q

Check for
updates

Algorithms for Constructing
Anonymizing Arrays

Erin Lanus!®)@® and Charles J. Colbourn?

! Virginia Tech, Arlington, VA 22203, USA
lanus@vt.edu
2 Arizona State University, Tempe, AZ 85281, USA
charles.colbourn@asu.edu

Abstract. Attribute-based methods are inherently identity-less as
authorization decisions are made in terms of attributes possessed by the
subject rather than identity. However, anonymity against the system is
not guaranteed when attribute distribution allows for the composition
of a policy that few subjects can satisfy. An anonymizing array ensures
that any assignment of values to ¢ attributes that appears in the array
appears at least r times. When an anonymizing array is used for sub-
jects registered to a system and policies contain conjunctions of at most
t attributes, the system cannot identify the subject using the policy to to
gain authorization with greater than % probability. Anonymizing arrays
are similar to covering arrays with higher coverage and constraints, but
have an additional desired property, homogeneity, due to their applica-
tion domain. In this paper, we develop constructions for anonymizing
arrays and propose a post-optimization mechanism to reduce homogene-

ity.

Keywords: Combinatorial array - Construction algorithms -
Anonymous authorization - Attribute-based methods

1 Introduction

In attribute-based systems used for access control, such as Attribute-Based
Access Control and Ciphertext-Policy Attribute-Based Encryption (CP-ABE),
decisions are made on the basis of attributes, or characteristics of a subject
expressed as name-value pairs [1,5]. A feature of these systems is that they
can achieve anonymous access control, granting access to authorized subjects
and denying access to unauthorized subjects without knowledge of the subject’s
identity. This is not a guarantee that the identity cannot be deduced. CP-ABE
encrypts a ciphertext in a policy, and decryption is performed by a private

Research of EL was supported by a National Physical Science Consortium Fellowship.
Research of CJC was supported in part by the National Science Foundation under
Grant No. 1421058 and Grant No. 1813729.

© Springer Nature Switzerland AG 2020

L. Gasieniec et al. (Eds.): IWOCA 2020, LNCS 12126, pp. 382-394, 2020.
https://doi.org/10.1007/978-3-030-48966-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48966-3_29&domain=pdf
http://orcid.org/0000-0001-8263-0521
http://orcid.org/0000-0002-3104-9515
https://doi.org/10.1007/978-3-030-48966-3_29

Algorithms for Constructing Anonymizing Arrays 383

key containing attributes satisfying the policy. CP-ABE is proposed to medi-
ate authenticated key exchange with an anonymous mode [9]. Suppose a service
broadcasts a session key encrypted by a policy. A subject whose private key con-
tains attributes satisfying the policy decrypts the message, obtains the key, and
begins communicating with the service via the session key. The service knows
that the subject communicating with it is authorized based on possession of the
required attributes to obtain the key. The authors claim that the service can-
not uniquely identify the subject. All subjects must register with the service to
receive a private key, and thus the service knows all attributes of the subjects
in the system. If a policy can be composed so that only one subject’s attributes
satisfy the policy and this policy is used to encrypt the session key, the service
knows the identity of the subject using this session key. “Anonymous ABE” uses
hidden credentials which can be used to retrieve a session key anonymously,
but the receiver anonymity is based on “plausible deniability” due to the fact
that anyone can request the message, not just the intended recipient [6]. Plau-
sible deniability fails if the message is decrypted to gain a session key to obtain
authorization, proving that a subject with the correct credentials decrypted the
message.

The contribution of this work is to achieve a guaranteed degree of anonymity
by requiring that certain properties of attribute distribution hold given a max-
imum credential size. Policies can be considered disjunctions of conjunctions of
attribute values with the most restrictive policy being a single conjunction of
many attribute values. Let t be the largest number of attributes in a single
conjunction. An anonymizing array ensures that any assignment of values to
t attributes that appears in the array appears at least r times [7]. When an
anonymizing array is used for subjects registered to a system and policies con-
tain conjunctions of at most ¢ attributes, the system cannot identify the subject
using the policy for authorization with greater than % probability.

