
CQNN: a CGRA-based QNN Framework
Tong Geng

Boston University
Boston, USA
tgeng@bu.edu

Chunshu Wu
Boston University

Boston, USA
happycwu@bu.edu

Cheng Tan
PNNL

Richland, USA
cheng.tan@pnnl.gov

Bo Fang
PNNL

Richland, USA
bo.fang@pnnl.gov

Ang Li
PNNL

Richland, USA
ang.li@pnnl.gov

Martin Herbordt
Boston University

Boston, USA
herbordt@bu.edu

Abstract—Quantized Neural Networks (QNNs) have drawn
tremendous attention since – when compared with Convolution
Neural Networks (CNNs) – they often dramatically reduce com-
putation, communication, and storage demands with negligible
loss in accuracy. To find an optimal balance between performance
and accuracy, developers use different data-widths for different
layers and channels. Given this large parameter space, it is
challenging to design a QNN accelerator which is generally
efficient for various and flexible model configurations.

In this paper we propose CQNN, a novel Coarse-Grained
Reconfigurable Architecture-based (CGRA) QNN acceleration
framework. CQNN has a large number of basic components for
binary functions. By programming CQNN at runtime according
to the target QNN model, these basic components are integrated
to support QNN functions with any data-width and hyper-
parameter requirements. The result is an optimal QNN for the
target model. The framework includes compiler, hardware design,
simulator, and RTL generator. Experimental results show CQNNs
can complete the inference of AlexNet and VGG-16 within 0.13ms
and 2.63ms, respectively. We demonstrate the design on an FPGA
platform; however, this is only for showcasing the method: the
approach does not rely on any FPGA-specific features and can
thus be implemented as ASIC as well.

Index Terms—QNN, CGRA, Accelerator, Machine Learning

I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely adopted
due to their ability to analyze latent information from struc-
tured data and to achieve high accuracy through learning
[4], [5], [10], [11]. However, for many applications that
are high-volume but power-, resource-, or latency-restricted,
achieving maximal accuracy may not be crucial [9], [22]. This
is especially true for IoT and smart-edge applications. These
often require low-latency, real-time inference, as well as low
cost, but reaching a certain well-defined level of accuracy is
often sufficient.

DNN applications are both computation and communication
intensive making it challenging to use them and achieve these
requirements. One approach is to squeeze the model by using
fewer bits to represent features and parameters. The extreme
case is Binary Neural Networks (BNNs), which use only a
single bit to represent a feature or parameter [20]. BNNs have
been demonstrated to have great potential in cost- and power-
restricted domains, but have not been widely adopted in real-
world applications due to their significant loss in accuracy.
A promising compromise, called Quantized Neural Networks
(QNNs), is to use mixed precision, e.g., from 1-bit to 8-
bits, and to vary precision across layers and channels. This

is done in such a way so as to find the optimal balance
between performance and accuracy [9], [16]. QNNs have been
found to dramatically reduce computation and communication
requirements with negligible loss in accuracy.

To meet requirements of different applications, models are
trained with various hyper-parameters including the number
of layers, number of channels per layer, and number of bits
used at each layer and channel. It is challenging to design
an accelerator that can work efficiently with any combination
of these hyper-parameters, especially when various numbers
of bits used. Most existing architectures are designed for
networks with specific configurations. When the model config-
urations change, the architecture needs to be re-implemented
offline. This kind of accelerator guarantees high efficiency, but
has poor flexibility. Some other accelerators are designed in
more general ways, e.g., to support programming by users for
different QNNs. These designs provide good flexibility, but
often lose efficiency due to their generalized architectures.

In this paper, we design a novel CGRA-based QNN accel-
eration framework, CQNN. Taking advantage of the CGRA
architecture, CQNN provides both high performance and good
flexibility in the processing of mixed-precision QNNs. By
programming CQNN at runtime, the architectures of the pro-
cessing elements of CQNN can be dynamically reconfigured
as the best match to the QNN models under processing. The
proposed framework includes (1) compiler which generates the
instructions to reconfigure the CGRA Network on Chip (NOC)
at runtime, (2) binary-component-based CGRA architecture
which can be configured to support QNN functions with
different hyper-parameters, (3) a cycle-accurate simulator for
quick performance evaluation, and (4) an RTL generator for
fast implementation. CQNN supports mixed-precision QNNs.
In CQNN, all basic units are designed to support binary
operations. Multiple binary units are integrated at runtime to
support the processing of QNN operations with various data-
widths with negligible hardware overheads.

