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ABSTRACT

Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs
development in marine invertebrates, particularly in calcifying species. Plasticity in gene
expression is thought to mediate many of these physiological effects, but how these responses
change across life history stages remains unclear. The abbreviated lecithotrophic development of
the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyze gene
expression responses across a wide range of life history stages, including the benthic, post-
metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at
three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The
results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including
changes in the number and identity of affected genes; the magnitude, sign, and variance of their
expression response; and the developmental trajectory of expression. The impact of OA on
transcription was notably modest in relation to gene expression changes during unperturbed
development and much smaller than genetic contributions from parentage. The latter result
suggests that natural populations may provide an extensive genetic reservoir of resilience to OA.
Taken together, these results highlight the complexity of the molecular response to OA, its
substantial life history stage specificity, and the importance of contextualizing the transcriptional
response to pH stress in light of normal development and standing genetic variation to better
understand the capacity for marine invertebrates to adapt to OA.

Keywords: climate change, echinoid, direct development, ocean acidification, RNA-seq,

transcriptomics
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INTRODUCTION

Increased ocean uptake of carbon dioxide (CO,) due to rising anthropogenic emissions is
causing rapid alterations to the biological, chemical, and physical composition of the marine
environment (Gattuso et al., 2015; IPCC, 2014). These changes have resulted in a multidimensional
set of stressors for marine life as the ocean becomes more hypercapnic (increasing pCO,), more
acidic, and less saturated in calcium carbonate minerals (Albright et al., 2016; Gattuso et al., 2015;
IPCC, 2014). Calcifying marine invertebrates such as corals, mollusks, and echinoderms are
particularly vulnerable to the reduced availability of carbonate ions (Byrne & Hernandez, 2020;
Kroeker et al., 2013; A. M. Smith, Clark, Lamare, Winter, & Byrne, 2016). Several studies have
shown the negative effect of decreasing carbonate mineral saturation on skeletogenesis in these
animals (Byrne & Fitzer, 2019; Byrne, Lamare, Winter, Dworjanyn, & Uthicke, 2013; Collard,
Catarino, Bonnet, Flammang, & Dubois, 2013; Stumpp, Wren, Melzner, Thorndyke, & Dupont,
2011). Hypercapnic seawater conditions and reduced pH can also disrupt metabolism, resulting in
the prioritization of energy reserves toward the maintenance of essential physiological processes
(e.g., acid-base homeostasis) rather than growth and calcification (Byrne et al., 2013; Carey,
Harianto, & Byrne, 2016; Collard et al., 2013; Liu et al., 2020; Stumpp et al., 2011; Todgham &
Hofmann, 2009).

The impact of OA on the reproduction, development, and physiology of marine
invertebrates differs between species (Kroeker et al., 2013; Przeslawski, Byrne, & Mellin, 2015),
and gene expression studies indicate that the affected physiological and molecular pathways also
differ (Strader, Wong, & Hofmann, 2020). The ability to measure the expression of all genes
simultaneously through transcriptomic analyses provides a powerful approach to understanding

organism responses and differences among taxa, as this approach affords a comprehensive and
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unbiased view of stress response at the molecular level. Several studies have used this approach to
examine the effects of OA in diverse marine invertebrates, with a major focus on calcifiers, as they
are the most vulnerable (Davies, Marchetti, Ries, & Castillo, 2016; De Wit, Durland, Ventura, &
Langdon, 2018; Evans, Chan, Menge, & Hofmann, 2013; Griffiths, Pan, & Kelly, 2019; Maas,
Lawson, Bergan, & Tarrant, 2018; Pan, Applebaum, & Manahan, 2015; Strader et al., 2020). To
date, no study has examined the transcriptomic response to OA spanning the planktonic to benthic
transition in any marine invertebrate (for a recent review, see Strader et al., 2020). To address this
gap in knowledge, we carried out transcriptomic analyses of the response to OA at three life history
stages (embryos, larvae, and metamorphosing juveniles) under control and OA conditions in the
sea urchin Heliocidaris erythrogramma.

H. erythrogramma is abundant in shallow benthic habitats around temperate Australia
where, like many sea urchin species, it is ecologically important in structuring subtidal habitats as
a major grazer of macroalgae (Keesing, 2020). Prior studies of the impact of OA on survivorship
and morphogenesis of H. erythrogramma demonstrate that fertilization, embryos, and early
larvae are robust to projected OA conditions (pH 7.6-7.8) (Byrne et al., 2010; Hardy & Byrne,
2014), while later metamorphic stages are more sensitive to these pH levels (Byrne et al., 2011).
H. erythrogramma develops rapidly through a lecithotrophic (nonfeeding) larva (Williams &
Anderson, 1975), providing an opportunity to examine the effects of OA on gene expression
across the life cycle from embryo to early juvenile for the first time in a marine invertebrate.

Because the evolution of lecithotrophy in H. erythrogramma involved substantial changes
in maternal provisioning, developmental physiology, and larval anatomy (Byrne & Sewell, 2019;
Davidson et al., 2019; Henry, Wray, & Raff, 1990; M. S. Smith, Collins, & Raff, 2009; Williams

& Anderson, 1975), the response of development in this species to OA would be expected to
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differ with respect to the larval stage (i.e. feeding vs non-feeding sea urchin larvae). In particular,
the larval skeleton is reduced to vestigial spicules in H. erythrogramma compared with the well-
developed skeleton of echinoplutei (Emlet, 1995; Williams & Anderson, 1975) and so may be
less susceptible to the effects of OA during pre-metamorphic stages of the life cycle. For the
Echinodermata, species with nonfeeding and noncalcifying larvae have exhibited differential
survival through past extinction events, including those linked to altered climate (Uthicke,
Schaffelke, & Byrne, 2009). Furthermore, genomic resources are available for H.
erythrogramma, including developmental transcriptomes (Israel et al., 2016; Wygoda, Yang,
Byrne, & Wray, 2014), as well as metabolic and proteomic mass spectrometry datasets (Davidson
et al., 2019), making this a particularly valuable species for studying transcriptomic responses to
OA.

Besides carrying out conventional analyses to identify differences in transcript abundance,
we examined two other informative features of the gene expression response to OA. First, we
measured variance in gene expression, both for individual genes based on variance partitioning and
for the transcriptome as a whole based on the variance-to-mean ratio (VMR). Because increased
variance can reflect misregulation (Felix & Barkoulas, 2015; Lopez-Maury, Marguerat, & Bahler,
2008), these measures provide a way to gauge whether OA disrupts the regulation of gene
expression as distinct from the reaction norm. Second, we measured changes in the shape of gene
expression profiles across developmental stages, based on soft clustering (Kumar & Futschik,
2007) and changes in cluster membership (Israel et al., 2016). Such "cluster jumps" provide an
objective method for identifying large changes in the temporal trajectory of gene expression
independent of expression level (e.g., progressive increase vs central peak). Finally, we took

advantage of the controlled breeding design to measure genetic contributions to the transcriptomic
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response to OA using male parent as a factor in a mixed linear model (Runcie et al., 2016). Taken
together, the results of these analyses illustrate the value of examining diverse facets of the
molecular response to a stressor, sampling multiple life history stages, and measuring the relative

magnitude of genetic and environmental influences on gene expression.

MATERIALS AND METHODS

Experimental design and set up

Heliocidaris erythrogramma adults were collected near Sydney, Australia and maintained
in flow-through filtered natural seawater (FSW, 20 um) at the Sydney Institute of Marine Sciences.
A controlled breeding design consisting of three crosses was used, with each cross derived from
eggs pooled from the same five females and sperm from a different male. Pooling eggs from five
females provided sufficient biological material for sampling multiple time points, while fertilizing
with sperm from different males provided biological replication as well as the ability to estimate
male genetic contributions to variation in gene expression among samples (Runcie et al., 2016).
An asymmetric breeding design was used because female genetic contributions are difficult to
measure during development due to differences in egg quality that often overwhelm genetic
differences, while male contributions are considered nearly equivalent to genetic contributions as
sperm bring few nutrients and mRNAs to the zygote (Lynch & Walsh, 1998).