An access profile is an assignment of values to attributes. When attributes
are assigned to access profiles for the purpose of anonymous authorization, as
in key distribution, rather than existing as real-world attributes of subjects, an
anonymizing array is built from scratch. When the set of subject attributes regis-
tered to a system is fixed, an anonymizing array determines the largest conjunc-
tion that can be used while achieving the anonymity guarantee r or, equivalently,
the guarantee achievable for the largest conjunction. When subject attributes are
immutable but the set of access profiles can be appended, anonymizing arrays
provide a mechanism to provide higher anonymity guarantees. Constructions for
anonymizing arrays must account for constraints on attributes and, due to the
security application, must not rely randomness in order to achieve the guarantee
with a high probability. The rest of the paper is organized as follows. Definitions
and relationship to covering arrays are in Sect. 2. Construction algorithms are
in Sect. 3. Results are in Sect. 4, and conclusions are in Sect. 5.

384 E. Lanus and C. J. Colbourn
2 Anonymizing Arrays

2.1 Definitions

Consider an array with N rows and k columns and each column ¢ for 1 <7 < k
has entries from a set of v; symbols. The rows of the array are access profiles,
columns are attributes, and symbols in a column are the values for the attribute.
To express the parameters of the array, write AA(N;r,t,k, (v1,...,vx)) or use
exponential notation v] when j columns share the same number of symbols v;.
Write AA(N;r, t, k,v) when the number is the same for all columns. Such an
array is (r,t)-anonymous if, when choosing an N x t subarray, 1 < ¢t < k, each
row that appears is repeated at least r times. A credential is a tuple of attribute-
value pairs presented for an authorization decision. The mazimum credential size
is t and r is the anonymity guarantee. Given an N x k array A, an N’ x k array A’
is (r,t)-anonymizing with respect to A if A C A’ and A’ is (r,t)-anonymous.
Interesting cases require 7 > 1 and v; > 1 for all v;. An access profile may
represent a subject or it may be padding, a row added to reach an anonymity
guarantee. Access profiles need not be unique. The rows or columns of the array
can be shuffled to obtain an equivalent array on the same parameters.

Hard constraints are credentials that cannot appear, while soft constraints
are credentials that need not appear, but are not illegal. That is, hard constraints
and non-appearing soft constraints must appear 0 times, while soft constraints
that appear and all unconstrained credentials must appear at least r times. Hard
constraints may give rise to implicit hard constraints that cause there to be no
feasible solution. Constraints must be considered when appending padding rows
to an anonymizing array to reach the anonymity guarantee 7.

Anonymizing arrays containing groups of highly similar access profiles may
lead to affiliating subjects with and tracking subjects by their groups; [7] develops
the following metrics to detect this similarity. Local homogeneity describes how
often an access profile appears in small groups of similar access profiles, and global
homogeneity is the average local homogeneity. The neighborhood of a credential
is the set of access profiles possessing the credential. The closeness of a pair of
access profiles is a sum of their weight over all credentials, and the weight of a
pair of access profiles on a credential is inversely proportionate to the size of the
neighborhood of the credential if the access profiles are in the neighborhood. Let
U be a set of N access profiles and let C be the set of credentials. Define the
neighborhood of a credential ¢ € C as p(c) = {u; : u; possesses ¢,u; € U} and

