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Abstract

Space partitions of R? underlie a vast and important class of fast nearest neighbor search
(NNS) algorithms. Inspired by recent theoretical work on NNS for general metric spaces [ANN*18a,
ANNT18b], we develop a new framework for building space partitions reducing the problem to
balanced graph partitioning followed by supervised classification. We instantiate this general
approach with the KaHIP graph partitioner [SS13] and neural networks, respectively, to obtain
a new partitioning procedure called Neural Locality-Sensitive Hashing (Neural LSH). On sev-
eral standard benchmarks for NNS [ABF17], our experiments show that the partitions obtained
by Neural LSH consistently outperform partitions found by quantization-based and tree-based
methods as well as classic, data-oblivious LSH.

1 Introduction

The Nearest Neighbor Search (NNS) problem is defined as follows. Given an n-point dataset P in
a d-dimensional Euclidean space R?, we would like to preprocess P to answer k-nearest neighbor
queries quickly. That is, given a query point ¢ € R? we want to find the k data points from P
that are closest to ¢g. NNS is a cornerstone of the modern data analysis and, at the same time, a
fundamental geometric data structure problem that led to many exciting theoretical developments
over the past decades. See, e.g., [WLKC16, AIR18] for an overview.

The main two approaches to constructing efficient NNS data structures are indexing and sketch-
ing. The goal of indexing is to construct a data structure that, given a query point, produces a
small subset of P (called candidate set) that includes the desired neighbors. Such a data structure
can be stored on a single machine, or (if the data set is very large) distributed among multiple
machines. In contrast, the goal of sketching is to compute compressed representations of points to
enable computing approximate distances quickly (e.g., compact binary hash codes with the Ham-
ming distance used as an estimator, see the surveys [WSSJ14, WLKC16]). Indexing and sketching
can be (and often are) combined to maximize the overall performance [WGS*17, JDJ17].

Both indexing and sketching have been the topic of a vast amount of theoretical and empirical
literature. In this work, we consider the indexing problem. In particular, we focus on indexing
based on space partitions. The overarching idea is to build a partition of the ambient space R? and
split the dataset P accordingly. Given a query point ¢, we identify the bin containing ¢ and form the
resulting list of candidates from the data points residing in the same bin (or, to boost the accuracy,
nearby bins as well). Some of the popular space partitioning methods include locality-sensitive
hashing (LSH) [LJWT07, AIL*15, DSN17|; quantization-based approaches, where partitions are
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obtained via k-means clustering of the dataset [JDS11, BL12]; and tree-based methods such as
random-projection trees or PCA trees [Spr91, BCG05, DS13, KS18|.

Compared to other indexing methods, space partitions have multiple benefits. First, they
are naturally applicable in distributed settings, as different bins can be stored on different ma-
chines [BGS12, NCB17, LCY 17, BW18]. Moverover, the computational efficiency of search can
be further improved by using any nearest neighbor search algorithm locally on each machine. Sec-
ond, partition-based indexing is particularly suitable for GPUs due to the simple and predictable
memory access pattern [JDJ17]. Finally, partitions can be combined with cryptographic techniques
to yield efficient secure similarity search algorithms [CCD'19]. Thus, in this paper we focus on
designing space partitions that optimize the trade-off between their key metrics: the number of
reported candidates, the fraction of the true nearest neighbors among the candidates, the number
of bins, and the computational efficiency of the point location.

Recently, there has been a large body of work that studies how modern machine learning tech-
niques (such as neural networks) can help tackle various classic algorithmic problems (a partial list
includes [MPB15, BLS*16, BJPD17, DKZ 117, MMB17, KBC* 18, BDSV18, LV18, Mit18, PSK18]).
Similar methods—under the name “learn to hash”—have been used to improve the sketching ap-
proach to NNS [WLKC16]. However, when it comes to indezring, while some unsupervised tech-
niques such as PCA or k-means have been successfully applied, the full power of modern tools like
neural networks has not yet been harnessed. This state of affairs naturally leads to the following
general question: Can we employ modern (supervised) machine learning techniques to
find good space partitions for nearest neighbor search?

1.1 Owur contribution

In this paper we address the aforementioned challenge and present a new framework for finding
high-quality space partitions of R?. Our approach consists of three major steps:

1. Build the k-NN graph G of the dataset by connecting each data point to k nearest neighbors;

2. Find a balanced partition P of the graph G into m parts of nearly-equal size such that the
number of edges between different parts is as small as possible;

3. Obtain a partition of R? by training a classifier on the data points with labels being the parts
of the partition P found in the second step.

