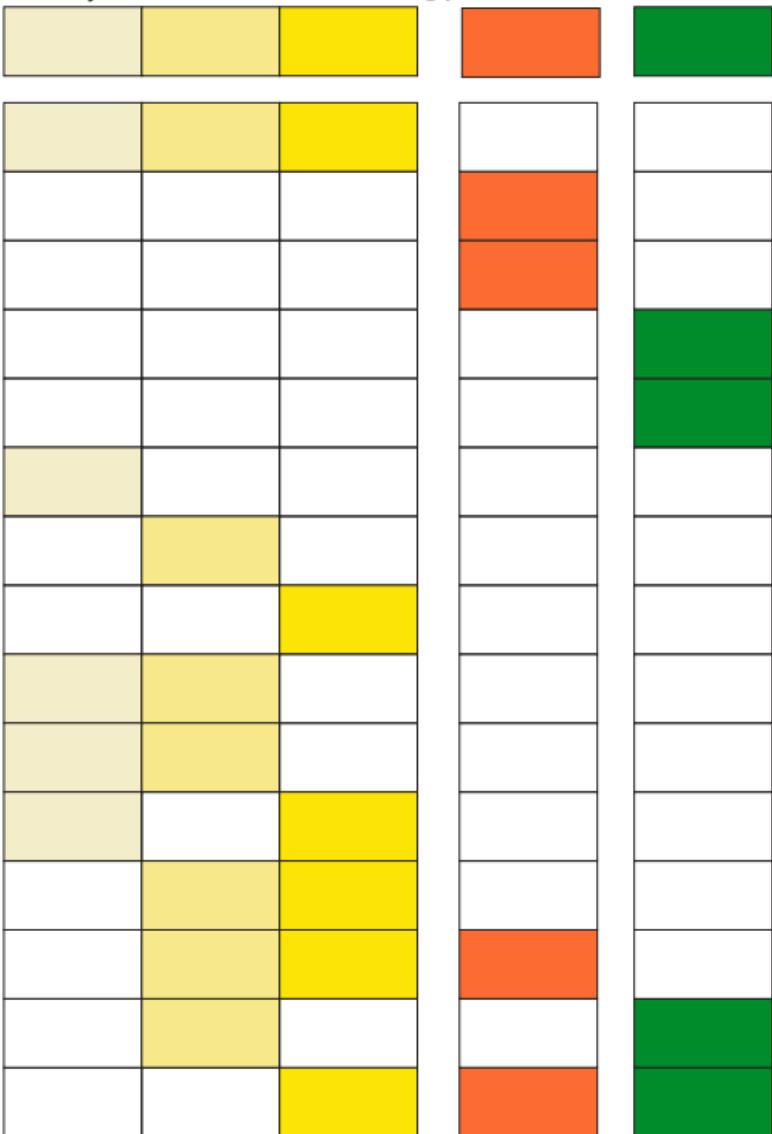
25
20
15
10
5
0

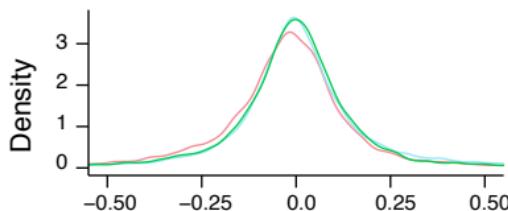


-10 -5 0 5 10

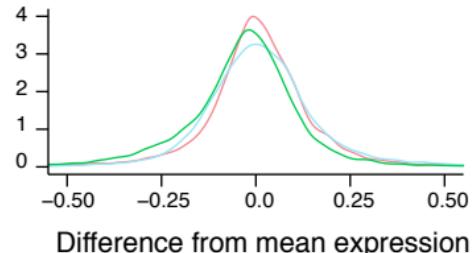
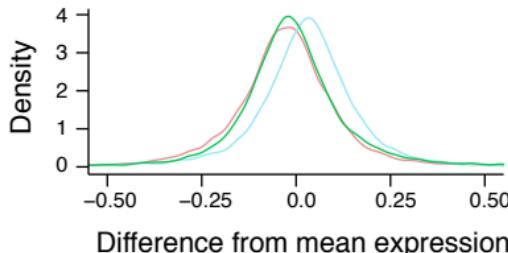
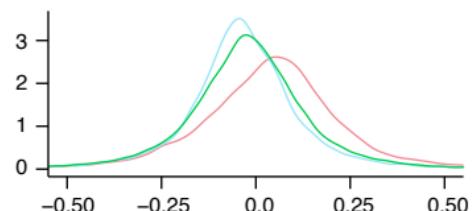
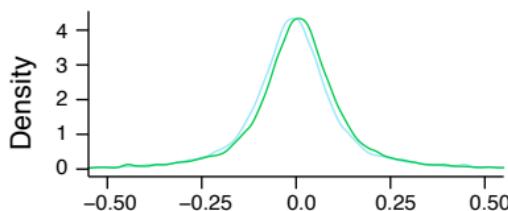
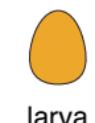
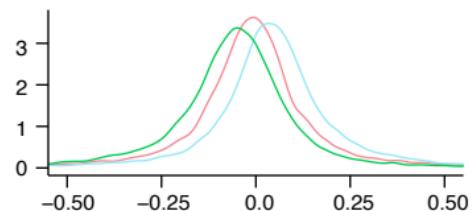


C $-\log(\text{padj})$


25
20
15
10
5
0



-10 -5 0 5 10


log2FoldChange



pH_T 8.0

pH_T 7.6

Sire

- male 1
- male 2
- male 3

Species	Life History	Stage	Experimental pH used	Sequencing method	Reference
<i>Hemicentrotus pulcherrimus</i>	Planktotroph	Gastrula, Prism, Pluteus	7.75 7.45	rtPCR	Kurihara et al., 2012
<i>Lytechinus pictus</i>	Planktotroph	Pluteus	7.87 7.78	Microarray	O'Donnell et al., 2010
<i>Paracentrotus lividus</i>	Planktotroph	Gastrula, Pluteus	7.9 7.7 7.5 7.25 7.0	rtPCR	Martin et al., 2011
<i>Strongylocentrotus deoebachiensis</i>	Planktotroph	Pluteus	7.6	RNAseq	Runcie et al., 2016
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Pluteus	7.7	Microarray	Stumpp et al., 2011
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Adult (tube feet)	7.65-7.95 (field experiment)	RNAseq	Pespeni et al., 2013
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Gastrula, Pluteus	400 μ atm CO ₂ 900 μ atm CO ₂	RNAseq	Evans et al., 2017