The contributions of this paper are summarized as follows:
• We propose CQNN, a CGRA-based QNN inference ac-

celeration framework. The proposed framework is effi-
cient for QNNs with any model configuration.

• We propose a binary-based CGRA architecture that can
be dynamically reconfigured at runtime to support the
kernel execution with various data widths efficiently.

• We evaluate our design on Xilinx Ultra-scale+ VCU118
FPGA development board. With the proposed design,



the inference of AlexNet and VGG-16 can be completed
within 0.13ms and 2.63ms, respectively.

II. BACKGROUND

We introduce BNN and QNN models and then discuss
existing work on QNN acceleration.

A. BNN and QNN Models

BNNs are an extreme case of QNNs and evolved from con-
ventional CNNs through Binarized Weight Networks (BWN)
[2] with the observation that if the weights were binarized to 1
and −1, then expensive floating-point multiplications could be
replaced with additions and subtractions. It was next observed
that if both weights and inputs were binarized, then even the
32-bit additions and subtractions could be demoted to logical
bit operations. With this observation, XNOR-Net was proposed
and has become one of the most influential BNNs [3], [20].

The basic structure of a BNN has four essential functions
in each CONV/FC layer: XNOR, Population Count (POP-
COUNT), Batch Normalization (BN), and Binarization (BIN).
Since the weights, inputs, and outputs are binary, multiply-
accumulate in traditional DNNs become XNOR and POP-
COUNT in BNNs. The output of POPCOUNT is normalized
in BN, which is compulsory for high accuracy in BNNs. Batch
Normalization (BN) incorporates full-precision floating-point
(FP) operations, i.e., two MUL/DIVs and three ADD/SUBs:

yi,j =

(
xi,j − E[x∗,j ]√
V ar[x∗,j ] + ε

)
· γj + βj (1)

The normalized outputs from BN (i.e., yi,j), which are
floating point, are binarized in BIN by comparing with 0. Here,
BIN acts as the non-linear activation function. Max pooling
is sometimes required. Traditionally, pooling is between BN
and BIN. It can be shown, however, that this is equivalent to
placing pooling after BIN; thus the FP operations in pooling
become bit-OR operations, significantly reducing computation
complexity.

Researchers have observed various opportunities to further
optimize the basic BNN structure. FINN [1], [23] stands out
by merging BN and BIN. The original FP-based BN function
in Equation 1 and BIN function are integrated as a threshold:

Thresholdi,j,k =
E∗,j,k + Lj,k

2
−
βj,k ·

√
V ar[x∗,j,k] + ε

2 · γj,k
(2)

where L is the length of the vector K×K×IC, K is the filter
size, and IC is the number of input channels. Note that γj,k
and βj,k are learned in training and are fixed in inference. The
threshold can, therefore, be obtained after training and kept
constant in inference. In this way, the expensive FP operations
in BN now become a simple threshold comparison.

The structure of BNNs can be easily extended to QNNs. As
QNNs use multiple bits to represent features and parameters,
the XNOR and POPCOUNT functions in BNNs become low-
precision Multiplication (QMUL) and Accumulation (QACC);
the BIN function in BNNs becomes Quantization (QUANT).
The functions of QNNs are all based on operations with a
limited number of bits, e.g. 1-8. Figure 1 illustrates QNN

Fig. 1. A simple 3-CONV-1-FC BNN Network structure. It is similar to
DNN, except that Activation acts as QUANT. QNN model structure can be
further optimized. Floating-point BN and QUANT functions can be merged
into QT-BN with multiple thresholds.

structure. Similar to BNNs, the QUANT and BN functions of
QNNs can also be merged into threshold-based BN (QT-BN).
Different from BNNs, T-BN in a q-bit QNN layer contains
at least (2q − 1) thresholds per channel and requires at least
q times comparisons to quantize an output feature. All these
thresholds can be decided during training. Therefore, they can
be treated as constants in the acceleration of inference [1],
[13]. As QNNs and BNNs share similar structures, in CQNN,
we decompose QNN operations into multiple BNN operations
and try to realize QNN hardware modules by integrating
binary components.