See Figure 1 for illustration. The new algorithm directly optimizes the performance of the
partition-based nearest neighbor data structure. Indeed, if a query is chosen as a uniformly random
data point, then the average k-NN accuracy is exactly equal to the fraction of edges of the k-NN
graph G whose endpoints are separated by the partition P. This generalizes to out-of-sample
queries provided that the query and dataset distributions are close, and the test accuracy of the
trained classifier is high.

At the same time, our approach is directly related to and inspired by recent theoretical work [ANN*18a,
ANNT18b] on NNS for general metric spaces. In particular, using the framework of [ANN™18a,
ANNT18b], we prove that, under mild conditions on the dataset P, the k-NN graph of P can be
partitioned with a hyperplane into two parts of comparable size such that only few edges get split
by the hyperplane. This gives a partial theoretical justification of our method.

The new framework is very flexible and uses partitioning and learning in a black-box way. This
allows us to plug various models (linear models, neural networks, etc.) and explore the trade-off
between the quality and the algorithmic efficiency of the resulting partitions. We emphasize the
importance of balanced partitions for the indexing problem, where all bins contain roughly the same



number of data points. This property is crucial in the distributed setting, since we naturally would
like to assign a similar number of points to each machine. Furthermore, balanced partitions allow
tighter control of the number of candidates simply by varying the number of retrieved parts. Note
that a priori, it is unclear how to partition R? so as to induce balanced bins of a given dataset. Here
the combinatorial portion of our approach is particularly useful, as balanced graph partitioning is a
well-studied problem, and our supervised extension to R? naturally preserves the balance by virtue
of attaining high training accuracy.

We speculate that the new method might be potentially useful for solving the NNS problem for
non-Euclidean metrics, such as the edit distance [ZZ17] or optimal transport distance [KSKW15].
Indeed, for any metric space, one can compute the k-NN graph and then partition it. The only
step that needs to be adjusted to the specific metric at hand is the learning step.

Let us finally put forward the challenge of scaling our method up to billion-sized or even larger
datasets. For such scale, one needs to build an approzimate k-NN graph as well as using graph
partitioning algorithms that are faster than KaHIP. We leave this exciting direction to future work.
For the current experiments (datasets of size 10° points), preprocessing takes several hours. Another
important challenge is to obtain NNS algorithms based on the above partitioning with provable
guarantees in terms of approximation and running time. However, we expect it to be difficult,
in particular, since all the current state-of-the-art NNS algorithms lack such guarantees (e.g., k-
means-based [JDS11] or graph methods [MY18], see also [ABF17] for a recent SOTA survey).

Evaluation We instantiate our framework with the KaHIP algorithm [SS13] for the graph par-
titioning step, and either linear models or small-size neural networks for the learning step. We
evaluate it on several standard benchmarks for NNS [ABF17] and conclude that in terms of quality
of the resulting partitions, it consistently outperforms quantization-based and tree-based partition-
ing procedures, while maintaining comparable algorithmic efficiency. In the high accuracy regime,
our framework yields partitions that lead to processing up to 2.3x fewer candidates than the
strongest baseline.

As a baseline method we use k-means clustering [JDS11]. It produces a partition of the dataset
into k bins, in a way that naturally extends to all of R%, by assigning a query point ¢ to its
nearest centroid. (More generally, for multi-probe querying, we can rank the bins by the distance
of their centroids to ¢). This simple scheme yields very high-quality results for indexing. Besides
k-means, we evaluate LSH [AIL115], ITQ [GLGP13], PCA tree [Spr91], RP tree [DS13], and Neural
Catalyzer [SDSJ19].