Spawning was induced by injecting 0.5 ml of 0.5 M KCl into the coelom. Eggs and sperm
were microscopically checked for quality and motility and the sperm of three males was stored dry
until use. Equal portions of eggs from five females were combined in a 5 L beaker of FSW and
aliquots were counted to determine egg concentration. Eggs were then divided equally across three

5 L beakers of FSW at experimental pHr levels (8.0 and 7.6; see below for details). To generate
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three biological replicates, eggs were fertilized in each beaker with sperm from a different male at
a concentration of 10* sperm/mL (determined by hemocytometer counts), resulting in three distinct
crosses for each pH condition with fertilization rate > 90%. Embryos were reared at a concentration
of I/mL in 100 mL plastic containers in a flow-through seawater system (1.0 um FSW) with water
at experimental pHr levels and temperature at 20°C.

The two pHt conditions in our experiment, pHr 8.0 and pHy 7.6, represent current and
projected future ocean pHt (2100) (IPCC, 2014). The shallow subtidal environments in eastern
Australian coastal areas, where H. erythrogramma are typically found, fluctuate between pHr
7.87 - 8.30 (Wolfe, Nguyen, Davey, & Byrne, 2020); thus, a pHr of 7.6 is likely to be outside
their natural pH range. The pHy of seawater was maintained using a mixed CO, system, in which
a thermally compensated, low-flow controller valve (Parker Hannifin, OH, USA) and a
proportional-integral-derivative controller, updated every 10 s, were used to inject food-grade
CO, into ambient air that had been scrubbed of CO,. CO, was vigorously and continuously
bubbled into the header tank, using ceramic diffusers to supply pHrt 7.6 water. Ambient seawater
in the controls was not manipulated. A thermocouple-solenoid feedback system that
automatically mixed warm and cold water in a mixing chamber was used to supply water at
stable temperature (20°C) at the desired pHr. Seawater pH was measured spectrophotometrically
on the total scale (pHr) with a custom-built sampling system connected to an Ocean Optics
USB4000+fiber optic spectrometer using m-Cresol dye indicator (Acros Argonics lot
#A0321770) and pHt was calculated according to Liu, Patsavas, and Byrne (2011).

Measurements were calibrated to certified reference material (CRM) for CO, in seawater
(Batch 139 (A. G. Dickson, Sabine, C.L., & Christian, J.R., 2007)). In parallel with pH

monitoring (see below), samples (330 mL) of source water were collected daily over the five
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days of rearing to determine total alkalinity (TA) by potentiometric titration (Titrando, Metrohm)
(see Supp. Table 1) calibrated using seawater CRMs (Batch 139 (A. G. Dickson, Sabine, C.L., &
Christian, J.R., 2007); carbonate system parameters, pCO,, calcite and aragonite saturation states
were calculated using CO2SYSS (Pierrot, 2006) (Supp. Table 1). Dissociation constants for these
calculations were calculated following Mehrbach, Culberson, Hawley, and Pytkowicx (1973) as
refit by A. G. Dickson and Millero (1987) for K1/K2 and Andrew G. Dickson (1990) for KHSOy,
and Uppstrom (1974) for total boron. Temperature and pH were monitored daily in all treatments
in numerous randomly selected rearing containers at the level of the developing H.
erythrogramma using a WTW multimeter (Wissenschaftilich-TechnischeWerkstatten GmbG P4)
and SenTix 41 pH electrode; precision 0.01 pH units) to ensure conditions remained on
target. The probes were calibrated using NIST high precision buffers pH 4.0, 7.0 and 10.0
(ProSciTech, Australia) with pH on the total scale determined through calibration with TRIS sea
water buffer using the millivolt scale (A. G. Dickson, Sabine, C.L., & Christian, J.R., 2007). The
pHr levels were the same across all rearing containers per treatment and so the daily pHry
measure was used to determine the carbonate chemistry parameters (Supp. Table 1). FSW was
supplied at the appropriate pHr by a dripper tap system to individual containers. FSW was
supplied at the appropriate pHr by a dripper tap system to individual containers fitted with 150
um mesh-covered windows that maintained 40-50 mL of water in the containers at all times, with
a flow rate of ~ 3-4 mL/min.

Following fertilization, each of the three crosses was divided into two equal portions and
reared at the different pHry levels, using 6-8 separate vessels for each cross X treatment in order to
achieve low culture densities. Samples were collected at three time points: embryo (gastrula stage,

26 hours post fertilization (hpf)), early larva (48 hpf), and newly settled juvenile (108 hpf) (see Fig.
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1). Metamorphosis is not synchronous in H. erythrogramma cultures, so settled, post-metamorphic
individuals were hand-picked to sample the juvenile stage to ensure that they were at a similar
stage of development. Previous studies have shown that early embryos of H. erythrogramma are
resilient to OA with increased sensitivity to the juvenile stage and differential survival of resilient
progeny (Byrne et al., 2009; Byrne et al., 2011; Hardy & Byrne, 2014). In total, 18 samples were
collected for RNA-sequencing (3 developmental stages x 2 pH conditions x 3 biological replicates).
It was not possible to measure mortality, as dead embryos and larvae disintegrate quickly and were
washed out of the flow-through culture system used here. We monitored the developing stages
closely and did not note developmental delay in response to OA.
RNA extraction and sequencing

Approximately 50 individuals were collected for each RNA sample and placed in TRIzol
(Invitrogen) for RNA extraction according to the manufacturer’s instructions. Samples were
diluted in 40mL RNase-free water and stored at -80° C. RNA concentration was measured by Qubit
(Thermo Fisher Scientific) and RNA quality was determined with a Fragment Analyzer and
PROSize 2.0 (Agilent). In total, 17 samples were sequenced. One sample (8 1MI1L: pHr 8.0, Male
1, Larva) was not processed due to poor RNA quality. Library synthesis and sequencing of the
RNA samples were carried out at the Sequencing and Genomic Technology shared resource at the
Duke University Center for Genomic and Computational Biology. Sequencing libraries were
synthesized with KAPA Stranded mRNA-Seq kits (Roche). Paired-end sequencing greatly aids in
the construction of a de-novo transcriptome, but is cost-prohibitive to conduct on all samples;
therefore, samples were randomly subjected to either 150bp paired-end or 50bp single-end
sequencing (see Supp. Table 2 for sequencing scheme) on an Illumina HiSeq 4000 platform to

maximize transcriptome quality while optimizing cost.
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Read quality control

Read quality and summary statistics were generated with FastQC (Andrews, 2010) and read
trimming and adapter removal performed using Trimmomatic v. 0.38 (Bolger, Lohse, & Usadel,
2014) with the following parameters: LEADING:10, TRAILING:10, SLIDINGWINDOW:4:15,
MINLEN:30. Putative ribosomal RNA (rRNA) reads were identified and removed from paired-
end reads (because these reads ultimately were used for de-novo transcriptome assembly) by
aligning reads with Bowtie2 v. 2.2.4 (Langmead & Salzberg, 2012) to reference metazoan rRNA
sequences retrieved from the Agalma transcriptome assembly pipeline (Dunn, Howison, & Zapata,
2013). In addition to the RNA-seq reads generated in this study, 50bp paired-end reads from
Wygoda et al., 2014 and Israel et al., 2016, which encompass egg through 10-day post-
metamorphosis in H. erythrogramma, were incorporated into our de-novo transcriptome assembly
workflow to generate a more comprehensive developmental transcriptomic reference. Raw reads
from these two studies were subjected to the same quality control measures as the sequencing reads
generated in this study prior to assembly.
Transcriptome assembly and transcript abundance estimation