1
] = Wi Uiy ©
weight(us, uy,c) = 4 a1 < it} € p(e)
0 otherwise

closeness(u;, uj) = Z weight(u;, uj, c)
ceC

neighbors(u;) = {U plc) tu; € pe)}

ceC

Algorithms for Constructing Anonymizing Arrays 385

. 1
homogeneity(u;) = Tneighbors(a)] euz# closeness(u;, ;)
Uj yUjFUsg

2.2 Relationship to Covering Arrays

A covering array denoted CA(N; ¢, k,v) is an N x k array on v symbols such that
in every N x t subarray each of the v! combinations of symbols, called inter-
actions, appears as a row. When different columns can have different numbers
of symbols, it is a mized-level covering array MCA(N;t, k, (v1,...,vx)). In rare
cases when higher coverage is needed, interactions may be required to appear at
least A > 1 times. When not specified, A = 1 is implied. Anonymizing arrays are
similar to covering arrays with constraints and higher coverage. The primary
difference due to application is in the desired homogeneity property, but also
in how constraints are treated. For covering arrays, the norm is to define the
interactions that must not appear (hard constraints), then to define the inter-
actions that might appear (soft constraints, possibly further divided into “don’t
care” and “avoid”), and then to derive the interactions that must appear [3]. For
anonymizing arrays, the access profiles provided define the unconstrained cre-
dentials. The system specification defines the hard constraints, and the soft con-
straints are defined to be the remaining credentials that are in neither set. Given
an anonymizing array without a defined set of constraints, it may be impossible
to distinguish the soft and hard constraints from the set of non-appearing cre-
dentials. The same difficulty arises distinguishing the soft constraints from the
unconstrained credentials. Care must be taken when converting between covering
arrays and anonymizing arrays that constraints are categorized correctly. Many
construction algorithms exist for building covering arrays, though few explicitly
include constraint handling or higher coverage requirements. The following non-
exhaustive list of relationships elucidate how to use covering array constructions
to build anonymizing arrays.

Any MCA(t, k, (v1,...,v5)) with hard constraint set H is also an
AA(N t, k, (v1,...,v)) with hard constraint set H and all other credentials
appearing. Every t-way interaction that appears in the covering array A times is
a credential that appears A times in the corresponding anonymizing array. The
interactions in H never appear in the covering array so they never appear in the
anonymizing array. In the context of covering arrays, higher A does not force a
“don’t care” or an “avoid” interaction to appear A times if it appears once. Then
soft constraints must not be present in a covering array used as an anonymizing
array. There must also exist a mapping of soft constraints in the anonymizing
array onto either hard constraints in the covering array if they do not appear or
onto unconstrained interactions if they do.

If an MCA(t, k, (v1, ..., vg)) with hard constraint set H and soft constraint set
S exists, then an AA(r, t, k, (v1,...,vg)) with H and S exists. Copy the covering
array vertically r times. No interaction of H appears in the covering array, so
none of these credentials appear in the anonymizing array. Any interaction of S
that appears in the covering array at least once appears in the anonymizing array

386 E. Lanus and C. J. Colbourn

at least r times, and the rest never appear. Unconstrained credentials appear at
least once in the covering array and at least r times in the anonymizing array.

An MCA(t, k, (v1,...,vg)),v = min®_, (v;) with no constrained interactions
is an AA(v,t — 1,k, (v1,...,vx)) with no constrained credentials. In the mixed-
level covering array without constraints, a (¢t — 1)-way interaction appears at
least v; times, once with each of the v; symbols in the ¢-th column of the t-way
interaction including those ¢t — 1 columns. Every (¢ — 1)-way interaction appears
at least v times, v the minimum v;. This is an anonymizing array for r = v.

If there exists a covering array CA(t,k,v) with a set of hard constraints
{(c1,01), ..., (ct—1,0¢-1), (cz,04)} for each column symbol pair (c;,0,) with
column ¢, € K\ {c1,...,¢-1} and o, € X, the symbol set of ¢,, then there is
an anonymizing array AA(v,t—1,k,v) with {(¢1,01),...,(ct—1,0¢—1)} as a hard
constraint. To guarantee that the constrained credential with ¢ — 1 attributes
never appears in the anonymizing array, it must be the case that no t-way inter-
actions of which it is a subset appeared in the covering array. The coverage for
all unconstrained credentials has already been shown. To extend this to soft con-
straints, there must be a mapping of soft constraints in the anonymizing array
to either unconstrained interactions or hard constraints in the covering array.

