On the Latency Variability of Deep Neural Networks for Mobile Inference*

Luting Yang Binggian Lu Shaolei Ren
UC Riverside UC Riverside UC Riverside
. % 200 0 200
1 Introduction E oo E 200 =
120 = | 20 I T
Inference of deep neural networks (DNNs) on mobile de- & L] IS == == e s 80 = =
vices is often subject to a highly diverse set of runtime E 42 T E 42

system conditions, such as time-varying resource con-
tention caused by concurrent threads and different num-
bers of background services [2]. These conditions can
all potentially affect the latency performance of DNN-
based mobile inference [3,4]. For example, an intuitive
observation is that more resource contention can result in
larger average inference latency. On the other hand, la-
tency variability is also crucial for users’ quality of expe-
rience. Nonetheless, it is less clear if more resource con-
tention also leads to larger latency variability, and if the
relative ranking of DNN models in terms of latency vari-
ability measured on one device/condition can also carry
over to another device/condition.

In this note, we conduct a preliminary measurement
study on the latency variability of DNNs for mobile in-
ference. In particular, considering eight popular DNNs
for image classification and running them on two mobile
devices, we focus on how the CPU resource contention
(created by concurrent threads within the same app as
DNN inference) affects the inference latency variability.
The setup details are available in [1].

Interestingly and also counter-intuitively, our mea-
surement results show that the relative ranking of DNN
models in terms of average latency and latency variabil-
ity can vary on different devices when the level of CPU
contention changes. This implies that the relative rank-
ing of DNN models in terms of latency performance
can be both device-dependent and resource contention-
dependent. Thus, choosing a set of benchmark devices
and system conditions may not be enough to accurately
quantify the actual performance for DNN-based infer-
ence on all mobile devices.

*This extended abstract summarizes [1]. The authors are supported in part by
the U.S. NSF under grants CNS-1551661, ECCS-1610471, and CNS-1910208.

VviQ V2Q VIF V2F
MobileNet Model

(a) O thread

viQ V2Q VIF V2F
MobileNet Model

(b) 6 threads, 60% active

Figure 1: CPU contention on Samsung Galaxy Tab S5e.
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Figure 2: Samsung Galaxy Tab S5e vs. Tab A.

2 Results

We highlight two sets of measurement results in Fig. 1
and Fig. 2, where the 5th, 25th, 75th and 95th percentile
and average latencies are shown excluding outliers.

o First, we see from Fig. 1 that when there is more
CPU contention (due to more concurrent computation
threads), the latency variability of MobileNet V2Q can
be even reduced. Moreover, V1F has a comparable la-
tency to V2Q under 0 concurrent thread, but it is outper-
formed by V2Q when there are six concurrent threads.

e Second, we see from Fig. 2 that given the same num-
ber of concurrent threads, MobileNet V1F has similar av-
erage latency and latency variability with V2Q on Tab the
device S5e, but it is worse than V2Q on Tab A.

Our results demonstrate that for DNN-based mobile
inference, more CPU resource contention may not lead
to larger latency variability, and the relative ranking of
DNN models in terms of latency variability can be both
device-dependent and resource contention-dependent.
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