1.2 Related work

On the empirical side, currently the fastest indexing techniques for the NNS problem are graph-
based [MY18]. The high-level idea is to construct a graph on the dataset (it can be the k-NN
graph, but other constructions are also possible), and then for each query perform a walk, which
eventually converges to the nearest neighbor. Although very fast, graph-based approaches have
suboptimal “locality of reference”, which makes them less suitable for several modern architectures.
For instance, this is the case when the algorithm is run on a GPU [JDJ17], or when the data is stored
in external memory [SWQ™14] or in a distributed manner [BGS12, NCB17]. Moreover, graph-based
indexing requires many rounds of adaptive access to the dataset, whereas partition-based indexing
accesses the dataset in one shot. This is crucial, for example, for nearest neighbor search over
encrypted data [CCD™19]. These benefits justify further study of partition-based methods.
Machine learning techniques are particularly useful for the sketching approach, leading to a vast
body of research under the label “learning to hash” [WSSJ14, WLKC16]. In particular, several
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Figure 1: Stages of our framework

recent works employed neural networks to obtain high-quality sketches [LLW 15, SDSJ19]. The
fundamental difference from our work is that sketching is designed to speed up linear scans over
the dataset, by reducing the cost of distance evaluation, while indexing is designed for sublinear
time searches, by reducing the number of distance evaluations. We note that while sketches are
not designed for indexing, they can be used for that purpose, since a b-bit hashing scheme induces
a partition of R? into 2° parts. Nonetheless, our experiments show that partitions induced by
these methods (such as Iterative Quantization [GLGP13]) are not well-suited for indexing, and
underperform compared to quantization-based indexing, as well as to our methods.

We highlight in particular the recent work of [SDSJ19], which uses neural networks to learn
a mapping f: R — RY that improves the geometry of the dataset and the queries to facilitate
subsequent sketching. It is natural to ask whether the same family of maps can be applied to
enhance the quality of partitions for indexing. However, as our experiments show, in the high
accuracy regime the maps learned using the algorithm of [SDSJ19] consistently degrade the quality
of partitions.

Finally, we mention that here is some prior work on learning space partitions: [CD07, RG13,
LNC*11]. However, all these algorithms learn hyperplane partitions into two parts (then applying
them recursively). Our method, on the other hand, is much more flexible, since neural networks
allow us to learn a much richer class of partitions.

2 Owur method

Given a dataset P C R? of n points, and a number of bins m > 0, our goal is to find a partition R
of R? into m bins with the following properties:

1. Balanced: The number of data points in each bin is not much larger than n/m.

2. Locality sensitive: For a typical query point ¢ € R? most of its nearest neighbors belong to the
same bin of R. We assume that queries and data points come from similar distributions.

3. Simple: The partition should admit a compact description and, moreover, the point location
process should be computationally efficient. For example, we might look for a space partition
induced by hyperplanes.

Formally, we want the partition R that minimizes the loss E, [Zpe Ni(q) 173(;,,)757{((])] s.t. Vpep |R(p)| <

(1+mn)(n/m), where g is sampled from the query distribution, N (g) C P is the set of its k nearest
neighbors in P, 7 > 0 is a balance parameter, and R(p) denotes the part of R that contains p.



First, suppose that the query is chosen as a uniformly random data point, ¢ ~ P. Let G be

the k-NN graph of P, whose vertices are the data points, and each vertex is connected to its k
nearest neighbors. Then the above problem boils down to partitioning vertices of the graph G into
m bins such that each bin contains roughly n/m vertices, and the number of edges crossing between
different bins is as small as possible (see Figure 1(b)). This balanced graph partitioning problem
is extremely well-studied, and there are available combinatorial partitioning solvers that produce
very high-quality solutions. In our implementation, we use the open-source solver KaHIP [SS13],
which is based on a sophisticated local search.
_ More generally, we need to handle out-of-sample queries, i.e., which are not contained in P. Let
R denote the partition of G (equivalently, of the dataset P) found by the graph partitioner. To
convert R into a solution to our problem, we need to extend it to a partition R of the whole space
R? that would work well for query points. In order to accomplish this, we train a model that, given
a query point ¢ € R¢, predicts which of the m bins of R the point ¢ belongs to (see Figure 1(c)).
We use the dataset P as a training set, and the partition R as the labels — i.e., each data point
is labeled with the ID of the bin of R containing it. The method is summarized in Algorithm 1.
The geometric intuition for this learning step is that — even though the partition R is obtained by
combinatorial means, and in principle might consist of ill-behaved subsets of R? — in most practical
scenarios, we actually expect it to be close to being induced by a simple partition of the ambient
space. For example, if the dataset is fairly well-distributed on the unit sphere, and the number of
bins is m = 2, a balanced cut of G should be close to a hyperplane.