B. Existing Work

Quantization of DNNs has been well studied. Besides the
already mentioned XNOR-Net [20] and BWN [2], Zhou et
al. proposed the DoReFa network which clips activations to
improve the utilization of quantization levels [25]. The top-1
accuracy loss of AlexNet is only 6% using 1 bit and 2 bits
to represent parameters and features respectively. Miyashita et
al. proposed a logarithm-based quantization and demonstrated
that using 4-bit parameters and 5-bit features only incurs
1.7% loss in top-5 accuracy for AlexNet [17]. Park et al.
proposed a more advanced quantization method demonstrating
that ResNet-101 with 5-bit parameters and 6-bit activations has
comparable accuracy to the full-precision network [19].

There has also been work on accelerators for QNNs. Wang
et al. proposed a hardware-aware automated quantization
framework, HAQ [24]. Park et al. proposed an energy-efficient
QNN accelerator based on outlier-aware low-precision compu-
tation [18]. Umuroglu et al. proposed a flexible heterogeneous
streaming architecture for a fast, scalable, and flexible FPGA
accelerator for BNNs [23]. Tong et al. proposed an out-of-
order architecture, O3BNN, which prunes redundant opera-
tions at runtime during inference [7]. These designs provide
high performance, but require re-implementation to efficiently
support QNNs with various hyper-parameters. Another study
that has ideas related to CQNN is Bit Fusion. It does not
focus on QNNs, however, and the proposed techniques are
not applied to pooling, activation, or BN kernels.

III. BNN MODULE INTEGRATION FOR QNN

In this section, we discuss how to build QNN modules with
multiple binary components. Three QNN modules are intro-
duced: Quantized CONV (Q-CONV), QT-BN, and Quantized
POOLING (Q-POOL).



Fig. 2. QCONV for a QNN layer with 2-bit features and 3-bit parameters and
the transformation from a 2-bit×3-bit multiplication into 6 bit-add operations.

A. Q-CONV

The Q-CONV modules perform the QMUL and QACC
functions. At each cycle, a Q-CONV module performs K ×
K × NIC multiplication operations and accumulates their
results in a pipelined manner. The accumulation result is then
forwarded to a QT-BN module for quantization and then a
complete output feature is calculated. K is the CONV window
size and NIC the number of input channels.

In CQNN, each Q-CONV module is composed of multiple
bit-level CONV (BCONV) components. Each BCONV is in
charge of conducting binary CONV operations of 32 input
channels and their POPCOUNTs. At each cycle, one BCONV
component performs K ×K × 32 1-bit×1-bit multiplications
(i.e. bit-and) and their accumulations (i.e. POPCOUNT). Fig-
ure 2 illustrates the design of a Q-CONV module for a 2-
bit×3-bit QNN layer with NIC = 64 and K = 3. This Q-CONV
module is made up of 12 BCONV components.

To calculate an output feature, 576 2-bit×3-bit multipli-
cations need to be performed. The calculation of 64 input
channels is mapped to 2 groups of BCONV components.
Each group handles 32 input channels, i.e 288 multiplications.
Each multiplication can be further divided into 6 bit-and
operations which are mapped onto 6 BCONV components in
the same BCONV group. Each BCONV component therefore
calculates 288 bit-and operations in each cycle. Figure 2
illustrates how to transform a 2-bit×3-bit multiplication into
6 bit-and operations and map them to 6 BCONV modules.
To calculate all output features, intermediate results of each
of these 12 BONV components needs to be reduced. In this
design, intra-group result reduction is performed with add-
after-shift operations (from the most significant bits to least
significant bits); inter-group reduction is realized by summing
the intra-group reduction outputs.