Trimmed forward and reverse paired-end reads were concatenated along with paired-end
reads from two previous studies (Israel et al., 2016; Wygoda et al., 2014) into “master” forward-
and reverse-oriented FASTQ files. To reduce the large computational demands of de novo
transcriptome assembly from ~1.3 billion reads, forward and reverse reads were subjected to in
silico normalization within Trinity v. 2.0.6 (Grabherr et al., 2011) (parameters: k-mer length = 25,
maximum read coverage = 50). These normalized reads were used as input for de novo
transcriptome assembly in Trinity v. 2.0.6 under default parameters. Following assembly, contigs

from putative non-metazoan contaminant reads were identified and removed from the
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transcriptome with alien index (Ryan, 2015). Highly similar contigs were clustered with the cd-
hit-est program of CD-HIT (Li & Godzik, 2006) to remove highly redundant reference sequences
within the transcriptome (parameters: ¢ = 0.90, n = 9, 1 = 10). Transcriptome summary statistics
were generated by Transrate (Smith-Unna, Boursnell, Patro, Hibberd, & Kelly, 2016) and are
available in Supp. Table 3. Lastly, contigs were annotated with protein models from the well-
studied sea urchin species Strongylocentrotus purpuratus (Sea Urchin Genome Sequencing et al.,
2006) using BLAST-X (Altschul, Gish, Miller, Myers, & Lipman, 1990) at an e-value threshold of
le-10. To minimize quantification bias between single-end and paired-end samples, only forward
reads from paired-end samples that were trimmed to 50 bp were used for mRNA abundance
estimation within these samples. Trimmed reads were aligned to the transcriptome and transcript
abundance estimates were made with Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017).
Transcript abundance estimates were imported into R via the tximport library (Soneson, Love, &
Robinson, 2015) for statistical analysis.
Count filtering and differential expression analyses

Isoform-level contigs at the gene level were combined via tximport and counts from contigs
mapping to the same S. purpuratus gene model were summed together. The resulting dataset
contained 19,728 genes. Genes with fewer than 2 counts-per-million (CPM) were removed from
this list, leaving 15,322 genes for use in downstream analyses; these counts are available in Supp.
Data 1. Principal component analysis (PCA) was conducted using the prcomp function within R
on transposed rlog-transformed counts plus one pseudocount (rlog[count + 1]) to identify the
contribution of each factor in the experiment to variation among samples. Differential expression
analyses were performed using DESeq2 v1.20.0 (Love, Huber, & Anders, 2014). Specifically, a

DESeqDataSet was constructed on the 15,322 genes to test for differential transcript abundance
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between pH conditions (model: ~group where “group” is pH and Stage combinations; i.e. CL =
control at larval stage). Individual differential expression results at each stage were then extracted
using the “contrast” argument of the results function in DESeq2. The use of groups and contrasts
allowed us to ensure that the loss of one sample (at the larval stage at control pH) did not bias our
stage-to-stage results. In testing the effects of the loss of one sample, we found that artificially
removing another sample from the same male at a different stage did affect the number of DE genes
at each stage, but that this effect was proportional and did not change our overall conclusions about
the relative number of DE genes among stages.

Because we anticipated that the effect of pH would be subtle relative to other factors of the
experiment based on our earlier study (Runcie et al., 2016), genes with FDR (false discovery rate)-
corrected p-values < 0.10 were considered significantly differentially expressed between sample
groups (Supp. Data 2). Current RNA-seq best practices do not include recommendations for fold
change (FC) thresholds for differential expression so long as there is an appropriate number of
biological replicates (Conesa et al., 2016; Zhang et al., 2014). However, in order to provide a direct
comparison with previous OA studies, a log2(FC) threshold > = 1.5 in conjunction with our
significance cutoff was separately applied and examined independently in downstream analyses.
Considering differentially expressed genes both with and without FC thresholding guards against
the tendency of biological interpretations to change based on the threshold selected (Dalman,
Deeter, Nimishakavi, & Duan, 2012; Schurch et al., 2016). Lists of differentially expressed genes
at each stage are presented in Supp. Data 2 and overlaps between stages plotted as area-proportional
diagrams using eulerAPE 3.0 (Micallef & Rodgers, 2014). Differentially-expressed genes were

compared with 890 genes found to be OA-responsive in previous studies (Evans, Pespeni,
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Hofmann, Palumbi, & Sanford, 2017; Evans & Watson-Wynn, 2014) to determine how many of
the genes found in our study had not previously been reported to be OA-sensitive.
Variance partitioning and VMR analyses

Variance partitioning of transcript abundances was carried out using the R package
“variancePartition” (v1.12.1) (Hoffman & Schadt, 2016), which fits a linear mixed model to each
gene in the dataset and estimates the fraction of total variance attributable to each factor in the
experimental design. All variables (paternal effect; pH; the interaction of pH and paternal effects
(pH:Male)) were modeled as random effects in accordance with the recommendations of the
variancePartition manual, which suggests modeling categorical variables as random effects. Genes
for which at least 10% of expression variance could be attributed to pH were considered to have
significant variance changes due to pH (59 genes) (Supp. Data 3).

Variance-to-mean ratio analysis was carried out by first calculating the variance of each
gene at a given sample group (stage, pH), and then dividing this value by the mean expression of
that gene for that sample group. Density plots were created (using the geom_density function within
the R package ggplot2) for the VMR of all genes at each stage and pH condition. Statistically
significant differences between VMR density distributions were determined using the built-in R
function ks.test to perform Kolmogorov-Smirnov (K-S) tests for equality. To determine whether
the average VMR at each stage was significantly different between pH treatments, a two-sided
paired t-test was used.

Soft clustering time course analyses

For comparative developmental time course analysis, raw counts of the 15,322 genes

included in the differential expression analyses (see above) were normalized with the DESeq2-

regularized log (rlog) transformation (Supp. Data 4). Soft clustering of temporal gene expression
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profiles was carried out with the R package Mfuzz v. 2.40.0 (Kumar & Futschik, 2007). Prior to
clustering, mean expression values were calculated for each gene at each developmental stage and
genes with the lowest 5% standard deviation across development were filtered out so as to remove
genes whose expression changed minimally over time. This procedure yielded 14,595 genes to be
included in expression cluster profiling. Initially, samples from both pH treatment groups were
included to create a reference set of cluster profiles. The fuzzification coefficient (m) was
determined to be 3.601 via the mestimate function of the Mfuzz package. The Dmin function, which
calculates the minimum centroid distance between varying numbers of clusters, was used to
estimate the optimal number of clusters as 5 (Supp. Fig. 1).

Because the fuzzy clustering method employed here is not a deterministic process, the
clustering procedure was repeated 1,000 times and the cluster iteration with the lowest objective
function value was selected to maximize accuracy and representation of gene expression profiles
among the five clusters. Next, pHr 8.0 and pHt 7.6 samples were separately mapped to this
reference set of clusters to calculate membership values of every gene to one of five clusters. To
increase confidence of cluster assignments, genes in both pHr 8.0 and pHt 7.6 samples were
required to have a minimum membership score of at least 0.3 to be assigned a cluster. Genes whose
cluster membership differed between control and acidic treatments (termed “cluster jumpers”;
Israel et al., 2016) were identified, resulting in a set of 2,831 genes whose temporal expression
profile changed between pH conditions (Supp. Data 5: cluster memberships; Supp. Data 6: plots of
gene expression profiles).

