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Abstract

The Optimal Transport (a.k.a. Wasserstein) distance is an increasingly popular similarity measure for
rich data domains, such as images or text documents. This raises the necessity for fast nearest neighbor
search algorithms according to this distance, which poses a substantial computational bottleneck on
massive datasets.

In this work we introduce Flowtree, a fast and accurate approximation algorithm for the Wasserstein-
1 distance. We formally analyze its approximation factor and running time. We perform extensive
experimental evaluation of nearest neighbor search algorithms in the W1 distance on real-world dataset.
Our results show that compared to previous state of the art, Flowtree achieves up to 7.4 times faster
running time.

1 Introduction

Given a finite metric space M = (X, dX) and two distributions µ and ν on X, the Wasserstein-1 distance
(a.k.a. Earth Mover’s Distance or Optimal Transport) between µ and ν is defined as

W1(µ, ν) = min
τ

∑
x1,x2∈X

τ(x1, x2) · dX(x1, x2), (1)

where the minimum is taken over all distributions τ on X ×X whose marginals are equal to µ and ν.1 The
Wasserstein-1 distance and its variants are heavily used in applications to measure similarity in structured
data domains, such as images [RTG00] and natural language text [KSKW15]. In particular, [KSKW15]
proposed the Word Mover Distance (WMD) for text documents. Each document is seen as a uniform distri-
bution over the words it contains, and the underlying metric between words is given by high-dimensional word
embeddings such as word2vec [MSC+13] or GloVe [PSM14]. It is shown in [KSKW15] (see also [LYFC19,
YCC+19, WYX+18]) that the Wasserstein-1 distance between the two distributions is a high-quality measure
of similarity between the associated documents.

To leverage the Wasserstein-1 distance for classification tasks, the above line of work uses the k-nearest
neighbor classifier. This poses a notorious bottleneck for large datasets, necessitating the use of fast approx-
imate similarity search algorithms. While such algorithms are widely studied for `p distances (chiefly `2;
see [AIR18] for a survey), much less is known for Wasserstein distances, and a comprehensive study appears
to be lacking. In particular, two properties of the W1 distance make the nearest neighbor search problem
very challenging. First, the W1 distance is fairly difficult to compute (the most common approaches are com-
binatorial flow algorithms [Kuh55] or approximate iterative methods [Cut13]). Second, the W1 distance is
strongly incompatible with Euclidean (and more generally, with `p) geometries [Bou86, KN06, NS07, AIK08,
ANN15, AKR18], which renders many of the existing techniques for nearest neighbor search inadequate (e.g.,
random projections).

In this work, we systematically study the k-nearest neighbor search (k-NNS) problem with respect to
the W1 distance. In accordance with the above applications, we focus on the case where the ground set X

∗Code available at https://github.com/ilyaraz/ot_estimators.
†Author names are ordered alphabetically.
1For mathematical foundations of Wasserstein distances, see [Vil03].
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is a finite subset of Rd, endowed with the Euclidean distance, where d can be a high dimension, and each
distribution over X has finite support of size at most s.2 Given a dataset of n distributions µ1, µ2, . . . , µn,
the goal is to preprocess it, such that given a query distribution ν (also supported on X), we can quickly find
the k distributions µi closest to ν in the W1 distance. To speed up search, the algorithms we consider rely
on efficient estimates of the distances W1(µi, ν). This may lead to retrieving approximate nearest neighbors
rather than the exact ones, which is often sufficient for practical applications.

1.1 Prior work

Kusner et al. [KSKW15] sped up k-NNS for WMD by designing two approximations of W1. The first algo-
rithm estimates W1(µ, ν) as the Euclidean distance between their respective means. The second algorithm,
called “Relaxed WMD” (abbrev. R-WMD), assigns every point in the support of µ to its closest point in
the support of ν, and vice versa, and returns the maximum of the two assignments. Both of these methods
produce an estimate no larger than the true distance W1(µ, ν). The former is much faster to compute, while
the latter has a much better empirical quality of approximation. The overall k-NNS pipeline in [KSKW15]
consists of the combination of both algorithms, together with exact W1 distance computation. Recently,
[AM19] proposed modifications to R-WMD by instating additional capacity constraints, resulting in more
accurate estimates that can be computed almost as efficiently as R-WMD.

Indyk and Thaper [IT03] studied the approximate NNS problem for the W1 distance in the context of
image retrieval. Their approach capitalizes on a long line of work of tree-based methods, in which the given
metric space is embedded at random into a tree metric. This is a famously fruitful approach for many
algorithmic and structural statements [Bar96, Bar98, CCG+98, Ind01, GKL03, FRT04, CKR05, MN06]. It
is useful in particular for Wasserstein distances, since the optimal flow (τ in (1)) on a tree can be computed
in linear time, and since a tree embedding of the underlying metric yields an `1-embedding of the Wasserstein
distance, as shown by [KT02, Cha02]. This allowed [IT03] to design an efficient NNS algorithm for W1

based on classical locality-sensitive hashing (LSH). Recently, [LYFC19] introduced a kernel similarity measure
based on the same approach, and showed promising empirical results for additional application domains.

1.2 Our results

Flowtree. The tree-based method used in [IT03, LYFC19] is a classic algorithm called Quadtree, described
in detail Section 2. In this method, the ground metric X is embedded into a random tree of hypercubes, and
the cost of the optimal flow is computed with respect to the tree metric. We suggest a modification to this
algorithm, which we call Flowtree: It computes the optimal flow on the same random tree, but evaluates
the cost of that flow in the original ground metric.

While this may initially seem like a small modification, it in fact leads to an algorithm with vastly different
properties. On one hand, while both algorithms run asymptotically in time O(s), Quadtree is much faster in
practice. The reason is that the cost of the optimal flow on the tree can be computed very efficiently, without
actually computing the flow itself. On the other hand, Flowtree is dramatically more accurate. Formally,
we prove it has an asymptotically better approximation factor than Quadtree. Empirically, our experiments
show that Flowtree is as accurate as state-of-the-art O(s2) time methods, while being much faster.

Theoretical results. A key difference between Flowtree and Quadtree is that the approximation quality
of Flowtree is independent of the dataset size, i.e., of the number n of distributions µ1, . . . , µn that need to
be searched. Quadtree, on the other hand, degrades in quality as n grows. We expose this phenomenon in
two senses:

• Worst-case analysis: We prove that Flowtree reports an O(log2 s)-approximate nearest neighbor
w.h.p if the input distributions are uniform, and an O(log(dΦ) · log s)-approximate nearest neigh-
bor (where d is the dimension and Φ is the coordinate range of X) even if they are non-uniform.
Quadtree, on the other hand, reports an O(log(dΦ) · log(sn))-approximate nearest neighbor, and we
show the dependence on n is necessary.