B. QT-BN Module

As mentioned in Section 2, QT-BN is performed by com-
paring the QCONV results to multiple thresholds. For a QNN
layer with q-bit features, each output channel has at least
2q − 1 thresholds. To calculate each quantized output feature,
a QCONV result needs to be compared to q thresholds. In
CQNN, each QT-BN is implemented with q T-BN modules.
Each T-BN module compares the QCONV result to one

Fig. 3. QT-BN architecture for a QNN layer with 3-bit features.

threshold and the comparison outcome determines one bit of
the QT-BN result. T-BN modules work in a pipelined manner
and q modules determine the final value of the quantized
feature collaboratively.

CQNNs mainly focus on QNNs with 1-bit to 6-bit features
and parameters. Figure 3 illustrates the structure of a TQ-
BN module for a QNN layer with 3-bit features. Quantized
features have 8 possible values, i.e. 0 - 7. The value is
determined by comparisons between a QCONV result and
7 thresholds, i.e. T0 - T6 in Figure 3. The first TQ-BN
determines the most significant bit of the final output, while
the last one decides the least significant bit. Each T-BN has a
threshold table for storing the thresholds required to generate
the quantized features. Each T-BN has 2 inputs, the address for
threshold table access and the QCONV output for comparison,
and 1 output, 1-bit of quantized output feature.

C. Q-POOL

Q-POOL (MAX-Pooling) modules are composed of mul-
tiple bit-based pooling components (BPOOL) working in a
pipelined manner. Each Q-POOL is connected to a QT-BN
and consumes the features generated by the QT-BN. For a
QNN layer with q-bit features, a Q-POOL module has q
BPOOLs. The q BPOOLs and q T-BNs are connected one-
to-one. All BPOOLs and T-BNs work in a 2-level pipeline.
Different BPOOLs compare different bits of the quantized
features and send comparison outcomes to their successors
for further comparison if necessary. Figure 4 illustrates the
structure of a Q-POOL module for a QNN layer with 3-bit
features. Each BPOOL has an output called EN which is used
to activate the successive BPOOLs. The EN signal is 0 when
a BPOOL finds the incoming bit to be smaller than the one
currently stored in its MAX Value buffer. In this case further
comparisons and updates are not needed and its successors will
neither compare the newly coming data nor update the max
value of the bit they are working on. Each BPOOL calculates
one bit of the Pooling results.

IV. DESIGN OF CQNN FRAMEWORK

This section introduces the CQNN framework, which in-
cludes hardware architecture, compiler, cycle-accurate simula-
tor, and RTL generator. We begin with an overview, the present
details, and finally discuss how the compiler works with the
architecture for NoC configuration.



Fig. 4. Q-POOL architecture for a QNN layer with 3-bit features.

Fig. 5. Framework of CQNN

A. Framework Overview

Figure 5 illustrates the framework of CQNN. The compiler
is used to generate instructions to reconfigure CGRA NOC
at run time. Instruction generation is based on the model
configurations per layer and the hardware constraints, e.g.
dimensions of target CGRA arrays. After instructions are
generated for an entire QNN model, they are stored in the
Control Processor (CP). During processing, the CP fetches and
decodes the instructions and generates signals to configure the
CGRA network. The RTL generator is used to generate the
Verilog-based hardware. A cycle-accurate simulator provides
fast and accurate performance evaluation.

B. Architecture

Figure 6 illustrates the architecture of CQNN. CQNN has
2 main modules: CGRA array (CGRA) for inference calcu-
lation and Control Processor (CP) for CGRA NOC run-time
configuration. We first introduce the architecture.

1) CGRA Array: A CGRA Array consists of a recon-
figurable NOC, Parameter Scheduler (PS), Feature Scheduler
(FS), and computation components including BCONVs, T-
BNs, and BPOOLs. During the processing of a certain layer,
FS performs two tasks. First, it prefetches input features from
off-chip memory and forwards those features which are going
to be consumed in the coming iterations to BCONVs in the ex-
pected order. Second, it receives output features calculated in
the current iteration from BPOOLs, selects valid outputs, and
writes them back to off-chip memory. In parallel, the Switch
Reconfiguration Controller (SRC) at CP sends reconfiguration
signals of the next layer to PS, WS, and NOC. These signals
are cached in these 3 modules with double buffering where

Fig. 6. The overall architecture of CQNN including CP and CGRA array.
Black blocks are switches. Each Switch connected to a red block is equipped
with an accumulator and a left shift logic. The blocks covered by the gray
window can be integrated as an engine for 2-bit×5-bit QNN layers.

they await the completion of the layer being processed. After
PS receives the reconfiguration signals, it begins prefetching
weights, biases, and thresholds of the next layer and sends
them to the BCONVs and T-BN engines.