Given an array A that is (r,t)-anonymous and not (r + 1, ¢)-anonymous, for
every t < t' < k for which A is (r/,')-anonymous, it must be the case that
r’ < r. Pick the credential ¢ that appears the fewest number of times in A and
let be the number of times ¢ appears. A is (r,t)-anonymous by definition and
is not (r + 1, ¢)-anonymous. Choose any credential ¢’ that contains ¢. The rows
in which ¢’ appears must be a subset of the rows in which ¢ appeared. Then for
t' > t,if A is (r/,t')-anonymous, then 7 < r. Similarly, an array that is (r,t)-
anonymous is (r,t')-anonymous for ¢’ < t. Any credential, ¢, of size ¢t appears in
at least r rows. Any t’-subset of ¢ appears in at least these rows.

3 Construction Algorithms

3.1 Moser-Tardos-Style Column Resampling Algorithm

Algorithm 1 is a Moser-Tardos-style column resampling algorithm (MTCR) [8].
A bad event is either a violation of a hard constraint or lack of necessary coverage
on unconstrained or soft constraints. A candidate is checked systematically until
either no bad events are found or an iteration limit is reached. If any bad event
is found, all involved columns are resampled. If 7 is the set of (’Z) t-subsets
of columns and there are) ..+ [[;c1 vi possible credentials, the position of T
in colexicographic ordering of the sets is the rank. Estimating the number of
rows is not obvious, so rows are added until coverage is met or an iteration
limit is reached. When provided a set of rows, MTCR adds padding to meet the
guarantee and forbids resampling of initial rows. When building from scratch,
the candidate starts with no rows or an initial number of randomly populated
rows is computed as r times the maximum number of non-constrained credentials
of any rank. Adding rows too often may produce more rows than needed, while
the iteration limit may be reached when adding conservatively. Too few rows

Algorithms for Constructing Anonymizing Arrays 387

Algorithm 1: Moser-Tardos-style Column Resampling (MTCR)

input : A,r ¢k, (v1,...,vk), and a set of constraints
output: A or ()

begin

while iterations < limit do

foreach rank while no bad event do
Check all credentials in rank

if coverage bad event then
Increment number of resamplings
if resamplings > rank * threshold then
| Add a row to A and reset resamplings

if no bad event then
L return A
else
| Resample all columns of rank in A

return ()

can contribute to lack of r coverage, but not to presence of a constraint, as
more rows increase the likelihood of a constraint appearing. The candidate is
checked by a fixed ordering, so it is expected, though not guaranteed, that fewer
bad events exist in a candidate when checking a higher rank. The number of
resamplings due to a lack of coverage bad event since adding the last row is
used to estimate progress. To add rows readily when bad events occur early, the
number of resamplings to add a row is proportional to the amount remaining to
check.

3.2 Conditional Expectation Heuristic Search Algorithm

Algorithm 2, Conditional Expectation Heuristic Search (CEHS), is a greedy,
one-row-at-a-time algorithm that combines ideas from conditional expectation
with a heuristic to avoid constraints [2,4]. Call a credential not-yet-r-covered if
it is unconstrained appearing fewer than r times or a soft constraint appearing
between 0 and r times. The expectation for a row is the number of not-yet-r-
covered credentials that are covered if symbols are assigned to columns randomly.
Given a row with i—1 columns fixed to symbols and the rest free, choose a column
¢ randomly and consider the v; symbols to place in column i. For the symbols
of that column, there is a choice of symbol that does not reduce the expectation
for the row. Let 7; be the set of (]Z:ll) sets of ¢ columns involving ¢, and Cr the
set of possible credentials for a t-set of columns, T'. Suppose column 1 is fixed to
symbol o. If P(c) is the probability of credential ¢ appearing and A(c) is related
to the coverage status of c,

A(c) 1 if ¢ covered fewer than r times,
C) =
0 if ¢ covered at least 7 times or ¢ is a soft constraint,

388 E. Lanus and C. J. Colbourn

define

value(i, o) Z ZA

TeT; ceCr

The expected number of not-yet-r-covered credentials newly covered by placing
o in i is value(i, o). The best symbol is one that maximizes value(i, o) without
violating a hard constraint. Ties can be broken randomly.