2In the application to [KSKW15], X is the set word embeddings of (say) all terms in the English language, and s is the
maximum number of terms per text document.

2



• Random model: We analyze a popular random data model, in which both Flowtree and Quadtree
recover the exact nearest neighbor with high probability. Nonetheless, here too, we show that Flowtree’s
success probability is independent of n, while Quadtree’s degrades as n grows.

Empirical results. We evaluate Flowtree, as well as several baselines and state-of-the-art methods, for
nearest neighbor search in the W1 distance on real-world datasets.

Our first set of experiments evaluates each algorithm individually. Our results yield a sharp divide among
existing algorithms: The linear time ones are very fast in practice but only moderately accurate, while the
quadratic time ones are much slower but far more accurate. Flowtree forms an intermediate category: it
is slower and more accurate than the other linear time algorithms, and is at least 5.5 (and up to 30) times
faster than the quadratic time algorithms, while attaining similar or better accuracy.

The above results motivate a sequential combination of algorithms, that starts with a fast and coarse
algorithm to focus on the most promising candidates nearest neighbors, and gradually refines the candidate
list by slower and more accurate algorithms. Such pipelines are commonly used in practice, and in particular
were used in [KSKW15] (termed “prefetch and prune”). Our second set of experiments evaluates pipelines
of various algorithms. We show that incorporating Flowtree into pipelines substantially improves the overall
running times, by a factor of up to 7.4.

2 Preliminaries: Quadtree

In this section we describe the classic Quadtree algorithm. Its name comes from its original use in two
dimensions (cf. [Sam84]), but it extends to—and has been successfully used in—various high-dimensional
settings (e.g. [Ind01, IRW17, BIO+19]). It enjoys a combination of appealing theoretical properties and
amenability to fast implementation. As it forms the basis for Flowtree, we now describe it in detail.

Generic Quadtree. Let X ⊂ Rd be a finite set of points. Our goal is to embed X into a random tree
metric, so as to approximately preserve each pairwise distance in X. To simplify the description, suppose
that the minimum pairwise distance in X is exactly 1, and that all points in X have coordinates in [0,Φ].3

The first step is to obtain a randomly shifted hypercube that encloses all points in X. To this end,
let H0 = [−Φ,Φ]d be the hypercube with side length 2Φ centered at the origin. Let σ ∈ Rd be a random
vector with i.i.d. coordinates uniformly distributed in [0,Φ]. We shift H0 by σ, obtaining the hypercube
H = [−Φ,Φ]d + σ. Observe that H has side length 2Φ and encloses X. The random shift is needed in order
to obtain formal guarantees for arbitrary X.

Now, we construct a tree of hypercubes by letting H be the root, halving H along each dimension, and
recursing on the resulting sub-hypercubes. We add to the tree only those hypercubes that are non-empty
(i.e., contain at least one point from X). Furthermore, we do not partition hypercubes that contain exactly
one point from X; they become leaves. The resulting tree has at most O(log(dΦ)) levels and exactly |X|
leaves, one per point in X.4 We number the root level as log Φ + 1, and the rest of the levels are numbered
downward accordingly (log Φ, log Φ − 1, . . .). We set the weight of each tree edge between level ` + 1 and
level ` to be 2`.

The resulting quadtree has O(|X|d · log(dΦ)) nodes, and it is straightforward to build it in time Õ(|X|d ·
log(dΦ)).5

Wasserstein-1 on Quadtree. The tree distance between each pair x, x′ ∈ X is defined as the total edge
weight on the unique path between their corresponding leaves in the quadtree. Given two distributions µ, ν
on X, the Wasserstein-1 distance with this underlying metric (as a proxy for the Euclidean metric on X)
admits the closed-form

∑
v 2`(v)|µ(v) − ν(v)|, where v ranges over all nodes in the tree, `(v) is the level

3This is without loss of generality, as we can set the minimum distance to 1 by scaling, and we can shift all the points to
have non-negative coordinates without changing internal distances.

4This is since the diameter of the root hypercube H is
√
dΦ, and the diameter of a leaf is no less than 1/2, since by scaling

the minimal distance in X to 1 we have assured that a hypercube of diameter 1/2 contains a single point and thus becomes a
leaf. Since the diameter is halved in each level, there are at most O(log(dΦ)) levels.

5Note that although the construction partitions each hypercube into 2d sub-hypercubes, eliminating empty hypercubes
ensures that the tree size does not depend exponentially on d.
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of v, µ(v) is the total µ-mass of points enclosed in the hypercube associated with v, and ν(v) is defined
similarly for the ν-mass. If µ, ν have supports of size at most s, then this quantity can be computed in time
O(s · log(dΦ)).

The above closed-form implies, in particular, that W1 on the quadtree metric embeds isometrically into
`1, as originally observed by [Cha02] following [KT02]. Namely, the `1 space has a coordinate associated
with each tree node v, and a distribution µ is embedded in that space by setting the value of each coordinate
v to 2`(v)µ(v), where µ(v) is defined as above. Furthermore, observe that if µ has support size at most s,
then its corresponding `1 embedding w.r.t the tree metric has at most sh non-zero entries, where h is the
height of the tree. Thus, computing W1 on the tree metric amounts to computing the `1 distance between
sparse vectors, which further facilitates fast implementation in practice.

3 Flowtree

The Flowtree algorithm for k-NNS w.r.t. the W1 distance is as follows. In the preprocessing stage, we build
a quadtree T on the ground set X, as described in Section 2. Let t(x, x′) denote the quadtree distance
between every pair x, x′ ∈ X. In the query stage, in order to estimate W1(µ, ν) between two distributions
µ, ν, we compute the optimal flow f w.r.t. the tree metric, that is,

f = argminf̃

∑
x,x′∈X

f̃(x, x′) · t(x, x′),

where the argmin is taken over all distributions on X × X with marginals µ, ν. Then, the estimate of the
distance between µ and ν is given by

W̃1(µ, ν) =
∑

x,x′∈X
f(x, x′) · ‖x− x′‖.

Note that if the support sizes of µ and ν are upper-bounded by s, then the Flowtree estimate of their
distance can be computed in time linear in s (see proof in appendix).

Lemma 3.1. W̃1(µ, ν) can be computed in time O(s(d+ log(dΦ))).

Unlike Quadtree, Flowtree does not reduce to sparse `1 distance computation. Instead, one needs to
compute the optimal flow tree f explicitly by bottom-up greedy algorithm, and then use it to compute
W̃1(µ, ν). On the other hand, Flowtree has the notable property mentioned earlier: its NNS approximation
factor is independent of the dataset size n. In comparison, the classic Quadtree does not possess this property,
and its accuracy deteriorates as the dataset becomes larger. We formally establish this distinction in two
senses: first by analyzing worst-case bounds, and then by analyzing a popular random data model.