The choice of model to train depends on the desired properties of the output partition R. For
instance, if we are interested in a hyperplane partition, we can train a linear model using SVM or
regression. In this paper, we instantiate the learning step with both linear models and small-sized
neural networks. Here, there is natural tension between the size of the model we train and the
accuracy of the resulting classifier, and hence the quality of the partition we produce. A larger
model yields better NNS accuracy, at the expense of computational efficiency. We discuss this in
Section 3.

Multi-probe querying Given a query point ¢, the trained model can be used to assign it to
a bin of a partition R, and search for nearest neighbors within the data points in that part. In
order to achieve high search accuracy, we actually train the model to predict several bins for a
given query point, which are likely to contain nearest neighbors. For neural networks, this can be
done naturally by taking several largest outputs of the last layer. By searching through more bins
(in the order of preference predicted by the model) we can achieve better accuracy, allowing for a
trade-off between computational resources and accuracy.

Hierarchical partitions When the required number of bins m is large, in order to improve the
efficiency of the resulting partition, it pays off to produce it in a hierarchical manner. Namely, we
first find a partition of R¢ into m; bins, then recursively partition each of the bins into ms bins,
and so on, repeating the partitioning for L levels. The total number of bins in the overall partition
ism =mq-meo-...mg. See Figure 2 for illustration. The advantage of such a hierarchical partition
is that it is much simpler to navigate than a one-shot partition with m bins.

Neural LSH with soft labels In the primary instantiation of our framework, we set the su-
pervised learning component to a a neural network with a small number of layers and constrained
hidden dimensions (the exact parameters are specified in the next section). In order to support
effective multi-probe querying, we need to infer not just the bin that contains the query point, but



Figure 2: Hierarchical partition into 9 bins with m; = ms = 3. R;’s are partitions, P;’s are the
bins of the dataset. Multi-probe query procedure, which descends into 2 bins, may visit the bins
marked in bold.

Preprocessing
Input: Dataset P C R?, integer parameter k > 0, number of bins m > 0

1: Build a k-NN graph G of P.

2: Run a balanced graph partitioning algorithm on G into m parts. Number the parts arbitrarily
as 1,...,m. Let w(p) € {1,...,m} denote the part containing p, for every p € P.

3: Train a machine learning model M with training set P and labels {7 (p)},cp. For every z € R%,
let M(xz) € {1,...,m} denote the prediction of M on z.

M (-) defines our m-way partition of R?. Note that it is possible that m(p) # M (p) for some p € P,
if M attains imperfect training accuracy.

Query
Input: query point ¢ € R?, number of bins to search b

1: Run inference on M to compute M(q).

2: Search for a near neighbor of ¢ in the bin M(q), i.e., among the candidates {p € P : M(p) =
M(q)}.

3: If M furthermore predicts a distribution over bins, search for a near neighbor in the b top-
ranked bins according to the ranking induced by the distribution (i.e., from the most likely bin
to less likely ones).

Algorithm 1: Nearest neighbor search with a learned space partition

rather a distribution over bins that are likely to contain this point and its neighbors. A T-probe
candidate list is then formed from all data points in the 7" most likely bins. In order to accomplish
this, we use soft labels for data points generated as follows. For S > 1 and a data point p, the
soft label P = (p1,p2,...,pm) is a distribution over the bin containing a point chosen uniformly
at random among S nearest neighbors of p (including p itself). Now, for a predicted distribution
Q = (¢1,42,---,9m), we seek to minimize the KL divergence between P and Q: > ", p;log %.
Intuitively, soft labels help guide the neural network with information about multiple bin ranking.
S is a hyperparameter that needs to be tuned; we study its setting in the appendix (cf. Figure 6b).




3 Sparse hyperplane-induced cuts in £-NN graphs

We state and prove a theorem that shows, under certain mild assumptions, that the k-NN graph of
a dataset P C R? can be partitioned by a hyperplane such that the induced cut is sparse (i.e., has
few crossing edges while the sizes of two parts are similar). The theorem is based on the framework
of [ANNT18a, ANN*18b] and uses spectral techniques.

We start with some notation. Let Ng(p) be the set of k nearest neighbors of p in P. The
degree of p in the k-NN graph is deg(p) = |[Nk(p) U{p' € P | p € Nix(p')}|- Let D be the
distribution over the dataset P, where a point p € P is sampled with probability proportional to
its degree deg(p). Let Dejose be the distribution over pairs (p,p’) € P x P, where p € P is uniformly
random, and p’ is a uniformly random element of Ni(p). Denote a = E¢,yep,.. [P — p'[|3] and
B = Ez,~D.zo~nl|[p1—p2/|3]. We will proceed assuming that « (typical distance between a data point
and its nearest neighbors) is noticeably smaller than § (typical distance between two independent
data points).