The heuristic lies in redefining A. Prioritizing credentials that have been cov-
ered fewer times over those that have been covered more may be more useful
than the all-or-nothing approach that works well when A = r = 1. To avoid fix-
ing the last symbol ¢ in column ¢ of a credential that violates a hard constraint
when other not-yet-r-covered credentials require o in 4, define A(c) = —(’;:11)
for this case. There are (¥~) — 1 other ¢ sets involving column i. At most, a
t-set contributes 1 to value(i, o), so the most positive value a symbol receives
from the other credentials is (k 1) —1. A lookahead attempts to drive the search
away from fixing symbols leading to one or more eventual hard constraints with-
out preventing covering unconstrained credentials. The lowest benefit of placing
symbol ¢ in column j occurs when there is one credential to be covered one
remaining time with the highest number of symbols, v = max?_; (v;). The prob-
ability of being placed is lowest when all other columns in the t-set are still free
assuming j is fixed to o. Then P(c) = -+ and A(c) = 1, so the benefit is ——.
The highest cost occurs when the other t-sets involving 7 have (1:_1) — 1 poten-
tial hard constraints and one free column. For each t¢-set, let w be the number
of symbols for the free column. There are w credentials with symbols matching
the ¢ — 1 fixed columns, and each is chosen with probability P(c) = 1. Each
t-set contributes at most w4, so the total cost is ((}~]) —1)A. The value of A

must ensure that |(() - 1)A| < Set A = ——rt——, y = mazt_, (v;).

m,t =T ((t 1) Drgt’ Y=

When y > v,
()
t—1 ((’Z:ll) —1)ryt ryt rot—1

The full definition is then

r—times ¢ covered
T

0 if ¢ is a non-appearing soft constraint,

if ¢ is unconstrained or an appearing soft constraint,

Ale) = ((,91)711)”/ y = max®_, v;, c a hard constraint with > 1 free column,
t—1
—(]:_11), ¢ a hard constraint with 0 free columns.

As with MTCR, a feasibility check should be conducted beforehand or an
iteration limit used, as some scenarios can still result in infinite looping. CEHS
lacks complete lookahead, so a series of local decisions based on the ordering of
columns in an execution can lead to the placement of some hard constraint even

if an anonymizing array exists. In this case, CEHS aborts and can be run again.

Algorithms for Constructing Anonymizing Arrays 389

Algorithm 2: Conditional Expectation Heuristic Search (CEHS)

input : 7k, (v1,...,v;), and a set of constraints
output: A or ()
begin

Create an empty array, A, and set count of all credentials = 0
while some not-yet-r-covered credential remains do

Add a row to A with all columns free

while some column is free do

Randomly select a column ¢

for each symbol o € [v;] do

Compute value(i,0) =3 e, dcecy Ae)P(c)

_ ways to cover c
P(C) ~ ways to fix free columns of T

Ae) =
r—count of ¢
T

0, ¢ non-appearing soft constraint,
% Ty = maxf:1 v;, ¢ hard constraint and > 1 free column,
(521 -vryt

7(15:11), ¢ hard constraint with O free columns.