At the completion of the layer under processing, the NOC
is reconfigured based on the signals received previously so
that a new configuration that matches the requirements of
the coming layer is realized. In this design, in order to
reduce the reconfiguration time and routing complexity of
the reconfiguration network, the CGRA NOC is reconfigured
by column from right-most to left-most. Assuming that the
left-most column receives the reconfiguration signals at one
column per cycle and that there are c columns in the CGRA,
at cycle c, all columns have received their reconfiguration
signals and are reconfigured simultaneously. In this design, the
number of columns that can be configured at each cycle can
be customized. More columns per cycle means faster configu-
ration but a more expensive networks. In this implementation,
the SRC configures 1 column per cycle.

As mentioned in Section 3, in this CGRA architecture,
all computation components are designed to support binary
functions, but, through run-time NOC reconfiguration, can be
efficiently and easily integrated into modules with various
data-widths. Figure 7 illustrates 3 types of configurations for
a motivating QNN engine (a 3-bit×2-bit QNN layer with
32 input channels).1 Each of these engines is created by
integrating 36 binary components which work collaboratively
to calculate one complete output feature per cycle. These
3 types of configurations realize the engines with the same
functionality but have different shapes. These configurations
can be combined to fit on a CGRA with a certain size to

1a QNN engine is defined as a group of modules that can produce one
complete output feature per cycle



Fig. 7. CGRA Array details and 3 types of integration for a QNN engine for a layer with 32 input channels, 3-bit features, and 2-bit parameters. (A) Default
configuration implements a QNN engine by grouping binary components in a 6×6 raw CGRA array. (B) & (C) Implements QNN engines by grouping binary
components in a 3×12 & 12×3 raw CGRA arrays. All components are pipelined.

Fig. 8. Engine mapping with 3 types of configuration

Fig. 9. Instruction structure

maximize the number of engines that can be adopted. As
shown in Figure 8, we use the default configuration to map
QNN engines onto a CGRA array until there is insufficient
space remaining. Horizontal and vertical configurations are
then used to fill up the remaining rows and columns. The
mapping scheme is generated offline by the compiler. As
shown in Figure 7, in a QNN engine, BCONVs are always
fully utilized, but only 25% T-BNs and BPOOLs are activated.
This overhead is inevitable to support any type of QNN layers
dynamically at runtime. The overall overhead, however, is very
small as the hardware resources of T-BNs and BPOOLs are
only 9.1% and 2.9% of BCONVs.

As for the hardware support for parameter and feature on-
chip storage and data forwarding, we use similar designs to the
ones used in LP-BNN [6]. Parameters and features at multiple
channels are packed and stored in line buffers for easier data
movement and reuse.

2) Control Processor: As mentioned above, the CGRA
configuration is determined offline by the compiler, and con-
figuration signals are generated by the CP. During compilation
a series of instructions is generated based on the model config-
urations and CGRA dimensions. Each instruction describes the
CGRA configuration for one QNN layer. Figure 9 shows the
instruction structure. The instructions are stored in Instruction
Memory (IM). At the start of processing of a certain layer,
Instruction Fetch and Decode (IF & ID) access the instruction
for the next layer from IM and send the decoded information
to SRC for configuration signal generation. Further details are
omitted due to limited space.

C. Compiler

The compiler calculates the maximum numbers of default,
horizontal, and vertical QNN engines that can be implemented
on the target array; maps these QNN engines onto the array;
and generates instructions for all layers. A greedy algorithm is
used to determine the mapping strategy. For a particular layer,
the compiler first determines the numbers of rows and columns
occupied by each default, horizontal, or vertical engine. The
compiler then maps as many default engines as possible
from the upper left corner to the lower right corner of the
CGRA array. The remaining space is filled up with horizontal
and vertical engines. At this point the compiler has enough
information to generate an instruction for a layer.