The following theorem implies, informally speaking, that if o < 8, then there exists a hyper-
plane which splits the dataset into two parts of not too different size while separating only few
pairs of (p,p’), where p’ is one of the k nearest neighbors of p. For the proof of the theorem, see
Appendix C.

Theorem 3.1. There exists a hyperplane H = {x € R? | (a,x) = b} such that the following holds.
Let P = Py U Py be the partition of P induced by H: P = {p € P | (a,p) < b}, P, ={p € P |
(a,p) > b}. Then, one has:

Pr(p o) Do [P @nd P’ are separated by H] 2
min{Pr,.p[p € Pi],Prpplp € P} VB

(1)

4 Experiments

Datasets For the experimental evaluation, we use three standard ANN benchmarks [ABF17]:
SIFT (image descriptors, 1M 128-dimensional points), GloVe (word embeddings [PSM14], ap-
proximately 1.2M 100-dimensional points, normalized), and MNIST (images of digits, 60K 784-
dimensional points). All three datasets come with 10000 query points, which are used for evalua-
tion. We include the results for SIFT and GloVe in the main text, and MNIST in Appendix A.

Evaluation metrics We mainly investigate the trade-off between the number of candidates gen-
erated for a query point, and the k-NN accuracy, defined as the fraction of its k£ nearest neighbors
that are among those candidates. The number of candidates determines the processing time of
an individual query. Over the entire query set, we report both the average as well as the 0.95-th
quantile of the number of candidates. The former measures the throughput' of the data structure,
while the latter measures its latency.? We focus on parameter regimes that yield k&-NN accuracy of
at least 0.75, in the setting k = 10. Additional results with broader regimes of accuracy and of k
are included in the appendix.

Our methods We evaluate two variants of our method, with two different choices of the super-
vised learning component:

!Number of queries per second.
?Maximum time per query, modulo a small fraction of outliers.



e Neural LSH: In this variant we use small neural networks. We compare this method with
k-means clustering, Iterative Quantization (ITQ) [GLGP13], Cross-polytope LSH [AIL*15],
and Neural Catalyzer [SDSJ19] composed over k-means clustering. We evaluate partitions into
16 bins and 256 bins. We test both one-level (non-hierarchical) and two-level (hierarchical)
partitions. Queries are multi-probe.

e Regression LSH: This variant uses logistic regression as the supervised learning component
and, as a result, produces very simple partitions induced by hyperplanes. We compare this
method with PCA trees [Spr91, KZN08, AAKK14], random projection trees [DS13], and recur-
sive bisections using 2-means clustering. We build trees of hierarchical bisections of depth up to
10 (thus total number of leaves up to 1024). The query procedure descends a single root-to-leaf
path and returns the candidates in that leaf.

4.1 Implementation details

Neural LSH uses a fixed neural network architecture for the top-level partition, and a fixed ar-
chitecture for all second-level partitions. Both architectures consist of several blocks, where each
block is a fully-connected layer + batch normalization [IS15] + ReLU activations. The final block
is followed by a fully-connected layer and a softmax layer. The resulting network predicts a dis-
tribution over the bins of the partition. The only difference between the top-level network the
second-level network architecture is their number of blocks (b) and the size of their hidden layers
(s). In the top-level network we use b = 3 and s = 512. In the second-level networks we use
b =2 and s = 390. To reduce overfitting, we use dropout with probability 0.1 during training.
The networks are trained using the Adam optimizer [KB15] for under 20 epochs on both levels.
We reduce the learning rate multiplicatively at regular intervals. The weights are initialized with
Glorot initialization [GB10]. To tune soft labels, we try different values of S between 1 and 120.

We evaluate two settings for the number of bins in each level, m = 16 and m = 256 (leading
to a total number of bins of the total number of bins in the two-level experiments are 162 = 256
and 2562 = 65536, respectively). In the two-level setting with m = 256 the bottom level of Neural
LSH uses k-means instead of a neural network, to avoid overfitting when the number of points per
bin is tiny. The other configurations (two-levels with m = 16 and one-level with either m = 16 or
m = 256) we use Neural LSH at all levels.