3.1 Worst-case bounds

We start with an analytic worst-case bound on the performance of quadtree. Let us recall notation: X is
a finite subset of Rd, and Φ > 0 is the side length of a hypercube enclosing X. We are given a dataset of
n distributions µ1, . . . , µn, and a query distribution ν, where each of these distributions is supported on a
subset of X of size at most s. Our goal is to find a near neighbor of ν among µ1, . . . µn. A distribution µi is
called a c-approximate nearest neighbor of ν if W1(µi, ν) ≤ c ·mini∗W1(µi∗ , ν).

The following theorem is an adaptation of a result by [AIK08] (where it is proven for a somewhat different
algorithm, with similar analysis). All proofs are deferred to the appendix.

Theorem 3.2 (Quadtree upper bound). With probability ≥ 0.99, the nearest neighbor of ν among µ1, . . . µn
in the Quadtree distance is an O(log(min{sn, |X|}) log(dΦ))-approximate nearest neighbor in the W1 distance.

Next, we show that the log n factor in the above upper bound is necessary for Quadtree.

Theorem 3.3 (Quadtree lower bound). Suppose c is such that Quadtree is guaranteed to return a c-
approximate nearest neighbor, for any dataset, with probability more than (say) 1/2. Then c = Ω(log n).
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Figure 1: Random model illustration with s = 4. Left: The blue points are the N random data points.
The data distributions are all subsets of 4 points. Right: The red points form a query distribution whose
planted nearest neighbor is the distribution supported on {x1, x2, x3, x4}.

In contrast, Flowtree attains an approximation factor that does not depend on n.

Theorem 3.4 (Flowtree upper bound). With probability ≥ 0.99, the nearest neighbor of ν among µ1, . . . µn
in the Flowtree distance is an O(log(s) log(dΦ))-approximate nearest neighbor for the W1 distance.

Finally, we combine ideas from [AIK08] and [BI14] to prove another upper bound for Flowtree, which is
also independent of the dimension d and the numerical range Φ. No such result is known for Quadtree (nor
does it follow from our techniques).

Theorem 3.5 (Flowtree upper bound for uniform distributions6). For an integer s, assume that for every
distribution there exists an integer s′ ≤ s such that the weights of all elements in the support are integer
multiples of 1/s′. With probability ≥ 0.99, the nearest neighbor of ν among µ1, . . . µn in the Flowtree distance
is an O(log2 s)-approximate nearest neighbor for the W1 distance.

3.2 Random model

The above worst-case results appear to be overly pessimistic for real data. Indeed, in practice we observe
that Quadtree and especially Flowtree often recover the exact nearest neighbor. This motivates us to study
their performance on a simple model of random data, which is standard in the study of nearest neighbor
search.

The data is generated as follows. We choose a ground set X of N points i.i.d. uniformly at random on the
d-dimensional unit sphere Sd−1. For each subset of N of size s, we form a uniform distribution supported
on that subset. These distributions make up the dataset µ1, . . . , µn (so n =

(
N
s

)
).

To generate a query, pick any µi as the “planted” nearest neighbor, and let x1, . . . , xs denote its support.
For k = 1, . . . , s, choose a uniformly random point yk among the points on Sd−1 at distance at most ε from
xk, where ε is a model parameter. The query distribution ν is defined as the uniform distribution over
y1, . . . , ys. By known concentration of measure results, the distance from yk to every point in X except xk is√

2− o(1) with high probability. Thus, the optimal flow from ν to µi is the perfect matching {(xk, yk)}sk=1,
and µi is the nearest neighbor of ν. The model is illustrated in Figure 1.

Theorem 3.6. In the above model, the success probability of Quadtree in recovering the planted nearest
neighbor decays exponentially with N , while the success probability of Flowtree is independent of N .

4 Experiments

In this section we empirically evaluate Flowtree and compare it to various existing methods.

6For simplicity, Theorem 3.5 is stated for uniform distribution (or close to uniform), such as documents in [KSKW15]. A
similar result holds for any distribution, with additional dependence on the numerical range of mass values.
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Table 1: Dataset properties. Avg. s is the average support size of the distributions in the dataset.

Name Size Queries Underlying metric Avg. s

20news 11, 314 1, 000 Word embedding 115.9
Amazon 10, 000 1, 000 Word embedding 57.44
MNIST 60, 000 10, 000 2D Euclidean 150.07

4.1 Synthetic data

We implement the random model from Section 3.2. The results are in Figure 2. The x-axis is N (the number
of points in the ground metric), and the y-axis is the fraction of successes over 100 independent repetitions
of planting a query and recovering its nearest neighbor. As predicted by Theorem 3.6, Quadtree’s success
rate degrades as N increases (and we recall that n =

(
N
s

)
), while Flowtree’s does not.

Figure 2: Results on random data. Left: d = s = 10, ε = 0.25. Right: d = 10, s = 100, ε = 0.4.

4.2 Real data

Datasets. We use three datasets from two application domains. Their properties are summarized in
Table 1.

• Text documents: We use the standard benchmark 20news dataset of news-related online discussion
groups, and a dataset of Amazon reviews split evenly over 4 product categories. Both have been
used in [KSKW15] to evaluate the Word-Move Distance. Each document is interpreted as a uniform
distribution supported on the terms it contains (after stopword removal). For the underlying metric,
we use GloVe word embeddings [PSM14] with 400, 000 terms and 50 dimensions.

• Image recognition: We use the MNIST dataset of handwritten digits. As in [Cut13], each image is
interpreted as a distribution over 28 × 28 pixels, with mass proportional to the greyscale intensity of
the pixel (normalized so that the mass sums to 1). Note that the distribution is supported on only the
non-white pixels in the image. The underlying metric is the 2-dimensional Euclidean distance between
the 28× 28 pixels, where they are identified with the points {(i, j)}28i,j=1 on the plane.

Algorithms. We evaluate the following algorithms:

• Mean: W1(µ, ν) is estimated as the Euclidean distance between the means of µ and ν. This method
has been suggested and used in [KSKW15].7

• Overlap: A simple baseline that estimates W1(µ, ν) by the size of the intersection of their supports.

7There it is called Word Centroid Distance (WCD).
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• TF-IDF: A well-known similarity measure for text documents. It is closely related to Overlap.8 For
MNIST we omit this baseline since it is not a text dataset.

• Quadtree: See Section 2.

• Flowtree: See Section 3.

• R-WMD: The Relaxed WMD method of [KSKW15], described in Section 1.1. We remark that this
method does not produce an admissible flow (i.e., it does not adhere to the capacity and demand
constraints of W1).