, ¢ unconstrained or appearing soft constraint,

| Place symbol o in column % that maximizes value(i, o)
for each of the credentials appearing in the row do
Update the count of the credential

if a hard constraint appears then
L. Return 0

R;turn A

3.3 Homogeneity Post-Optimization

We develop a post-optimization strategy in Algorithm 3 to reduce the homogene-
ity of an array by crossover, or swapping credentials between two access profiles.
A first idea is to distance similar access profiles by identifying a high homogene-
ity access profile, u, and the access profile v with the largest closeness(u,v).
Then if credential ¢ has the largest weight(u,v, ¢), we might swap the symbols
of u and access profile w in the columns of credential ¢ for which weight(u,w, ¢)
is smallest. Computationally, this approach requires storage of the weight array
whereas closeness can be computed as sums without the intermediary weights.
Additionally, the view at the granularity level of weight does not inform how close
u and w are on other credentials. They may be identical in all columns except
some of ¢, and so crossover simply swaps v and w but the overall homogeneity of
the array has not changed. Instead, select u and w such that homogeneity(u) is
highest and closeness(u, w) is lowest. The key is to “decouple” u from u’s group
and create a link between u’s group and w, an access profile outside the group,
doing the same with w and w’s group by swapping some credentials of u and w.

The weights give information about shared credentials so we could choose
to swap any credentials ¢ where weight(u, w,c) = 0. However, too many swaps
results in swapping the entire row, and as u and w are chosen to have the small-
est closeness score, they may have no credentials in common. Swapping a single

credential changes up to (’;) — (k ;t) other credentials, so how to make the best

390 E. Lanus and C. J. Colbourn

Algorithm 3: Homogeneity Post-optimization (HP)

input : A,r ¢k, (v1,...,vk), and a set of constraints

output: A
begin
while generations remain do
mostFit = A

Compute homogeneity(i) for all rows in A
u = max} (homogeneity(i))
for each child in the generation do
Create a copy of A as child
Mutate based on implementation choices
Compute S, a set of s rows with smallest closeness(u,w),w € S
for each block of attributes based on implementation do
L Randomly select w with é probability
Swap w and w’s attributes in the block
if child is (r,t)-anonymous with lowest global homogeneity then
L Set mostFit = child
L Set A = mostFit

L R;turn A

decision without considering all possibilities is unclear. A middle path between
random row resampling and computationally intensive search is to generate a
set of child arrays by conducting crossover to probabilistically swap blocks of
attributes between w and the S access profiles with the lowest closeness scores
with u. The child with the lowest global homogeneity without violating hard con-
straints and meeting the anonymity guarantee becomes the parent of the next
generation. As mentioned, swapping one credential changes up to (];) — (k;t)
other credentials in the same access profile. An affected credential that appears
few times may fall below r coverage in all of the children allowed in a generation.
In this case, the parent is retained and random resampling by mutation is con-
ducted to allow additional appearances of the credential that is eliminated by
resampling to occur elsewhere in the array to regain (r,t)-anonymity. It is not
obvious how to set the mutation rate or how many and which rows to mutate.
Additional tunable parameters include the set size of access profiles with which
to swap, the blocksize of attributes to swap, the probability of swapping, and the
number and size of generations. Stopping conditions include a generation limit,
number of generations without reduced homogeneity, or meeting the expected
global homogeneity.

4 Results

Comparison of MTCR and CEHS. In tests to construct AA(r,t, 10, (5142332%)),
MTCR produces arrays with the same number of rows as CEHS when t = 1
without constraints if restricted to use the same number of rows produced by
CEHS. When allowed to add additional rows, it typically adds more than needed.

Algorithms for Constructing Anonymizing Arrays 391

1800 £| © t=4 CEHS(1)xr o
m (=4 CEHS(n)
A t=3 CEHS(1)xr
1600 | A t=3CEHS()
O t=2 CEHS(1)xr
4 =2 CEHS(r) o
| O t=1CEHS()xr
1400 ® t=1CEHS()
1200 | "
o
£ 1000 - -
o
P4
800 .
o
600 - -
A
400 - A A
A A
A
200 - 2
A ¢ $
o H H P4 °
1 2 3 5

Anonymity Guarantee r

Fig. 1. CEHS versus CAcopy to build AAs with constraints

When ¢t = 2 and MTCR is allowed 10° iterations, in general it requires more rows
than CEHS to find a solution. For ¢t = 2 with a hard constraint, MTCR requires
about twice as many rows. For two hard constraints, MTCR does not complete
in 106 iterations for any fixed number of rows or allowed unlimited rows. For two
soft constraints, MTCR, performs in fewer iterations and rows than for one hard
constraint. These results suggest that randomized constructions perform poorly
in the presence of hard constraints.