We slightly modify the KaHIP partitioner to make it more efficient on the k-NN graphs. Namely,
we introduce a hard threshold of 2000 on the number of iterations for the local search part of the
algorithm, which speeds up the partitioning dramatically, while barely affecting the quality of the
resulting partitions.

4.2 Comparison with multi-bin methods

Figure 4 shows the empirical comparison of Neural LSH with k-means clustering, ITQ, Cross-
polytope LSH, and Neural Catalyzer composed over k-means clustering. It turns out that k-means
is the strongest among these baselines.® The points depicted in Figure 4 are those that attain
accuracy > 0.75. In the appendix (Figure 10) we include the full accuracy range for all methods.

In all settings considered, Neural LSH yields consistently better partitions than k-means.?

31t is important to note that ITQ is not designed to produce space partitions; as explained in Section 1, it does
so as a side-effect. Simiarly, Neural Catalyzer is not designed to enhance partitions. The comparison is intended to
show that they do not outperform indexing techniques despite being outside their intended application.

4We note that two-level partitioning with m = 256 is the best performing configuration of k-means, for both SIFT
and GloVe, in terms of the minimum number of candidates that attains 0.9 accuracy. Thus we evaluate this baseline



GloVe SIFT
Averages 0.95-quantiles | Averages 0.95-quantiles

One level | 16 bins 1.745 2.125 1.031 1.240
256 bins 1.491 1.752 1.047 1.348

Two levels | 16 bins 2.176 2.308 1.113 1.306
256 bins 1.241 1.154 1.182 1.192

Figure 3: Largest ratio between the number of candidates for Neural LSH and k-means over the
settings where both attain the same target 10-NN accuracy, over accuracies of at least 0.85. See
details in Section 4.2.

Depending on the setting, k-means requires significantly more candidates to achieve the same
accuracy:

Up to 117% more for the average number of candidates for GloVe;
Up to 130% more for the 0.95-quantiles of candidates for GloVe;

Up to 18% more for the average number of candidates for SIFT;
Up to 34% more for the 0.95-quantiles of candidates for SIFT;

Figure 3 lists the largest multiplicative advantage in the number of candidates of Neural LSH
compared to k-means, for accuracy values of at least 0.85. Specifically, for every configuration of
k-means, we compute the ratio between the number of candidates in that configuration and the
number of candidates of Neural LSH in its optimal configuration, among those that attained at
least the same accuracy as that k-means configuration.

We also note that in all settings except two-level partitioning with m = 256, Neural LSH
produces partitions for which the 0.95-quantiles for the number of candidates are very close to
the average number of candidates, which indicates very little variance between query times over
different query points. In contrast, the respective gap in the partitions produced by k-means is
much larger, since unlike Neural LSH, it does not directly favor balanced partitions. This implies
that Neural LSH might be particularly suitable for latency-critical NNS applications.

Model sizes. The largest model size learned by Neural LSH is equivalent to storing about ~ 5700
points for SIFT, or ~ 7100 points for GloVe.This is considerably larger than k-means with & <
256, which stores at most 256 points. Nonetheless, we believe the larger model size is acceptable
for Neural LSH, for the following reasons. First, in most of the NNS applications, especially
for the distributed setting, the bottleneck in the high accuracy regime is the memory accesses
needed to retrieve candidates and the further processing (such as distance computations, exact or
approximate). The model size is not a hindrance as long as does not exceed certain reasonable
limits (e.g., it should fit into a CPU cache). Neural LSH significantly reduces the memory access
cost, while increasing the model size by an acceptable amount. Second, we have observed that
the quality of the Neural LSH partitions is not too sensitive to decreasing the sizes the hidden
layers. The model sizes we report are, for the sake of concreteness, the largest ones that still lead
to improved performance. Larger models do not increase the accuracy, and sometimes decrease it
due to overfitting.

at its optimal performance.