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Pluteus	7.77 7.59	Microarray	Evans et al., 2013
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Gastrula	7.76 7.68	RNAseq	Wong, Johnson, Kelly, & Hofmann, 2018
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Pluteus	7.96 7.88	Microarray	Todgham & Hofmann, 2009
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Pluteus	1100 μ atm pCO ₂	Microarray	Padilla-Gamino et al., 2013
<i>Strongylocentrotus purpuratus</i>	Planktotroph	Gastrula (3 stages)	7.69 7.62	rtPCR	Hammond & Hofmann, 2012

	Embryo	Larva	Juvenile
Genes	*SPU_007451 *SPU_009476 *SPU_008985 *SPU_002148 *SPU_016500 SPU_014496 SPU_002088 SPU_015763	SPU_018406 SPU_002088 SPU_013821 SPU_013823	SPU_010805 SPU_021344 SPU_000353 SPU_025378 SPU_026146 SPU_013237 SPU_008175
Categorical Enrichment	nucleotide catabolic process (<0.003) regulation of transcription, DNA-templated (<0.006) *PMC effector genes (<0.034) biomineralization genes (<0.034)	nucleotide catabolic process (<0.006) regulation of transcription, DNA-templated (<0.022) biomineralization genes (<0.081)	microtubule-based movement (<2.5e-6) microtubule cytoskeleton organization (<0.002) cilium movement (<0.006) regulation of transcription, DNA-templated (<0.009) Wnt signaling pathway (<0.009)