• ACT-1 : The Approximate Constrained Transfers method of [AM19] gradually adds constraints to
R-WMD over i iterations, for a parameter i. The i = 0 case is identical to R-WMD, and increasing
i leads to increasing both the accuracy and the running time. Like R-WMD, this method does not
produce an admissible flow. In our experiments, the optimal setting for this method is i = 1,9 which
we denote by ACT-1. The appendix contains additional results for larger i.

• Sinkhorn with few iterations: The iterative Sinkhorn method of [Cut13] is designed to converge to a
near-perfect approximation of W1. Nonetheless, it can be adapted into a fast approximation algorithm
by invoking it with a fixed small number of iterations. We use 1 and 3 iterations, referred to as Sinkhorn-
1 and Sinkhorn-3 respectively. Since the Sinkhorn method requires tuning certain parameters (the
number of iterations as well as the regularization parameter), the experiments in this section evaluate
the method at its optimal setting, and the appendix includes experiments with other parameter settings.

As mentioned in Section 1.2, these methods can be grouped by their running time dependence on s:

• “Fast” linear-time: Mean, Overlap, TF-IDF, Quadtree

• “Slow” linear-time: Flowtree

• Quadratic time: R-WMD, ACT-1, Sinkhorn

The difference between “fast” and “slow” linear time is that the former algorithms reduce to certain simple
cache-efficient operations, and furthermore, Mean greatly benefits from SIMD vectorization. In particu-
lar, Overlap, TF-IDF and Quadtree require computing a single `1 distance between sparse vectors, while
Mean requires computing a single Euclidean distance in the ground metric. This renders them an order of
magnitude faster than the other methods, as our empirical results will show.

Runtime measurement. All running times are measured on a “Standard F72s v2” Microsoft Azure
instance equipped with Intel Xeon Platinum 8168 CPU. In our implementations, we use NumPy linked with
OpenBLAS, which is used in a single-threaded mode.

Implementation. We implement R-WMD, ACT and Sinkhorn in Python with NumPy, as they amount
to standard matrix operations which are handled efficiently by the underlying BLAS implementation. We
implement Mean, Overlap, TF-IDF, Quadtree and Flowtree in C++ (wrapped in Python for evaluation).
For Mean we use the Eigen library to compute dense `2 distances efficiently. For Exact W1 we use the POT
library in Python, which in turn calls the Lemon graph library written in C++. The accuracy and pipeline
evaluation code is in Python.

4.3 Individual accuracy experiments

Our first set of experiments evaluates the runtime and accuracy of each algorithm individually. The results
are depicted in Figures 3 to 5. The plots report the recall@m accuracy as m grows. The recall@m accuracy
is defined as the fraction of queries for which the true nearest neighbors is included in the top-m ranked
neighbors (called candidates) by the evaluated method.

8Namely, it is a weighted variant of Overlap, where terms are weighted according to their frequency in the dataset.
9This coincides with the results reported in [AM19].
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Figure 3: Individual accuracy and runtime results on 20news

Figure 4: Individual accuracy and runtime results on Amazon

Figure 5: Individual accuracy and runtime results on MNIST*

Table 2: Running times

Dataset Mean TF-IDF Overlap Quadtree Flowtree R-WMD ACT-1** Sinkhorn-1 Sinkhorn-3 Exact W1

20news 0.22ms 8.0ms 8.4ms 13ms 0.24s 1.46s 2.23s 4.16s 4.93s 41.5s
Amazon 0.18ms 3.8ms 3.9ms 5.8ms 90ms 0.51s 0.74s 1.25s 1.58s 4.23s

MNIST* 0.58ms — 47ms 68ms 0.94s 5.73s 20.8s 23.7s 28.0s 154.0s

* On MNIST, the accuracy of R-WMD, ACT and Sinkhorn is evaluated on 1, 000 random queries. The running time of
R-WMD, ACT, Sinkhorn and Exact W1 is measured on 100 random queries. The running time of Flowtree is measured 1, 000
random queries.
** ACT takes a faster form when applied to uniform distributions. We use a separate implementation for this case. This
accounts for the large difference in its performance on 20news and Amazon (where distributions are uniform) compared to
MNIST (where they are not).
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For each dataset, the left plot reports the accuracy of all of the methods for large values of m. The
right plot reports the accuracy of the high-accuracy methods for smaller values of m (since they cannot be
discerned in the left plots). The high-accuracy methods are Flowtree, R-WMD, ACT, Sinkhorn, and on
MNIST also Quadtree. For Quadtree and Flowtree, which are randomized methods, we report the mean and
standard deviation (shown as error bars) of 5 executions. The other methods are deterministic. The legend
of each plot is annonated with the running time of each method, also summarized in Table 2.

Results. The tested algorithms yield a wide spectrum of different time-accuracy tradeoffs. The “fast”
linear time methods (Mean, TF-IDF, Overlap and Quadtree) run in order of milliseconds, but are less
accurate than the rest. The quadratic time methods (R-WMD, ACT-1 and Sinkhorn) are much slower,
running in order of seconds, but are dramatically more accurate.

Flowtree achieves comparable accuracy to the quadratic time baselines, while being faster by a margin.
In particular, its accuracy is either similar to or better than R-WMD, while being 5.5 to 6 times faster.
Compared to ACT-1, Flowtree is either somewhat less or more accurate (depending on the dataset), while
being at least 8 times faster. Compared to Sinkhorn, Flowtree achieves somewhat lower accuracy, but is at
least 13.8 and up to 30 times faster.

4.4 Pipeline experiments

The above results exhibit a sharp divide between fast and coarse algorithms to slow and accurate ones.
In practical nearest neighbor search system, both types of algorithms are often combined sequentially as
a pipeline (e.g., [SZ03, JDS08, JDS10]). First, a fast and coarse method is applied to all points, pruning
most of them; then a slower and more accurate method is applied to the surviving points, pruning them
further; and so on, until finally exact computation is performed on a small number of surviving points. In
particular, [KSKW15] employ such a pipeline for the Word Mover Distance, which combines Mean, R-WMD,
and exact W1 computation.

In this section, we systematically evaluate pipelines built of the algorithms tested above, on the 20news
dataset.

Experimental setup. We perform two sets of experiments: In one, the pipeline reports one candidate,
and its goal is to output the true nearest neighbor (i.e., recall@1). In the other, the pipeline reports 5
candidates, and its goal is to include the true nearest neighbor among them (i.e., recall@5). We fix the
target accuracy to 0.9 (i.e., the pipeline must achieve the recall goal on 90% of the queries), and report its
median running time over 3 identical runs.

Evaluated pipelines. The baseline pipelines we consider contain up to three methods:

• First: Mean, Overlap or Quadtree.

• Second: R-WMD, ACT-1, Sinkhorn-1, or Sinkhorn-3.

• Third: Exact W1 computation. For recall@5 pipelines whose second method is Sinkhorn, this third
step is omitted, since they already attain the accuracy goal without it.