5 As mentioned earlier, in this setting Neural LSH uses k-means at the second level, due to the large overall number
of bins compared to the size of the datasets. This explains why the gap between the average and the 0.95-quantile
number of candidates of Neural LSH is larger for this setting.
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4.3 Comparison with tree-based methods

Next we compare binary decision trees, where in each tree node a hyperplane is used to determine
which of the two subtrees to descend into. We generate hyperplanes with the following methods:
Regression LSH, the Learned KD-tree of [CD07], the Boosted Search Forest of [LNCT11], cutting
the dataset into two equal halves along the top PCA direction [Spr91, KZNO08|, 2-means clustering,
and random projections of the centered dataset [DS13, KS18]. We build trees of depth up to 10,
which correspond to hierarchical partitions with the up to 2'° = 1024 bins. Results for GloVe and
SIFT are summarized in Figure 5 (see appendix). For random projections, we run each configuration
30 times and average the results.

For GloVe, Regression LSH significantly outperforms 2-means, while for STFT, Regression LSH
essentially matches 2-means in terms of the average number of candidates, but shows a noticeable
advantage in terms of the 0.95-percentiles. In both instances, Regression LSH significantly outper-
forms PCA tree, and all of the above methods dramatically improve upon random projections.

Note, however, that random projections have an additional benefit: in order to boost search
accuracy, one can simply repeat the sampling process several times and generate an ensemble of
decision trees instead of a single tree. This allows making each individual tree relatively deep,
which decreases the overall number of candidates, trading space for query time. Other considered
approaches (Regression LSH, 2-means, PCA tree) are inherently deterministic, and boosting their
accuracy requires more care: for instance, one can use partitioning into blocks as in [JDS11], or
alternative approaches like [KS18]. Since we focus on individual partitions and not ensembles, we
leave this issue out of the scope.

4.4 Additional experiments

In this section we include several additional experiments.

First, we study the effect of setting k. We evaluate the 50-NN accuracy of Neural LSH when
the partitioning step is run on either the 10-NN or the 50-NN graph.® We compare both algorithms
to k-means with k = 50. Figure 6a compares these three algorithms on GloVe for 16 bins reporting
average numbers of candidates. From this plot, we can see that for £ = 50, Neural LSH convincingly
outperforms k-means, and whether we use 10-NN or 50-NN graph matters very little.

Second, we study the effect of varying S (the soft labels parameter) for Neural LSH on GloVe
for 256 bins. See Figure 6b where we report the average number of candidates. As we can see

5Neural LSH can solve k-NNS by partitioning the k’-NN graph, for any k, k’; they do not have to be equal.
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Figure 6: Effect of various hyperparameters

from the plot, the setting S = 15 yields much better results compared to the vanilla case of S = 1.
However, increasing S beyond 15 brings diminishing returns on the overall accuracy.

5 Conclusions and future directions

We presented a new technique for finding partitions of R which support high-performance indexing
for sublinear-time NNS. It proceeds in two major steps: (1) We perform a combinatorial balanced
partitioning of the k-NN graph of the dataset; (2) We extend the resulting partition to the whole
ambient space R? by using supervised classification (such as logistic regression, neural networks,
etc.). Our experiments show that the new approach consistently outperforms quantization-based
and tree-based partitions. There is a number of exciting open problems we would like to highlight:

e Can we use our approach for NNS over non-Fuclidean geometries, such as the edit distance [ZZ17]
or the optimal transport distance [KSKW15]?7 The graph partitioning step directly carries
through, but the learning step may need to be adjusted.

e Can we jointly optimize a graph partition and a classifier at the same time? By making the
two components aware of each other, we expect the quality of the resulting partition of R? to
improve. A related approach has been successfully applied in [LNC*11] for hyperplane tree
partitions.

e Can our approach be extended to learning several high-quality partitions that complement each
other? Such an ensemble might be useful to trade query time for memory usage [ALRW17].

e Can we use machine learning techniques to improve graph-based indexing techniques [MY18] for
NNS? (This is in contrast to partition-based indexing, as done in this work).

e Our framework is an example of combinatorial tools aiding “continuous” learning techniques. A
more open-ended question is whether other problems can benefit from such symbiosis.

Acknowledgments. Supported by NSF TRIPODS awards No. 1740751 and No. 1535851, Simons
Investigator Award, and MIT-IBM Watson Al Lab collaboration grant.
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A Results for MNIST

We include experimental results for the MNIST dataset, where all the experiments are performed
exactly in the same way as for SIFT and GloVe. Consistent with the trend we observed for SIFT
and GloVe, Neural LSH consistently outperforms k-means (see Figure 7) both in terms of average
number of candidates and especially in terms of the 0.95-th quantiles. We also compare Regression
LSH with recursive 2-means, as well as PCA tree and random projections (see Figure 8), where
Regression LSH consistently outperforms the other methods.