Enrichment analyses of biological function
Gene ontology (GO) enrichment analyses were performed on gene sets of interest via the

runGSAhyper function of the R package “piano” v. 1.22.0 (Varemo, Nielsen, & Nookaew, 2013),
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including Benjamini-Hochberg FDR correction for multiple comparisons (Benjamini, Drai, Elmer,
Kafkafi, & Golani, 2001). Along with GO terms associated with S. purpuratus gene models
(retrieved from Echinobase: www.echinobase.org/Echinobase), we included additional sea urchin
specific gene sets in the enrichment analyses, including primary mesenchyme effector genes
(Rafiq, Shashikant, McManus, & Ettensohn, 2014) and genes categorized as putatively involved
in “biomineralization” (also retrieved from Echinobase). The latter two categories were included
to capture gene expression responses associated with the skeleton, which is an autapomorphy of
the phylum and thus not represented in GO and other general functional ontologies. See Supp. Data
7 for enrichment analysis results. Because GO annotations do not always correlate with biological
function in sea urchins (Evans et al. 2017), categorical enrichment tests were also performed using
functional categories from EchinoBase. These were run as 2-sample tests for equality of
proportions with continuity correction against the list of genes expressed in our entire dataset.

Density plots of mean gene expression by parentage

At a given stage, the mean normalized count was calculated for each gene across the three
genetic crosses. Then, the percent difference from this mean for each genotype was calculated as a
relative change, according to the equation

( Sire, - Sirey) / Sires
where Sire, is the normalized count from one of the three genotypes and Sire; is mean the

normalized count across the three genotypes. The percent differences for all genes and genotypes
were then plotted in a density distribution for each stage and pH condition. To determine if the
density plots of each genotype within a stage were different from one another, we used two-way

K-S tests of equality (as described above) for each possible pair of male genotypes.
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RESULTS
Scope and magnitude of transcriptional responses to OA

Reduced pH induced changes in the expression of 50, 61, and 797 genes in embryos, larvae,
and juveniles, respectively (Fig. 2; Supp. Data 2) using the standard dispersion-based approach to
identifying differential expression in RNA-seq data (Anders et al., 2013; Conesa et al., 2016; Love,
Anders, Kim, & Huber, 2015; Love et al., 2014; Mark et al., 2019; Walker et al., 2019; Zhang et
al., 2014). Only eight of these genes (< 1%) were differentially expressed at more than one
developmental stage, and just one was differentially expressed at all three stages (Fig. 3A).
Interestingly, the gene that was differentially expressed at all three stages, Taf5L (SPU_020698),
encodes a transcription co-factor. Of the eight genes that were differentially expressed at more than
one stage, the sign of the response differed (up- and down-regulated) among stages in three cases
(Supp. Table 6). These results indicate that OA induces changes in transcription among largely
distinct sets of genes at different stages of the life cycle.

Most changes in transcript abundance were modest, and rarely exceeded 1.5-fold (which
we consider to be a “large” fold change in this study). Each time point showed a markedly different
response to OA in terms of effect size: most of the large fold-changes in gene expression were
found in embryos, while larvae had only one gene with a large fold-change, and juveniles showed
a marked bias towards down-regulation among genes with the largest (for this stage, but not
overall) fold-changes (Fig. 2, red dots). These results indicate that OA induces quantitatively
distinct responses in gene expression at different stages of the life cycle. Of note, the largest
transcriptional responses to reduced pH are orders of magnitude smaller than the largest changes
in gene expression that take place during unperturbed development: in control cultures, the number

of genes showing > 100-fold change between stages was 50 (embryo to larva), 115 (larva to
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juvenile), and 383 (embryo to juvenile) using an adjusted p-value of < 10%. In contrast, no gene
showed such a large expression change in response to pH treatment at any of the three stages
examined.

Principal component analysis of normalized gene expression counts reinforced these
findings, indicating that most of the variance among the transcriptomes of H. erythrogramma was
attributable to developmental stage. Principal components 1 and 2 both discriminated samples by
stage, and together accounted for more than 91% of expression variance (Fig. 4A; Supp. Table 4).
A linear mixed model also found that developmental stage accounts for the majority of differences
in gene expression: an average of 48.9% of variation in expression per gene was explained by stage,
while male parent (a proxy for genetic effects; see Lynch and Walsh (1998)) and pH treatment
explained just 6.5% and 0.2% of variation, respectively (Supp. Data 3). These results indicate that
the response to OA involves far fewer genes, and much smaller changes in transcript abundance,
than the changes that take place during the course of normal development.

Effects of OA on stage-specific transcript abundance

In embryos, 50 genes were differentially expressed in response to OA in H. erythrogramma
(Fig. 2A; Supp. Data 2). According to Echinobase functional categorizations, these included three
genes with biomineralization function (Mspl/30 SPU 002088, Mspi20or4 SPU 014496,
Msp130or5 SPU 015763), two calcium toolkit genes (Hsp701B SPU 005808, Hsp70i1C
SPU 009477), five encoding chaperone proteins (DnaJBI1/HSP40 SPU 002148, SPU 005807,
SPU 008985, SPU 009479, Sap30L SPU 027083), and four genes putatively involved in the
defensome (HSP70 L2 SPU 009476, HSP70 L SPU 009478, Cyp2L26 SPU 013039, HSP701D
SPU 016500). Among the most differentially expressed genes at pHrt 7.6 (log, fold change > 1.5)

were five genes coding for proteins in the heat shock protein family, including two encoding
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paralogues of HSP70 (SPU 009476, SPU 009478). These HSP70 genes were down-regulated at
pHrt 7.6, similar to the response of HSP70 reported for the planktotrophic larvae of S. purpuratus
(Todgham & Hofmann, 2009).

In larvae, 61 genes showed differential expression in response to OA (Fig. 2B; Supp. Data
2). Only three of these overlapped with differentially expressed genes in embryos: Mspl30
(SPU _002088) was upregulated at both stages, while WipfiL (SPU 013094) and Taf5L
(SPU _020698) showed discordant responses. Nonetheless, several genes involved in similar
biological processes were differentially expressed under OA conditions at both embryonic and
larval stages (Supp. Data 2). Of particular interest are genes in the Msp130 family, which encode
proteins essential for biomineralization (Anstrom, Chin, Leaf, Parks, & Raff, 1987; Karakostis et
al., 2016; Killian & Wilt, 2017; Leaf et al., 1987). Mspl30 (SPU_002088) expression was up-
regulated in embryos and larvae of H. erythrogramma in response to OA, while four paralogues,
Mspl130 1 (SPU_013821), Mspl130r3 (SPU_013823), Msp130r4 (SPU_014496), and Msp130r5
(SPU _015763), were also up-regulated in either or both embryos and larvae. Several prior studies
have reported changes in Msp 30 expression in response to OA in sea urchin larvae, in one case
increasing (Martin et al., 2011) and in others decreasing (Di Giglio et al., 2020; Kurihara, Takano,
Kurokawa, & Akasaka, 2012; Stumpp et al., 2011).