To introduce Flowtree into the pipelines, we evaluate it both as an intermediate stage between the first and
second methods, and as a replacement for the second method.

Pipeline parameters. A pipeline with ` algorithms has parameters c1, . . . , c`−1, where ci is the number
of output candidates (non-pruned points) of the ith algorithm in the pipeline.10 We tune the parameters of
each pipeline optimally on a random subset of 300 queries (fixed for all pipelines). The optimal parameters
are listed in the appendix.

10The final algorithm always outputs either 1 or 5 points, according to the recall goal.
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Figure 6: Best performing pipelines for recall@1 ≥ 0.9 (on the left) and recall@5 ≥ 0.9 (on the right). Each
vertical bar denotes a pipeline, built of the methods indicated by the color encoding, bottom-up. The y-axis
measures the running time up to each step of the pipeline. The plot depicts 4 baseline pipelines, consisting
of Quadtree, then the method X indicated on the x-axis (R-WMD, ACT-1, Sinkhorn-1 or Sinkhorn-3), and
then (optionally) Exact W1. Next to each baseline bar we show the bar obtained by adding Flowtree to
the pipeline as an intermediate algorithm between Quadtree and X. The rightmost bar in each plot shows
the pipeline obtained by using Flowtree instead of X.

Table 3: Best pipeline runtime results

Recall@1 ≥ 0.9 Recall@5 ≥ 0.9

Without Flowtree 0.221s 0.200s
With Flowtree 0.059s 0.027s

Results. We found that in the first step of the pipeline, Quadtree is significantly preferable to Mean
and Overlap, and the results reported in this section are restricted to it. More results are included in the
appendix.

Figure 6 shows the runtimes of pipelines that start with Quadtree. Note that each pipeline is optimized
by different parameters, not depicted in the figure. For example, Sinkhorn-3 is faster than Sinkhorn-1 on the
right plot, even though it is generally a slower algorithm. However, it is also more accurate, which allows
the preceding Quadtree step to be less accurate and report fewer candidates, while still attaining overall
accuracy of 0.9. Specifically, in the optimal recall@5 setting, Sinkhorn-3 runs on 227 candidates reported by
Quadtree, while Sinkhorn-1 runs on 295.

The best runtimes are summarized in Table 3. The results show that introducing Flowtree improves the
best runtimes by a factor of 3.7 for recall@1 pipelines, and by a factor of 7.4 for recall@5 pipelines.

In the recall@1 experiments, the optimally tuned baseline pipelines attain runtimes between 0.22 to 0.25
seconds. Introducing Flowtree before the second method in each pipeline improves its running time by a
factor of 1.7 to 4.15. Introducing Flowtree instead of the second method improves the runtime by a factor
of 2.4 to 2.7.

Once Flowtree is introduced into the recall@1 pipelines, the primary bottleneck becomes the final stage of
exact W1 computations. In the recall@5 experiments, this step is not always required, which enables larger
gains for Flowtree. In these experiments, the optimally tuned baseline pipelines attain runtimes between 0.2
to 0.22 seconds. Introducing Flowtree before the second method in each pipeline improves its running time
by a factor of 1.64 to 6.75. Introducing Flowtree instead of the second method improves the runtime by a
factor of 7.4 to 8.

Overall, Flowtree significantly improves the running time of every pipeline, both as an addition and as a
replacement.
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A Proofs

A.1 Flowtree Computation

In this section we prove Lemma 3.1. We begin by specifying the greedy flow computation algorithm on the
tree. Let h denote the height of the tree (for the quadtree the height is h = O(log(dΦ)). Suppose we are
given a pair of distributions µ, ν, each supported on at most s leaves of the tree. For every node v in the
tree, let Cµ(v) denote the set of points in x ∈ X such that µ(x) > 0 and the tree leaf that contains x is a
descendant of v. Similarly define Cν(v). Note that we only need to consider nodes for which either Cµ(v) or
Cν(v) is non-empty, and there are at most 2sh such nodes.

The algorithm starts with a zero flow f , and processes the nodes in a bottom-up order starting at the leaf.
In each node, the unmatched demands collected from its children are matched arbitrarily, and the demands
that cannot be matched are passed on to the parent. In mode detail, a node is processed as follows:

1. Collect from the children the list of unmatched µ-demands for the nodes in Cµ(v) and the list of
unmatched ν-demands for the nodes in Cν(v). Let {µv(x) : x ∈ Cµ(v)} denote the unmatched ν-
demands and let {νv(x) : x ∈ Cν(v)} denote the unmatched ν-demands.

2. While there is a pair x ∈ Cµ(v) and x′ ∈ Cµ(v) with µv(x) > 0 and νv(x
′) > 0, let η = min{µv(x), νv(x

′)},
and update (i) f(x, x′) += η, (ii) µv(x) −= η, (iii) νv(x

′) −= η.

3. Now either µv or νv is all-zeros. If the other one is not all-zeros (i.e., there is either remaining unmatched
µ-demand or remaining unmatched ν-demand), pass it on the the parent.

A leaf v contains a single point x ∈ X with either µ(x) > 0 or ν(x) > 0; it simply passes it on to its parent
without processing.

It is well known that the above algorithm computes an optimal flow on the tree (with respect to tree
distance costs), see, e.g., [KK95]. Let us now bound its running time. The processing time per node v in the
above algorithm is O(|Cµ(v)| + |Cν(v)|). In every given level in the tree, if v1, . . . , vk are the nodes in that
level, then {Cµ(v1), . . . , Cµ(vk)} is a partition of the support of µ, and {Cν(v1), . . . , Cν(vk)} is a partition of
the support of ν. Therefore the total processing time per level is O(s), and since there are h levels, the flow

computation time is O(sh). Then we need to compute the Flowtree output W̃1(µ, ν). Observe that in the
above algorithm, whenever we match demands between a pair x, x′, we fully satisfy the unmatched demand
of one of them. Therefore the output flow f puts non-zero flow between at most 2s pairs. For each such pair
we need to compute the Euclidean distance in time O(d), and the overall running time is O(s(d+ h)).

A.2 Quadtree and Flowtree Analysis

Proof of Theorem 3.2. Let x, y ∈ X. Let p`(x, y) be the probability that x, y fall into the same cell (hyper-
cube) in level ` of the quadtree. It satisfies,

1− ‖x− y‖1
2`

≤ p`(x, y) ≤ exp

(
−‖x− y‖1

2`

)
.