Comparison to Replicated Mized-Level Covering Arrays with Constraints. A
“from scratch” construction is used when attributes are assigned arbitrarily to
subjects, as in key distribution. We compare the performance of CEHS against
a covering array copy construction (CAcopy). CEHS is executed for 1 < r <5
for each 1 < t < 4 with and 0, 6, 4, and 3 hard constraints for the values of
t, respectively, to construct an AA(r,t, 10, (5'42332%)). The number of rows for
this construction are plotted in Fig. 1 with closed markers and labels indicating
t and “CEHS(r).” To obtain an arbitrary covering array with the same con-
straints, CEHS is used to construct an AA with » = 1. Next, AAs are made
for 2 < r < 5 by stacking r copies of each covering array. The number of rows
for this construction is plotted in Fig.1 with open markers and labeled by t
and “CEHS(1) x r.” When ¢ = 1, the number of rows needed is always r times
the maximum number of levels, and both constructions produce the same num-
ber of rows. For ¢ > 1, the redundancy of CAcopy clearly produces more rows
than CEHS. A challenge in comparing these constructions by homogeneity is
that additional rows increase the likelihood that access profiles have larger cre-
dential neighborhoods. In general, an anonymizing array with more rows is less

392 E. Lanus and C. J. Colbourn

2500
X CAcopy
O CEHS

2000 -

1500 - o

N rows
X
[e]

1000 - x o

500 I}

0 1 1 1 1 1 1 1 1]
1 2 3 4 5 6 7 8 9 10

Anonymity Guarantee r

Fig. 2. CEHS versus CAcopy to build unconstrained AAs

homogeneous than one with fewer. When ¢ = 1, the anonymizing arrays pro-
duced by both methods have the same number of rows for all values of r and so
provide a good opportunity for comparison. In tests, the anonymizing arrays cre-
ated by CEHS always have lower homogeneity scores than the copy constructed
arrays. To attempt an ad-hoc comparison of the constructions in the absence of
a standardized homogeneity metric that adequately compares arrays with differ-
ing numbers of rows, five rows are randomly selected from an (r, 2)-anonymizing
array constructed by CEHS and appended to an AA(43;2,2, 10, (5142332%)). The
rows are not constructed randomly to ensure that no hard constraints are intro-
duced. This method is not without bias due to the pool of rows from which they
are selected and is not intended for practical use. The resulting array has lower
global homogeneity than the AA(48;2,2,10, (5142332%)) created by CAcopy.

Comparison to Replicated Covering Arrays without Constraints. We construct
a set of arrays, AA(245r;r,3,10,5) by making 1 < r < 10 vertical copies of
a CA(245;3,10,5) made by a conditional expectation algorithm shown to con-
struct covering arrays with few rows efficiently [4]. As indicated in Fig. 2, when
r = 1, the covering array has 62 fewer rows, but the CEHS algorithm produces
anonymizing arrays with fewer rows for » > 2. Now, consider a row p in the
covering array. After r copies, p appears (at least) r times, and this forms a clus-
ter of rows sharing the same credentials and therefore neighborhoods. Instead,
for each copy ¢ > 1 and for each column j in the copy, choose a random per-
mutation over the levels of a column, p., ; : v = v. Each permuted copy is
still a covering array, so the composed array is (r,t)-anonymous (CAperm). In
this array, k£ independent permutations are applied to the columns of the pth
row in a copy, so the likelihood that this row closely matches p is reduced. In

Algorithms for Constructing Anonymizing Arrays 393

0.8 T T T

— — maximum local homogeneity,
global homogeneity
minimum local homogeneity ||

0.78

b
I

076 |- 8
|
074 ‘L
L

Homogeneity Score
o
o 3
N N
T
—
1
o
L

o
8
:

I

I
§
]
=
|

064 - e, b 1

062 e e g

0.6 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Generation

Fig. 3. HP on AA(62;3,2,19, (5'4%3%2%)) with 20 children and 1000 generations

all tests, the permuted arrays have lower average and maximum homogeneity
scores than by CAcopy, and in all but one data point, they have lower minimum
homogeneity scores. To compare homogeneity of CAperm to CEHS, randomly
generated rows are appended to the CEHS array to equalize the number of rows.
For 2 < r < 10, CEHS produces lower minimum, global, and maximum homo-
geneity scores than CAperm. The one exception is that CAperm produced lower
maximum homogeneity for r = 10. This suggests that CEHS typically produces
arrays with fewer rows and lower homogeneity than by copying covering arrays,
even when utilizing permutations.

Evaluation of Homogeneity Post-optimization (HP). HP contains a number of
tunable parameters, and details for the implementation tested here are in [7]. An
example of the reduction of global homogeneity on an AA(62; 3,2, 10, (51423322))
generated by CEHS with six hard constraints is in Fig. 3.

5 Conclusion

Although anonymizing arrays differ from covering arrays in essential ways, con-
structive algorithms for covering arrays underlie useful algorithms for construct-
ing anonymizing arrays. Indeed, this connection leads to copy constructions to
produce arrays “from scratch” as well as two methods to add rows to a partial
array (CEHS and MTCR). CEHS outperforms both MTCR, and the copy con-
structions, both in terms of the number of rows generated and the homogeneity.
Nevertheless, none of the construction methods examined ensures low homogene-
ity. To address this, we propose a “post-optimization” method (called HP) to
reduce homogeneity, and provide preliminary evidence that HP is a reasonable
first approach.

394 E. Lanus and C. J. Colbourn

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), Los Alamitos,
pp. 321-334. IEEE (2007)

2. Bryce, R.C., Colbourn, C.J.: A density-based greedy algorithm for higher strength
covering arrays. Softw. Test. Verif. Reliab. 19(1), 37-53 (2009)

3. Bryce, R.C., Colbourn, C.J.: Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Inf. Softw. Technol. 48(10), 960-970 (2006). https://
doi.org/10.1016/j.infsof.2006.03.004

4. Colbourn, C.J., Lanus, E., Sarkar, K.: Asymptotic and constructive methods for
covering perfect hash families and covering arrays. Des. Codes Crypt. 86(4), 907—
937 (2017). https://doi.org/10.1007 /s10623-017-0369-x

5. Hu, V.C,, et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST Spec. Publ. 800(162), 1-52 (2013)

6. Kapadia, A., Tsang, P.P., Smith, S.W.: Attribute-based publishing with hidden
credentials and hidden policies. In: NDSS, vol. 7, pp. 179-192. Citeseer (2007)

7. Lanus, E.: Interaction testing, fault location, and anonymous attribute-based autho-
rization. Ph.D. thesis, Arizona State University (2019)

8. Moser, R.A., Tardos, G.: A constructive proof of the general Lovasz local lemma.
J. ACM 57(2), 11:1-11:15 (2010). https://doi.org/10.1145/1667053.1667060

9. Portnoi, M., Shen, C.C.: Location-enhanced authenticated key exchange. In: 2016
International Conference on Computing, Networking and Communications (ICNC),
pp. 1-5. IEEE (2016)

https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1007/s10623-017-0369-x
https://doi.org/10.1145/1667053.1667060

	Algorithms for Constructing Anonymizing Arrays
	1 Introduction
	2 Anonymizing Arrays
	2.1 Definitions
	2.2 Relationship to Covering Arrays

	3 Construction Algorithms
	3.1 Moser-Tardos-Style Column Resampling Algorithm
	3.2 Conditional Expectation Heuristic Search Algorithm
	3.3 Homogeneity Post-Optimization

	4 Results
	5 Conclusion
	References