In metamorphosing juveniles, the transcriptomic response to OA was notably distinct from
the two earlier stages: more than 10 times as many genes (797) were differentially expressed, and
there was a strong bias towards down-regulation (Fig. 2C; Supp. Data 2). Genes with altered
expression included several involved in transcriptional regulation, the calcium toolkit,
biomineralization, and immune response (Echinobase functional categorization; Supp. Data 2),

with statistically significant enrichments in the “cytoskeleton” and “calcium toolkit” functional
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categories relative to the transcriptome as a whole (p < 3.5e-12 and p < 3.98e-2, respectively).
Many pH-responsive genes in H. erythrogramma juveniles were similar to those reported for sea
urchins with planktotrophic larvae, with 38 differentially expressed genes in H. erythrogramma
juveniles previously reported to be responsive to OA stress during pre-metamorphic development
in planktotrophic species (Evans & Watson-Wynn, 2014) (Supp. Table 5). (Direct comparison to
OA transcriptomic response in juveniles of a planktotrophic sea urchin is not possible as none have
been published.) The previously-reported genes that were also differentially regulated here include
two encoding beta-tubulin (Btub3 SPU_000062 and Btub2 I SPU 001045) that showed decreased
expression at low pH in H. erythrogramma (this study) and S. purpuratus (Padilla-Gamino, Kelly,
Evans, & Hofmann, 2013), as well as three metabolic genes (4k9L2 SPU 020625, Ak7
SPU 010764, Ckb SPU_015323) and two calcium toolkit genes (Slc8al SPU 006810, CacTtalHs
SPU 014334) (Evans & Watson-Wynn, 2014). Although many genes and biological processes
previously reported to be OA-sensitive were also differentially expressed in our study (Supp. Table
5), the majority of the individual genes we report as differentially expressed have not been
previously reported to be OA-sensitive.
Effects of OA on stage-specific variance in gene expression

Increased variance in gene expression in response to a stressor may point to compromised
transcriptional regulation (Felix & Barkoulas, 2015; Lopez-Maury et al., 2008) and can be
measured for the transcriptome as a whole as the variance-to-mean ratio (VMR). We found that
the overall VMR among biological replicates was higher at pHt 7.6 than pHt 8.0 at embryo and
larval stages, but not in juveniles (Fig. 5; Supp. Fig. 3; two-sided paired t-test p-value < 0.05). This
increase was most pronounced in larvae (p-value < 1x10¢, 31.4% overall increase in VMR). An

increase in VMR at lower pH was evident across several categories of gene function in larvae



429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Molecular Ecology

(Supp. Fig. 4), indicating that this effect was not driven by a single biological pathway or process
but instead affected genes associated with a broad range of biological functions.

A stressor’s impact on variance in expression of individual genes can be captured through
the linear mixed model mentioned earlier. This approach revealed that, while average contribution
of pH to variance was low relative to other factors, pH explained at least 10% of expression
variation for 59 genes (Supp. Data 3). Considering that the average pH contribution to variance for
all genes was just 0.2% (see above, Scope and magnitude of transcriptional responses to OA), this
result suggests that transcriptional regulation of these 59 genes is particularly sensitive to
acidification. Of these genes, four are associated with defensome functions (Cyp4L1 SPU 005931,
Cyp4L 2 SPU 007335, Hsp701F SPU_013289, Osta SPU_019774), seven with metabolism (Sds
SPU 013298, Sic25a36 SPU_017892, Slsp_5 SPU 018147, Sgpll 1 SPU_ 020002, SPU 023931,
Scly SPU 024173, Ctso SPU_027818) and two with immune function (Ndufal3 SPU 024115, Irf
SPU _010404). Of note, many of these genes (32 of 59) for which OA contributed substantially to
expression variation were not identified as differentially expressed at any stage (Fig. 3B).

Effects of OA on multistage gene expression trajectories

While measures of differential expression and expression variance at a single stage are
useful for identifying stress responses, they provide just one “snapshot” of the molecular response
to low pH exposure. Soft clustering (Kumar & Futschik, 2007) provides a tool for determining how
temporal patterns, rather than relative levels, of gene expression change under OA relative to
control conditions. Using this method, 14,595 genes expressed in both control and OA conditions
were assigned to one of five clusters representing temporal expression profiles (Fig. 6; Supp. Data

5). Comparison of the assigned cluster for each gene under control and OA conditions provides an
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unsupervised method for distinguishing temporal patterns of gene expression that are unaffected
from those that are impacted by exposure to the stressor.

Most genes (80.6%) remained in the same cluster, indicating that their temporal expression
profiles were similar under both pH treatments (Fig. 6, boxes on the diagonal). The remaining
2,831 genes were assigned to a different cluster at reduced pH, indicating a change in the shape of
their gene expression trajectory during development (“cluster jump”; see Israel et al. 2016). As
expected, moderate changes in expression trajectory were the most common; for 240 genes,
however, the change was more substantial (Fig. 6; boxes directly adjacent to the diagonal vs those
further away). Relative to the transcriptome as a whole, cluster-jumping genes were significantly
enriched for the zinc finger and DNA functional categories, as well as for GO terms such as RNA-
dependent DNA replication, DNA repair, DNA-templated transcription, and ribosome biogenesis
(Supp. Data 7). Only 38.0%, 31.1%, and 18.7% of genes identified as differentially expressed
between pH conditions at the embryo, larva, and juvenile stages, respectively, were also classified
as cluster-jumping genes (Fig. 3B; Supp. Data 8).

Impact of genetic variation on transcription

The linear mixed model mentioned earlier estimated that the impact of variation in male
genotype (a proxy for genetic influences) on variation in gene expression throughout the
transcriptome was approximately 325 times greater than the impact of reduced pH (Fig. 4B), even
though our experimental design is weakly powered to detect parent-of-origin effects. The
interaction of male genotype and pH was relatively modest, explaining only 0.3% of gene
expression variation throughout the transcriptome as a whole. However, this interaction term

explained at least 10% of the variation in expression for 131 individual genes (Supp. Data 3). Of



473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Molecular Ecology

these genes, 11 encode hydrolases, eight are metabolic genes, eight are associated with immune
function, and eight encode transferases.

Plotting the density distribution for the deviation of each genetic cross from the mean
expression of each gene provides a way to understand how genotype influences transcriptomic
response to OA (see Methods). Applying this approach to our data suggests that the different
genotypes have varying sensitivities to low pH (Fig. 7). For example, the distribution of deviations
from mean gene expression at embryo for each genotype was approximately the same at control
pH but became clearly stratified by genotype at low pH. Specifically, expression in the offspring
of male 2 was shifted above the average expression of all three genotypes at lower pH, while
expression of the offspring of male 3 tended to be below the average expression of all three
genotypes. Expression deviations from the mean in larvae also became more stratified at low pH
compared to control pH, with some males also showing wider deviation from the mean than others
(i.e., offspring of male 1 tended to show expression above the mean expression of all three
genotypes, but also showed more spread in expression compared to the other two genotypes at low
pH). Loss of the culture from Male 1 at control pH makes it difficult to compare expression between
pH levels rigorously; however, the pattern of increased stratification by genotype at low pH was
maintained even when we removed the Male 1 culture at low pH from our analyses (data not
shown). Curiously, at the juvenile stage there was more stratification in expression between
genotypes at the control pH than at low pH (i.e., the opposite of the result from the early embryonic
stages). Thus, these results indicate that both genotype and genotype-by-environment interactions
influence transcription broadly under OA conditions, but this pattern may be restricted to early

embryos.
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DISCUSSION

OA elicits a complex transcriptional response in H. erythrogramma

Several previous studies have examined the gene expression response to OA in sea urchins
with planktotrophic larval development (Evans & Watson-Wynn, 2014; Strader et al., 2020) and
these differ in the life history stages and methodologies used (Table 1), making comparison of
transcriptomic results among studies challenging. Nonetheless, similarities as well as striking
differences are evident in our findings with H. erythrogramma. Some genes whose expression
change in development of sea urchins with feeding larvae under reduced pH conditions were also
affected in H. erythrogramma, including HSP70 and Msp130 (which encode a chaperone and a
biomineralization protein, respectively). Biological process categories enriched in differentially
expressed genes in H. erythrogramma also partially overlapped findings from prior studies,
including stress response, calcium toolkit, and biomineralization (Supp. Table 5). These results
point to the sensitivity to OA of key genes and cellular processes in sea urchin development.
Despite these similarities, most individual genes and a few biological process categories
differentially expressed in response to OA in H. erythrogramma have not been previously reported.
These unique features of the response to reduced pH in H. erythrogramma may reflect the range
of life history stages sampled here. This is particularly true for the metamorphosing juvenile stage,
which has not previously been examined in any sea urchin and which showed by far the greatest
number of OA responsive genes (Fig. 3A). Additional differences may reflect the highly derived
physiology and developmental mechanisms associated with the lecithotrophic life history of this
species (Byrne & Sewell, 2019; Davidson et al., 2019; Henry & Raff, 1990; Wray & Raff, 1990).