To see this, recall that in level ` we impose a grid with side length 2`, shifted at random by an i.i.d. uniform
shift in [0, 2`] in each coordinate. The probability that x, y are separated in coordinate i is 2−`|xi − yi|, and

thus p`(x, y) =
∏d
i=1(1 − 2−`|xi − yi|). The lower bound in ?? follows by a union bound, and the upper

bound follows by applying the general estimate 1 − z ≤ exp(−z) to each term in the product.
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Let t be the tree metric induced on X by the quadtree. Note that for t(x, y) to be at most O(2`), x, y

must fall into the same hypercube in level `. For any δ > 0, we can round ‖x−y‖1
log(1/δ) to its nearest power of 2

and obtain ` such that 2` = Θ( ‖x−y‖1log(1/δ) ). It satisfies,

Pr

[
t(x, y) <

O(1)

log(1/δ)
‖x− y‖1

]
≤ δ.

By letting δ = Ω(min{1/|X|, 1/(s2n)}), we can take union bound either over all pairwise distances in X (of

which there are
(|X|

2

)
), or over all distances between the support of the query ν and the union of supports

of the dataset µ1, . . . , µn (of which there are at most s2n, if every support has size at most s). Then, with
probability say 0.995, all those distances are contracted by at most O(log(min{sn, |X|})), i.e.,

t(x, y) ≥ 1

O(log(1/δ))
‖x− y‖1. (2)

On the other hand,

E[t(x, y)] =
∑
`

2` · (1− p`(x, y)) ≤
∑
`

2` · ‖x− y‖1
2`

≤ O(log(dΦ)) · ‖x− y‖1.

Let µ∗ be the true nearest neighbor of ν in µ1, . . . , µn. Let f∗µ∗,ν be the optimal flow between them. Then
by the above,

E

 ∑
(x,y)∈X×X

f∗µ∗,ν(x, y)t(x, y)

 ≤ O(log(dΦ))
∑

(x,y)∈X×X

f∗µ∗,ν(x, y)‖x− y‖1.

By Markov, with probability say 0.995,∑
(x,y)∈X×X

f∗µ∗,ν(x, y) · t(x, y) ≤ O(log(dΦ))
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1. (3)

Let µ′ be the nearest neighbor of ν in the dataset according to the quadtree distance. Let f∗µ′,ν be the
optimal flow between them in the true underlying metric (`1 on X), and let fµ,ν be the optimal flow in the
quadtree. Finally let Wt denote the Wasserstein-1 distance on the quadtree. Then,

W1(µ′, ν)

=
∑

(x,y)∈X×X

f∗µ′,ν(x, y) · ‖x− y‖1

≤
∑

(x,y)∈X×X

fµ′,ν · ‖x− y‖1 f∗µ∗,ν is optimal for ‖·‖1

≤ O(log(min{sn, |X|}))
∑

(x,x′)∈X×X

fµ′,ν · t(x, y) eq. (2)

= O(log(min{sn, |X|})) ·Wt(µ
′, ν) definition of Wt

≤ O(log(min{sn, |X|})) ·Wt(µ
∗, ν) µ′ is the nearest neighbor in Wt

= O(log(min{sn, |X|}))
∑

(x,y)∈X×X

fµ∗,ν · t(x, y) definition of Wt

≤ O(log(min{sn, |X|}))
∑

(x,y)∈X×X

f∗µ∗,ν · t(x, y) fµ∗,ν is optimal for t(·, ·)

≤ O(log(min{sn, |X|}) log(dΦ))
∑

(x,y)∈X×X

f∗µ∗,ν · ‖x− y‖1 eq. (3)

= O(log(min{sn, |X|}) log(dΦ)) ·W1(µ∗, ν),

so µ′ is a O(log(min{sn, |X|}) log(dΦ))-approximate nearest neighbor.
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Proof of Theorem 3.3. It suffices to prove the claim for s = 1 (i.e., the standard `1-distance). Let d > 0 be
an even integer. Consider the d-dimensional hypercube. Our query point is the origin. The true nearest
neighbor is e1 (standard basis vector). The other data points are the hypercube nodes whose hamming
weight is exactly d/2. The number of such points is Θ(2d/

√
d), and this is our n.

Consider imposing the grid with cell side 2 on the hypercube. The probability that 0 and 1 are uncut
in a given axis is exactly 1/2, and since the shifts in different axes are independent, the number of uncut
axes is distributed as Bin(d, 1/2). Thus with probability 1/2 there are at least d/2 uncut dimensions. If this
happens, we have a data point hashed into the same grid cell as the origin (to get such data point, put 1
in any d/2 uncut dimensions and 0 in the rest), so its quadtree distance from the origin is 1. On the other
hand, the distance of the origin to its true nearest neighbor e1 is at least 1, since they will necessarily be
separated in the next level (when the grid cells have side 1). Thus the quadtree cannot tell between the true
nearest neighbor and the one at distance d/2, and we get the lower bound c ≥ d/2. Since n = Θ(2d/

√
d),

we have d/2 = Ω(log n) as desired.

Proof of Theorem 3.4. The proof is the same as for Theorem 3.2, except that in eq. (2), we take a union
bound only over the s2 distances between the supports of ν and µ∗ (the query and its true nearest neighbor).
Thus each distance between µ∗ and ν is contracted by at most O(log s).

Let WF denote the Flowtree distance estimate of W1. Let µ′ be the nearest neighbor of ν in the Flowtree
distance. With the same notation in the proof of Theorem 3.2,

W1(µ′, ν) =
∑

(x,y)∈X×X

f∗µ′,ν(x, y) · ‖x− y‖1

≤
∑

(x,y)×X×X

fµ′,ν(x, y) · ‖x− y‖1 f∗µ′,ν is optimal for ‖·‖1

= WF (µ′, ν) Flowtree definition

≤WF (µ∗, ν) µ′ is nearest in Flowtree distance

=
∑

(x,y)∈X×X

fµ∗,ν(x, y) · ‖x− y‖1 Flowtree definition

≤ O(log s)
∑

(x,y)∈X×X

fµ∗,ν(x, y) · t(x, y) eq. (2)

≤ O(log s)
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · t(x, y) fµ∗,ν is optimal for t(·, ·)

≤ O(log(dΦ) log s)
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1 eq. (3)

= O(log(dΦ) log s) ·W1(µ∗, ν),

as needed. Note that the difference from the proof of Theorem 3.2 is that we only needed the contraction
bound (eq. (2)) for distances between µ∗ and ν.

Proof of Theorem 3.5. We set ε = 1/ log s. Let t′(x, y) denote the quadtree distance where the weight
corresponding to a cell v in level `(v) is 2`(v)(1−ε) instead of 2`(v). Let fµ,ν be the optimal flow in the
quadtree defined by weights t′.

Let δ = c/s2 where c > 0 is a sufficiently small constant. For a every x, y, let `xy be the largest integer
such that

2`xy ≤ ‖x− y‖1
(log(1/δ))1/(1−ε)

.