B Effect of Neural Catalyzer on Space Partitions

In this section we compare vanilla k-means with k-means run after applying a Neural Catalyzer
map [SDSJ19]. The goal is to check whether the Neural Catalyzer — which is designed to boost
up the performance of sketching methods for NNS by adjusting the input geometry — could also
improve the quality of space partitions for NNS. See Figure 9 for the comparison on GloVe and
SIFT with 16 bins. On both datasets (especially SIFT), Neural Catalyzer in fact degrades the
quality of the partitions. We observed a similar trend for other numbers of bins than the setting
reported here. These findings support our observation that while both indexing and sketching for
NNS can benefit from learning-based enhancements, they are fundamentally different approaches
and require different specialized techniques.
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C Proof of Theorem 3.1

Proof. Consider an undirected graph G = (V, E), where the set of vertices V' is P, and the (multi-
)set of edges contains an edge (p,p’) for every p’ € Ni(p). The graph contains n vertices and kn
edges, and some of the edges might be double (if p’ € Ni(p) and p € Ni(p') at the same time).
Let Ag be the symmetric adjacency matrix of G normalized by 2kn (so that the sum of all the
entries equals to 1, thus giving a probability distribution over P x P, which can be seen to be
equal to Dejose). The rows and columns of Ag can naturally be indexed by the points of P. Denote
pc(p) = > (Ac)py - It is immediate to check that pg yields a distribution over P, which can be
seen to be equal to D. Denote Dg = diag(pg). Denote Lg = Dg — A the Laplacian of Ag. Due
to the equivalence of pg and D and Ag and D.joee, We have:

a Zp,p’eP(AG)p,p’ ) Hp —P/H% @)
B Yppeprca®pc(r’)-lp -3
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Figure 9: Comparison of k-means and Catalyzer + k-means

By considering all possible coordinate projections and using additivity of || - ||3 over coordinates,
we conclude that there exists a coordinate i* € [d] such that:

> ppep(Ac)py (e — i)’
> ppep Pc(P)pc(D') - (P — pi)?

IA

@
= (3)
s

Define a vector y € R by Yp = pi=. We now apply the following standard fact from spectral graph
theory: If A is the weighted adjacency matrix of a graph, and L is its Laplacian matrix, then

2'Lx = >t i1 Aij (i — z;)? for all x € R™. Thus the numerator of (3) becomes y'Lgy. For the
denominator, consider the graph H on P in which every pair p, p’ is connected by an edge of weight

pc(p)pc(p')-

e Its weighted adjacency matrix Ag is given by (Ax),y = pa(p)pa(p’) for p # p', and with zeros
on the diagonal. Thus Ay = pepl, — D% (recall that D = diag(pa)).

e The degree of each node p in H equals pc(p) 3 ep\ ) pc(p") = pa(p) — (pg(p))? (recall that
> pep PG(p) = 1). Therefore the diagonal degree matrix of H is Dy = D¢ — D2,

Together, the Lapacian of H is Ly = Dy — Ag = Dg — p(;pta. Therefore the denominator of (3)
becomes y' (D¢ — papl;)y. Overall, we have:

y'Lay
y"(Da — papl)y

o
<2
B
Next, we define § = y —c- 1, where 1 is the all-1’s vector, and c is the scalar ¢ = (y'pg) /(11 pg).

This scalar is chosen to render ¥y | pg. Furthermore, since 1 is in the kernel of every Laplacian
matrix, we have Loy = Loy and Lyy = Lyy. Together, we get

J'Ley _ y'Lay L
¥'Dcy  y"(Da — papg)y ~ B
Now by the Cheeger’s inequality [Chu96], we conclude that there exists a threshold yp € R such

that:
Epl ,P2:Upq <Y0,Upg >Yo (AG)Pl P2 lthGi'j 2
: <yf2- 226 <[22 (4)
min{}°, - 0 PG (P), X pg, >y, PG(P)} y'Dcy B
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Figure 10: Results from Figure 4 with broader candidate and accuracy regimes. The “Learned RCS-
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One can trace back all the definitions and observe that the set {p € P: y, < yo} is induced by
an (axis-aligned) hyperplane, and the left-hand side of (4) is nothing else but the left-hand side
of (1). O
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