Differentially expressed genes related to lipid metabolism (Sgp// I, SPU 020002) and
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mitochondrial function (S/c25a36, SPU 017892) are especially interesting in light of the lipid-rich
eggs of H. erythrogramma and are prime candidates for future functional analysis.

Gene expression responses to stressors can manifest in ways other than changes in transcript
abundance. Increased variance in gene expression is an informative indicator of stress, and indeed
may be a more direct indicator of dysregulation than differential expression (Felix & Barkoulas,
2015; Lopez-Maury et al., 2008). The VMR is a useful measure of variance that can be applied to
the transcriptome as a whole. The VMR in transcript abundance increased under OA conditions in
embryos and even more so in larvae of H. erythrogramma.A general increase in variability of gene
expression at low pH could result from compromised mechanisms of transcriptional regulation
specifically or homeostatic mechanisms more generally; alternatively, it may reflect a genotype-
by-environment interaction, as has been shown in other invertebrates (Chen, Nolte, & Schlotterer,
2015; Webster, Jordan, Hibshman, Chitrakar, & Baugh, 2018). Genes with elevated variance can
therefore shed new light on the pH stress response by revealing additional molecular processes that
may be affected but did not result in differential expression (Figs. 3B and 7).

A third informative manifestation of the gene expression response to stress is a change in
the shape of a developmental trajectory. We used soft clustering to assign each gene to one of five
temporal expression profiles that are independent of magnitude, then identified genes whose
expression “jumped” to a different cluster under conditions of low pH. Because the expression
trajectory of most genes fits into just a few clusters, cluster reassignment reflects a large change in
the overall shape of the expression profile across development. Genes that cluster-jumped were
enriched in several biological processes, including DNA replication, transcription, and translation.
Of note, many genes whose expression profile changed in response to OA were not identified as

differentially expressed at any single stage (Fig. 3B). This result illustrates how examining
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developmental trajectories can enrich understanding of the biological processes that may be
impacted by a stressor.

Both variance and clustering analyses of our results demonstrate that differential expression
analyses can miss informative aspects of the molecular response to OA (Figs. 3B and 7). This is
likely because each metric (mean, variance, and trajectory) captures somewhat distinct underlying
properties of the transcriptional response to the stressor. These results also indicate that OA can
affect genes involved in similar biological processes in different ways. For example, OA altered
the developmental trajectory of some DNA repair genes, while other DNA repair genes showed a
change in variance or transcript abundance in response to OA. Despite these effects, this functional
category was not flagged by differential expression analysis as showing differences in expression
level in response to OA. Although not widely applied in studies of stress response, analyses of
variance, effect size, and trajectory clustering can enrich understanding of stress response at the
molecular level, going beyond the insights gained from the traditional examination of differential
expression in response to a stressor.

OA impacts expression of echinoderm-specific biomineralization genes

Biomineralization is a critical process for numerous marine organisms that use skeletons
for defense, feeding, motility, and other important functions. The trend seen in many marine
calcifiers in response to OA is production of less biomineral, resulting in smaller body size (Byrne
& Fitzer, 2019; Kroeker et al., 2013). Skeletons likely evolved independently in several metazoan
phyla, given their distinct biochemical, developmental, and genetic bases. This is almost certainly
true of echinoderms (Bottjer, Davidson, Peterson, & Cameron, 2006; Shashikant, Khor, &

Ettensohn, 2018a; A. M. Smith et al., 2016). Phylum-specific traits create a challenge when
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interpreting transcriptomic results, because gene ontologies are based on annotations produced in
model organisms that lack the biological process or trait of interest.

Fortunately, echinoderm-specific biomineralization gene sets have been compiled based on
a wealth of molecular, biochemical, and developmental information (Ameye et al., 2001;
Karakostis et al., 2016; Killian & Wilt, 2008, 2017; Shashikant et al., 2018a). Two independently
derived gene sets are available (see Methods) and both showed enrichments in gene expression
responses to OA in H. erythrogramma. These encompassed embryo and larva, but not
metamorphosing juvenile (Table 2). The absence of enrichment of biomineralization in
metamorphosing juveniles is surprising, given that this stage appears more vulnerable to the effects
of OA (pHNIST 7.7) than earlier stages based on survivorship and skeletal morphology (Byrne et
al., 2011; Wolfe, Dworjanyn, & Byrne, 2013) and shows by far the largest number of differentially
expressed genes (Fig. 3A). The observation that both embryos and larvae show an OA-sensitive
enrichment in biomineralization genes is expected, as the developmental processes that produce
the larval skeleton begin in the early embryo (Shashikant, Khor, & Ettensohn, 2018b). Several prior
studies identified individual genes involved in biomineralization that are OA-responsive in sea
urchins (D1 Giglio et al., 2020; Martin et al., 2011; O'Donnell et al., 2010; Stumpp et al., 2011) but
we are not aware of any prior study in echinoderms that found an enriched transcriptional response
to OA among biomineralization genes as a functional class using an unbiased approach.

Interestingly, while the details of the response in gene expression differ between studies,
the overall results point to biomineralization as a clear indicator of OA stress in H. erythrogramma,
as is generally the case for the life stages of sea urchins and other calcifiers, as expressed in
responses from molecular to morphological levels (Byrme & Fitzer, 2019; Byrne et al., 2013;

Kroeker et al., 2013; Maas et al., 2018; Strader et al., 2020).
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Molecular responses to OA change substantially across the life cycle

An important finding of this study is the substantial degree to which the molecular response
to OA changes across the life cycle. These differences among developmental stages were manifest
in every facet of the molecular response examined here: (1) transcript abundance changed markedly
in both overall magnitude and sign among stages (Figure 2), as did the identity of the genes
themselves (Figure 7); (2) the VMR changed for the transcriptome as a whole during development,
as did the specific transcripts whose VMR increased at low pH; 3) the portion of expression
variance attributable to pH across samples was elevated in dozens of genes; and (4) many
transcripts showed an altered developmental trajectory independent of abundance. While there was
some overlap among the specific transcripts that responded to OA between stages, most were
flagged as OA-responsive at only one stage (Fig. 3A; Fig. 8); this was true of all three criteria
examined (differential abundance, variance, trajectory). The three bulk metrics of OA response
reported here (average VMR, magnitude, and sign of response) also changed appreciably between
stages, indicating broad impacts on the transcriptome that differ across the life cycle (Fig. 8). Taken
together, these results indicate that examining any one developmental stage provides a strictly
limited view of the response to OA and that results from a single stage cannot be assumed to apply
to other phases of the life cycle.

This is not an unexpected result. Developmental and physiological processes change
substantially across the life cycle, and this is clearly reflected in developmental transcriptomes of
sea urchins under normal conditions (Israel et al., 2016; Tu, Cameron, & Davidson, 2014; Wong,
Gaitan-Espitia, & Hofmann, 2019; Wygoda et al., 2014). Importantly, these changing
developmental processes may render some life history stages particularly susceptible to stressors

(Hammond & Hofmann, 2012). This matters for OA because it is a chronic rather than an acute
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stressor; examining one developmental stage may therefore miss important vulnerabilities. Indeed,
prior work demonstrates that developmental stages of H. erythrogramma differ in sensitivity to OA
(Byrne et al., 2009; Byrne et al., 2011; Hardy & Byrne, 2014). The distinct molecular responses to
pH stress at different developmental stages identified in this study provide an important first step
toward understanding why some stages of the life cycle are more vulnerable to OA than others.