The probability that x, y are separated (i.e., they are in different quadtree cells) in level `xy is

1− p`xy(x,y) ≥ 1− exp

(
−‖x− y‖1

2`xy

)
≥ 1− δ

1− ε
.
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By the setting of δ, we can take a union bound over all x ∈ support(µ∗) and y ∈ support(ν) and obtain that
with say 0.99 probability, simultaneously, every pair x, y is separated at level `xy. We denote this event by
Elower and suppose it occurs. Then for every x, y we have

t′(x, y) ≥ 2 · 2`xy(1−ε) ≥ 2 ·
(

1

2
· ‖x− y‖1

(log(1/δ))1/(1−ε)

)1−ε

≥ ‖x− y‖
1−ε
1

log(1/δ)
=
‖x− y‖1−ε1

Θ(log s)
.

Next we upper-bound the expected tree distance t′(x, y). (Note that we are not conditioning on Elower.)
Observe that

t′(x, y) = 2
∞∑

`=−∞

2`(1−ε) · 1{x, y are separated at level `}.

Let Lx,y be the largest integer such that 2Lxy ≤ ‖x− y‖1. We break up t′(x, y) into two terms,

t′lower(x, y) = 2

Lxy∑
`=−∞

2`(1−ε) · 1{x, y are separated at level `},

and

t′upper(x, y) = 2
∞∑

`=Lxy+1

2`(1−ε) · 1{x, y are separated at level `},

thus t′(x, y) = t′lower(x, y) + t′upper(x, y). For t′lower(x, y) it is clear that deterministically,

t′lower(x, y) ≤ 2

Lxy∑
`=−∞

2`(1−ε) = O
(

2Lxy(1−ε)
)

= O
(
‖x− y‖1−ε1

)
.

For t′upper(x, y), we have

E[t′upper(x, y)] = 2
∞∑

`=Lxy+1

2`(1−ε)p`(x, y)

≤ 2

∞∑
`=Lxy

2`(1−ε) · ‖x− y‖1
2`

= 2‖x− y‖1
∞∑

`=Lxy

2−ε`

= 2‖x− y‖1 ·
2−Lxy·ε

1− 2−ε

≤ O(log s) · ‖x− y‖1−ε1 ,

where in the final bound we have used that 2Lxy = Θ(‖x− y‖1) and 1− 2−ε = Θ(ε) = Θ(log s). Together,

E[t′(x, y)] = E[t′lower(x, y) + t′upper(x, y)] ≤ Θ(log s) · ‖x− y‖1−ε1 . (4)

Now we are ready to show the O(log2 s) upper bound on the approximation factor. Below we will use
the fact that every weight fµ∗,ν(x, y) in the flow is of the form i/(s′s′′) for some integer 0 ≤ i ≤ s′s′′. This
follows from the assumption that each element in the support of every measure is an integer multiple of 1/s′

or of 1/s′′ for some 1 ≤ s′, s′′ ≤ s.

W1(µ′, ν) =
∑

(x,y)∈X×X

f∗µ′,ν(x, y) · ‖x− y‖1 f∗µ′,ν is optimal for ‖·‖1

≤
∑

(x,y)×X×X

fµ′,ν(x, y) · ‖x− y‖1
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= WF (µ′, ν) Flowtree definition

≤WF (µ∗, ν) µ′ is nearest to ν in Flowtree distance

=
∑

(x,y)∈X×X

fµ∗,ν(x, y) · ‖x− y‖1 Flowtree definition

≤

 ∑
(x,y)∈X×X

f1−εµ∗,ν(x, y) · ‖x− y‖1−ε1

1/(1−ε)

subadditivity of (·)1−ε

≤ O(1)

 ∑
(x,y)∈X×X

fµ∗,ν(x, y) · ‖x− y‖1−ε1

1/(1−ε)

fµ∗,ν(x, y) ≥ 1/(s′s′′) ≥ 1/s2 or fµ∗,ν(x, y) = 0

≤ O(log s)

 ∑
(x,y)∈X×X

fµ∗,ν(x, y) · t′(x, y)

1/(1−ε)

eq. (4)

≤ O(log s)

 ∑
(x,y)∈X×X

f∗µ∗,ν(x, y) · t′(x, y)

1/(1−ε)

fµ∗,ν is optimal for t′(·, ·)

≤ O(log2 s)

 ∑
(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1−ε1

1/(1−ε)

eq. (4)

≤ O(log2 s)
∑

(x,y)∈X×X

f∗µ∗,ν(x, y) · ‖x− y‖1 concavity of (·)1−ε and
∑

f∗µ∗,ν(x, y) = 1

≤ O(log2 s) ·W1(µ∗, ν),

as needed.

Proof of Theorem 3.6. Quadtree. For every k = 1, . . . , s, let Hk be the smallest hypercube in the quadtree
that contains both xk and yk. (Note that Hk is a random variable, determined by the initial random shift in
the Quadtree construction.) In order for Quadtree to correctly identify µi as the nearest neighbor of ν, every
Hk must not contain any additional points from X. Otherwise, if say H1 contains a point x′ 6= x1, the W1

distance on the quadtree from ν to µi is equal to its distance to the uniform distribution over {x′, x2, . . . , xs}.
Since the points in X are chosen uniformly i.i.d. over Sd−1, the probability of the above event, and thus the
success probability of Quadtree, is upper bounded by E[(1 − V )N−s], where V = volume(∪sk=1Hk ∩ Sd−1).
This V is a random variable whose distribution depends only on d, s, ε, and is independent of N . Thus the
success probability decays exponentially with N .

Flowtree. On the other hand, suppose that each Hk contains no other points from {x1, . . . , xs} other
than xk (but is allowed to contain any other points from X). This event guarantees that the optimal flow
on the tree between µi and ν is the planted perfect matching, i.e., the true optimal flow, and thus the
estimated Flowtree distance between them equals W1(µi, ν). This guarantees that Flowtree recovers the
planted nearest neighbor, and this event depends only on d, s, ε, and is independent of N .

B Additional Experiments

B.1 Additional Sinkhorn and ACT Experiments

Number of iterations. Both ACT and Sinkhorn are iterative algorithms, and the number of iterations
is a parameter to set. Our main experiments use ACT with 1 iteration and Sinkhorn with 1 or 3 iterations.
The next experiments motivate these choices. Figures 7(a)–(c) depict the accuracy and running time of
ACT-1, ACT-7, Sinkhorn-1, Sinkhorn-3 and Sinkhorn-5 on each of our datasets.11 It can be seen that for

11ACT-1 and ACT-7 are the settings reported in [AM19].
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both algorithms, increasing the number of iterations beyond the settings used in Section 4 yields comparable
accuracy with a slower running time. Therefore in Section 4 we restrict our evaluation to ACT-1, Sinkhorn-1
and Sinkhorn-3. We also remark that in the pipeline experiments, we have evaluated Sinkhorn with up to 9
iterations. In those experiments too, the best results are achieved with either 1 or 3 iterations

Sinkhorn regularization parameter. Sinkhorn has a regularization parameter λ that needs to be tuned
per dataset. We set λ = η ·M , where M is the maximum value in the cost matrix (of the currently evaluated
pair of distributions), and tune η. In all of our three datasets the optimal setting is η = 30, which is the
setting we use in Section 4. As an example, Figure 7(d) depicts the 1-NN accuracy (y-axis) of Sinkhorn-1
per η (x-axis).

Figure 7: Additional Sinkhorn and ACT experiments

(a) 20news dataset (b) Amazon dataset

(c) MNIST dataset

(d) 1-NN accuracy of Sinkhorn-1 with varying regulariza-
tion

B.2 Additional Pipeline Results

The next tables summarize the running times and parameters settings of all pipelines considered in our
experiments (whereas the main text focuses on pipelines that start with Quadtree, since it is superior as a
first step to Mean and Overlap). The listed parameters are the number of output candidates of each step in
the pipeline.

In the baseline pipelines, parameters are tuned to achieve optimal performance (i.e., minimize the running
time while attaining the recall goal on at least 90% of the queries). The details of the tuning procedure is as
follows. For all pipelines we use the same random subset of 300 queries for tuning. Suppose the pipeline has
` algorithms. For i = 1, . . . , `, let ci the output number of candidates of the ith algorithm in the pipeline.
Note that c` always equals either 1 or 5, according to the recall goal of the pipeline, so we need to set
c1, . . . , c`−1. Let p1 be the recall@1 accuracy of the first algorithm in the pipeline. Namely, p1 is the fraction
of queries such that the top-ranked c1 candidates by the first algorithm contain the true nearest neighbor.
We calculate 10 possible values of c1, corresponding to p1 ∈ {0.9, 0.91, . . . , 0.99}. We optimize the pipeline
by a full grid search over those values of c1 and all possible values of c2, . . . , c`−1.
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When introducing Flowtree into a pipeline as an intermediate method, we do not re-optimize the pa-
rameters, but rather set its output number of candidates to the maximum between 10 and twice the output
number of candidates of the subsequent algorithm in the pipeline. Re-optimizing the parameters could
possibly improve results.

Pipeline methods Candidates Time
Mean, Sinkhorn-1, Exact 1476, 11, 1 0.543
Mean, Sinkhorn-3, Exact 1476, 5, 1 0.598
Mean, R-WMD, Exact 1850, 28, 1 0.428
Mean, ACT-1, Exact 1677, 14, 1 0.420
Overlap, Sinkhorn-1, Exact 391, 6, 1 0.610
Overlap, Sinkhorn-3, Exact 391, 5, 1 0.691
Overlap, R-WMD, Exact 576, 14, 1 0.367
Overlap, ACT-1, Exact 434, 10, 1 0.429
Quadtree, Sinkhorn-1, Exact 295, 5, 1 0.250
Quadtree, Sinkhorn-3, Exact 227, 3, 1 0.248
Quadtree, R-WMD, Exact 424, 12, 1 0.221
Quadtree, ACT-1, Exact 424, 8, 1 0.236

Table 4: Recall@1, no Flowtree.

Pipeline methods Candidates Time
Mean, Flowtree, Sinkhorn-1, Exact 1850, 10, 5, 1 0.089
Mean, Flowtree, Sinkhorn-3, Exact 1677, 10, 4, 1 0.077
Mean, Flowtree, R-WMD, Exact 2128, 48, 24, 1 0.242
Mean, Flowtree, ACT-1, Exact 2128, 20, 10, 1 0.138
Overlap, Flowtree, Sinkhorn-1, Exact 489, 10, 5, 1 0.087
Overlap, Flowtree, Sinkhorn-3, Exact 576, 10, 3, 1 0.076
Overlap, Flowtree, R-WMD, Exact 576, 28, 14, 1 0.173
Overlap, Flowtree, ACT-1, Exact 576, 16, 8, 1 0.119
Quadtree, Flowtree, Sinkhorn-1, Exact 424, 10, 5, 1 0.074
Quadtree, Flowtree, Sinkhorn-3, Exact 424, 10, 3, 1 0.059
Quadtree, Flowtree, R-WMD, Exact 424, 22, 11, 1 0.129
Quadtree, Flowtree, ACT-1, Exact 424, 16, 8, 1 0.104
Mean, Flowtree, Exact 1850, 9, 1 0.105
Overlap, Flowtree, Exact 489, 9, 1 0.100
Quadtree, Flowtree, Exact 424, 9, 1 0.092

Table 5: Recall@1, with Flowtree.
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Pipeline methods Candidates Time
Mean, Sinkhorn-1 1476, 5 0.464
Mean, Sinkhorn-3 1476, 5 0.549
Mean, R-WMD, Exact 1850, 28, 5 0.426
Mean, ACT-1, Exact 1677, 14, 5 0.423
Overlap, Sinkhorn-1 391, 5 0.560
Overlap, Sinkhorn-3 391, 5 0.650
Overlap, R-WMD, Exact 576, 14, 5 0.368
Overlap, ACT-1, Exact 434, 10, 5 0.428
Quadtree, Sinkhorn-1 295, 5 0.222
Quadtree, Sinkhorn-3 227, 5 0.200
Quadtree, R-WMD, Exact 424, 11, 5 0.216
Quadtree, ACT-1, Exact 424, 7, 5 0.222

Table 6: Recall@5, no Flowtree.

Pipeline methods Candidates Time
Mean, Flowtree, Sinkhorn-1 1850, 10, 5 0.046
Mean, Flowtree, Sinkhorn-3 1476, 10, 5 0.043
Mean, Flowtree, R-WMD, Exact 2128, 48, 24, 5 0.237
Mean, Flowtree, ACT-1 2128, 10, 5 0.048
Overlap, Flowtree, Sinkhorn-1 391, 10, 5 0.042
Overlap, Flowtree, Sinkhorn-3 391, 10, 5 0.044
Overlap, Flowtree, R-WMD, Exact 576, 28, 14, 5 0.173
Overlap, Flowtree, ACT-1 576, 10, 5 0.046
Quadtree, Flowtree, Sinkhorn-1 424, 10, 5 0.033
Quadtree, Flowtree, Sinkhorn-3 424, 10, 5 0.034
Quadtree, Flowtree, ACT-1 424, 10, 5 0.029
Mean, Flowtree 2128, 5 0.043
Overlap, Flowtree 576, 5 0.039
Quadtree, Flowtree 645, 5 0.027
Quadtree, Flowtree, R-WMD, Exact 424, 22, 11, 5 0.131
Quadtree, Flowtree, ACT-1, Exact 424, 16, 8, 5 0.103

Table 7: Recall@5, with Flowtree.
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