Metamorphosis is particularly interesting as it is an exceptionally complex life stage in
marine invertebrates, involving intricate coordination of developmental processes, extensive
anatomical reorganization, and a major ecological transition from plankton to benthos. This life
stage is particularly sensitive to stressors and is considered to be a mortality bottleneck for
benthic species (Gosselin & Qian, 1997). Indeed, while early development of H. erythrogramma
is resilient to OA, survivorship declines during the larva to juvenile metamorphic transition
(Byrne et al., 2011; Wolfe et al., 2013), and spine development in the juveniles can be impaired
at low pH (Wolfe et al., 2013). Here we observed both a larger number of differentially expressed
genes and a marked bias towards down-regulation at pHr 7.6 in metamorphosing juveniles (but
not at earlier stages), which may indicate especially adverse effects of OA on metamorphosis.
Due to the way we sampled (see Methods), individuals that developed through the larval stage to
the early juvenile likely represent a subset of stress tolerant survivors with potentially biased loss
of siblings according to genotype. Interestingly, however, juveniles also demonstrated deviations
from average gene expression that were /ess stratified by pH at low pH than at control pH. It is
possible that, while surviving juveniles are more susceptible to OA conditions than earlier stages,
they represent a more genetically homogeneous cohort due to the cumulative effect of OA stress
over developmental time, as well as the mortality bottleneck across the larva-to-juvenile

metamorphic transition.
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Stress-induced decanalization can confound measurements of transcriptional responses

The standard approach used to identify differential expression in RNA-seq data sets takes
into account variance among biological samples (Anders et al., 2013; Conesa et al., 2016; Love et
al., 2015; Zhang et al., 2014). While entirely appropriate in many situations, it is important to
recognize that in a study of stress response, this approach can directly confound an informative
biological response variable (i.e., loss of regulation) with the assessment of statistical significance.
Stressors can cause dysregulation or loss of canalization, which can be reflected in increased
variance in transcript abundance (Felix & Barkoulas, 2015; Lopez-Maury et al., 2008). To the
extent that a stressor increases variance in gene expression, the standard approach to identifying
differential expression introduces an ascertainment bias because it penalizes increased variance
when determining whether a gene is differentially expressed. This artifact is likely absent from
most transcriptomic analyses because the VMR does not change appreciably among samples (e.g.,
comparing successive developmental stages under normal conditions), but it is a clear concern
when measuring a stress response that may be decanalizing.

Many genes with an elevated VMR at pHt 7.6 in our results were not identified as
differentially expressed by DESeq2 (despite showing a large change in mean), because variance
increased substantially. Genes with a substantially elevated VMR at low pH included Unc44 175
(SPU _025667), which encodes an ankyrin (proteins that connect integral membrane proteins to the
cytoskeleton); Ndufal3 (SPU_024115), which encodes an oxidoreductase (specifically, part of a
protein complex that regulates cell death); and Sushi (SPU_002010) and Egfi3 (SPU _011308), both
of which encode fibropellins (proteins that regulate cell proliferation) (Fig. 5). These genes are all
involved in regulatory processes, and two of the proteins bind calcium ions, making them

interesting candidates for functional analysis. These examples illustrate how applying variance-
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based metrics can identify candidate genes that would be missed by standard tests for differential
expression when studying stress response.
Molecular responses to OA are modest relative to developmental changes

A noteworthy feature of the transcriptomic response of H. erythrogramma development to
OA is its modest scale and scope. While thousands of genes rapidly change expression during
normal development in sea urchins (Israel et al., 2016; Tu et al., 2014; Wong et al., 2019; Wygoda
et al., 2014), fewer than 100 changed in response to OA in embryos and larvae, and fewer than
1,000 were altered in metamorphosing juveniles. Furthermore, the magnitude of expression
changes under conditions of reduced pH was modest, with only a small fraction exceeding 1.5-fold
(Fig. 2). In comparison, expression changes > 100-fold are common during development (Israel et
al., 2016; Tu et al., 2014; Wong et al., 2019; Wygoda et al., 2014).

The expression of Mspl130 (SPU _002088) provides an instructive example. This gene
encodes glycoprotein that plays a key role in transport of Ca®" ions from the cell surface to the
growing biomineral matrix (Anstrom et al., 1987; Karakostis et al., 2016; Killian & Wilt, 2017,
Leafetal., 1987; Mann, Poustka, & Mann, 2008). Msp 130 expression increased 1.82-fold and 1.54-
fold at pHr 7.6 in H. erythrogramma embryos and larvae, respectively. Prior studies have reported
changes in Msp130 expression of a comparable magnitude under OA conditions (D1 Giglio et al.,
2020; Kurihara et al., 2012; Martin et al., 2011; Stumpp et al., 2011). However, these stress
responses are small compared to changes in Msp130 expression levels during normal development
(Israel et al., 2016; Tu et al., 2014; Wong et al., 2019; Wygoda et al., 2014). In H. erythrogramma,
Msp 130 expression increased ~30-fold between embryo and larva and ~1000-fold between embryo

and juvenile under control conditions (Supp. Fig. 2; note log2 scale). These large changes in
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Mspl30 transcription during normal development suggest that caution is warranted when
considering the biological implications of the much smaller expression responses to OA.
Molecular responses to OA are eclipsed by the impact of natural genetic variation

Two independent analytical approaches, principal components analysis and linear mixed
models, both indicated that natural genetic variation had a much larger overall impact on gene
expression than pH stress. In the linear mixed model, developmental stage explained on average
48.9% of expression variation per gene, male parent 6.5%, and pH just 0.2% (Supp. Data 3). Since
male genotype can be considered a proxy for genetic effects (Lynch & Walsh, 1998), our results
suggest that natural populations of H. erythrogramma contain extensive genetic variation that alters
gene expression to a greater degree than does exposure to OA. This finding is consistent with
studies of development of sea urchins with planktotrophic larvae (Pespeni et al., 2013; Runcie et
al., 2016) and similar findings for a coral (Jury, Delano, & Toonen, 2019) and a bivalve (Bitter,
Kapsenberg, Gattuso, & Pfister, 2019). Collectively, these studies suggest that it is not uncommon
for standing genetic variation to contribute more to interindividual phenotypic variation in gene
expression across the transcriptome than does OA.

Genetic variation that influences gene expression during development could, in principle,
provide genotypes that facilitate adaptation to OA in natural populations (Glazier et al., 2020;
Goncalves et al., 2016; Pespeni et al., 2013; Runcie et al., 2016). A previous study found that
development and settlement success of H. erythrogramma under OA conditions were both strongly
influenced by male parent (Foo, Dworjanyn, Poore, Harianto, & Byrne, 2016). Further, the ability
of individual male H. erythrogramma sperm to fertilize eggs differs between OA and control
conditions (K. E. Smith et al., 2019), suggesting genotype-by-phenotype interactions based in

segregating variation. If health and survivorship under OA conditions are mediated in part by
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changes in gene expression, resilience to OA may differ among individuals in a population based
in part on genetic variation. However, it should be noted that the interaction term (pH:Sire) in the
linear mixed model also explained only a very small amount of variation in gene expression (0.3%).
Furthermore, our experiment was not designed to detect such effects, as evidenced by the lack of
replication within each cross. Further experiments will therefore be necessary to determine whether
there exists sufficient genetic variation to provide the raw materials for natural selection to

overcome the impacts of OA.
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TABLE LEGENDS

Table 1. Previous gene expression studies on various sea urchin species in response to
experimental ocean acidification.

Table 2. Enrichment of Gene Ontology (GO) and echinoderm-specific gene sets and pathways
(see Methods) in the set of differentially-expressed genes between the two pH levels used in this
study. PMC effector genes (Rafiq, Shashikant, McManus, & Ettensohn, 2014) are marked with

an asterisk.
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FIGURE LEGENDS

Figure 1. Experimental design (left) and analytical pipeline of RNA-seq data (right).

Figure 2. Stage-by-stage differential gene expression at A) embryo, B) larvae, and C) juvenile.
Pink represents differentially expressed genes supported by an adjusted p-value < 10% and
log2(FC) < 1.5. Red represents differentially expressed genes supported by an adjusted p-value
<10% and log2(FC) >= 1.5. Grey represents genes that were not differentially expressed. Positive
FC values are genes more highly expressed at pHt 8.0; negative FC values are genes more highly
expressed at pHt 7.6.

Figure 3. Overlap between stage- and criterion-specific sets of transcriptional responses to

OA. Exact area-proportional Euler diagrams (scaled Venn diagrams) are shown representing the
total number of genes identified and their overlaps. A) Differentially expressed (DE) genes at
three life history stages. B) Gene expression responses to reduced pHraccording to three distinct
criteria: change in transcript abundance (DE), increased proportion of variance explained by pHt
(variance) and altered developmental trajectory (cluster jump). See text for an explanation of
inclusion criteria.

Figure 4. A) Principal component analysis of transcript abundances across all samples. B)
Variance partitioning of gene expression attributed to each factor of the experimental design. PC:
principal component.

Figure 5. Average variance-to-mean (VMR) ratio for pHt 8.0 (blue) and 7.6 (red) at A) embryo,
B) larva, and C) juvenile. VMR is significantly higher at for embryo and larval stages (two-sided
paired t-test; *: p-value < Se-2; **: p-value < 5e-7). Mean vs variance plots at D) embryo, E)
larva, and F) juvenile showing that difference in VMR between pHrt conditions at the larval stage

is attributable to lower variance (y-axis) at pHt 8.0, not changes in mean expression (x-axis). G-
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H) Examples of genes with higher expression variance among replicates at pHr 7.6 relative to
pHrt 8.0, highlighted in panels D-F. G) sushi; H) ankyrin2,3; ) NADH—ubiquinone
oxidoreductase B16.6 subunit; J) fibropellin 1. Blue: pHt 8.0. Red: pHt 7.6.

Figure 6. Comparative soft clustering analyses of 10,404 genes between pHt 8.0 and 7.6. Time
course plots on each axis describe five temporal expression patterns at pHt 8.0 (blue) and pHt 7.6
(red), respectively. Each grid entry represents the number of genes with a change (or lack thereof)
in developmental expression pattern between pHt 8.0 and 7.6. For example, 2270 genes (top left)
had no change in developmental expression pattern at pHt 8.0 and pHt 7.6. In contrast, 2 genes
(top right) that decreased in expression through development at pHr 8.0 instead increased in
expression at pHt 7.6. Purple shading describes the proportion of genes with each expression
trajectory change between pHy conditions.

Figure 7. Density distribution of the deviation for each male parental genotype from the mean
expression across all genotypes, for all genes. Deviation was calculated as relative change. K-S
tests were performed for each combination of genotypes at each stage; the distribution of each
genotype (in both pH conditions and at all stages) was found to be statistically different from that
of all other genotypes within the stage and pH condition (p<0.05).

Figure 8. Subset of pHrt sensitive genes identified by three independent types of analyses carried
out in this study: stage-by-stage differential expression, variance partitioning of factor

contribution to expression, and comparative time course “cluster jumping” genes.
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SUPPLEMENTARY TABLE LEGENDS

Supplementary Table 1. Carbonate chemistry parameters describing set up of flow-through sea
water system in which Heliocidaris erythrogramma was reared. Data displayed as averages + SE,
n=>5.

Supplementary Table 2. Sequencing strategy and sample information of each RNA-seq sample
collected. One sample, 8 1MI1L, was not sequenced due to poor RNA quality.

Supplementary Table 3. Summary statistics of de-novo assembled transcriptome. “mean ORF
%” denotes mean percentage of contig covered by an open reading frame (ORF), for those
contigs with an ORF. Statistics generated with Transrate (Smith-Unna et al., 2016).
Supplementary Table 4. Summary of variance explained by principal components from PCA.
Supplementary Table 5. Differentially expressed genes in our study that were also found to be
differentially expressed in other species and/or stages in other studies (See Methods for studies
used). 890 OA-responsive genes from other studies were compared to 908 DE genes in this
study; 131 genes were common to the two sets.

Supplementary Table 6. Genes that were differentially expressed at more than one stage. Sign

indicates the direction of expression change at pHt 7.6 relative to control pHr 8.0.
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SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Timecourse cluster profiles generated by the Mfuzz package (Kumar
& Futschik, 2007) based on gene expression from all stages and pH conditions studied.
Supplementary Figure 2. Expression timecourse of Msp30 in control (pHr 8.0; blue) and OA
(pHr 7.6; red) conditions.

Supplementary Figure 3. Density plots of VMR (also known as “dispersion index”) for pH; 8.0
(blue) and 7.6 (red) at each developmental stage: A) embryo, B) larva, C) juvenile
Supplementary Figure 4. Density plots of VMR (also known as “dispersion index”) for all

genes, broken down by gene functional category according to Echinobase.
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Species Life History | Stage Experimental Sequencing method Reference

pH used
Hemicentrotus Planktotroph | Gastrula, 7.75 rtPCR Kurihara et al., 2012
pulcherrimus Prism, 7.45

Pluteus

Lytechinus pictus | Planktotroph | Pluteus 7.87 Microarray O’Donnell et al.,

7.78 2010
Paracentrotus Planktotroph | Gastrula, 7.9 rtPCR Martin et al., 2011
lividus Pluteus 7.7

7.5

7.25

7.0
Strongylocentrotus | Planktotroph | Pluteus 7.6 RNAseq Runcie et al., 2016
deoebachiensis
Strongylocentrotus | Planktotroph | Pluteus 7.7 Microarray Stumpp et al., 2011
purpuratus
Strongylocentrotus | Planktotroph | Adult 7.65-7.95 (field | RNAseq Pespeni et al., 2013
purpuratus (tube feet) | experiment)
Strongylocentrotus | Planktotroph | Gastrula, | 400 patm CO, | RNAseq Evans et al., 2017
purpuratus Pluteus 900 patm CO,
Strongylocentrotus | Planktotroph | Pluteus 7.77 Microarray Evans et al., 2013
purpuratus 7.59
Strongylocentrotus | Planktotroph | Gastrula 7.76 RNAseq Wong, Johnson,
purpuratus 7.68 Kelly, & Hofmann,

2018

Strongylocentrotus | Planktotroph | Pluteus 7.96 Microarray Todgham &
purpuratus 7.88 Hofmann, 2009
Strongylocentrotus | Planktotroph | Pluteus 1100 patm Microarray Padilla-Gamino et al.,
purpuratus pCO2 2013
Strongylocentrotus | Planktotroph | Gastrula 7.69 rtPCR Hammond &
purpuratus (3 stages) | 7.62 Hofmann, 2012
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Categorical
Enrichment
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Embryo Larva Juvenile
*SPU 007451 SPU 018406 SPU 010805
*SPU 009476 SPU 002088 SPU 021344
*SPU_008985 SPU 013821 SPU_000353
*SPU 002148 SPU 013823 SPU 025378
*SPU 016500 SPU 026146
SPU_014496 SPU_013237
SPU 002088 SPU 008175
SPU 015763

nucleotide catabolic
process (<0.003)

regulation of
transcription, DNA-
templated (<0.006)

*PMC effector
genes (<0.034)

biomineralization
genes (<0.034)

nucleotide catabolic
process (<0.006)

regulation of
transcription, DNA-
templated (<0.022)

biomineralization
genes (<0.081)

microtubule-based
movement (<2.5e-6)

microtubule
cytoskeleton
organization
(<0.002)

cilium movement
(<0.006)

regulation of
transcription, DNA-
templated (<0.009)

Wnt signaling
pathway (<0.009)