V. EVALUATION

In this section, we evaluate the performance of CQNN
instantiations. We implement a CQNN with a 64×48 CGRA
array (64×16 each of BCONVs, T-BNs and BPOOLs) on a
Xilinx VCU118 FPGA. We use Vivado Design Suite 2019.1
for design synthesis, implementation, and bit-file generation.
The QNN models are implemented in Pytorch and trained with



TABLE I
EXECUTION LATENCY (µs) AND BCONV UTILIZATION OF QNN LAYERS WITH DIFFERENT NUMBERS OF INPUT CHANNELS (NIC) AND DATA-WIDTHS

(DW) OF FEATURES AND PARAMETERS. ALL LAYERS HAVE 2×2 MAX-POOLING AND 128 OUTPUT CHANNELS. IMAGE SIZE IS 128 × 128.

Design CQNN with 64x48 CGRA Array
Freq 300MHz

Device Xilinx VCU118 FPGA (67% LUTs and 40% Flip-Flops)
DW(F,P) (1,1) (2,1) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4) (5,5)
NIC:32 6.9(100%) 13.8(100%) 27.7(100%) 42.5(98.4%) 63.2(98.4%) 82.9(99.6%) 110.7(100%) 147.3(93.8%) 187.3(92.8%)
NIC:64 13.8(100%) 27.8(100%) 55.0(100%) 83.7(98.4%) 128.3(96.7%) 167.5(98.4%) 220.1(100%) 293.1(93.8%) 372.0(92.8%)
NIC:96 20.8(99.9%) 41.6(99.6%) 83.9(98.4%) 125.6(98.4%) 190.2(98.4%) 254.1(97.6%) 332.9(98.4%) 440.1(93.8%) 587.2(87.9%)

NIC:128 27.7(100%) 54.9(100%) 110.3(100%) 175.3(93.8%) 270.1(91.4%) 334.6(98.4%) 439.2(100%) 585.9(93.8%) 781.9(87.9%)

TABLE II
CROSS-PLATFORM COMPARISON AND EVALUATION: INFERENCE LATENCY IN MS, ENERGY EFFICIENCY IN IMG/KJ. CQNNS ARE COMPARED TO

EXISTING FPGA QNN WORK AND A GPU TENSORFLOW-BASED IMPLEMENTATION.

GPU FPGA
Device P100 [14] V100 [14] Stratix-V [15] VCU108 [8] ZC706 [7]

Frequency 1.48GHz 1.53GHz 150MHz 200MHz
Network Vgg-like(4,3) AlexNet(4,3) Vgg-like(4,3) AlexNet(4,3) AlexNet(1,1) AlexNet(1,1) Vgg-like(1,1) VGG-16(1,1)

Latency (ms) 114.65 2183.62 131.09 1164.95 1.16 1.92 0.61 5.63
Energy (Image/KJ) 29.1 1.52 42.1 4.93 3.31E4 2.72E4 1.99E5 2.23E4

FPGA FPGA: Our Design
Device KCU1500 [6] CQNNs: VCU118

Frequency 200MHz 300MHz
Network AlexNet(4,3) VGG-16(4,3) Vgg-like(4,3) AlexNet(4,3) VGG-16(4,3) Vgg-like(1,1) AlexNet(1,1) VGG-16(1,1)

Latency (ms) 0.27 4.19 0.10 0.13 2.63 0.0081 0.0096 0.19
Energy (Image/KJ) 1.15E5 6.87E3 3.70E5 2.65E5 1.27E4 4.94E6 4.01E6 1.98E5

TABLE III
STRUCTURES OF THE NETWORKS USED TO EVALUATE CQNN.

Network Network Structure Dataset Input Size Categories
VGG-like (2x128C3)-MP2-(2x256C3)-MP2-(2x512C3)-MP2-(2x1024FC) Cifar-10 32 × 32 × 3 10
AlexNet (64C11/4)-MP3-(192C5)-MP3-(384C3)-(256C3)-(256C3)-MP3-(2x4096FC) ImageNet 224 × 224 × 3 1000
VGGNet (2x64C3)-MP2-(2x128C3)-MP2-(3x256C3)-MP2-(3x512C3)-MP2-(3x512C3)-MP2-(2x4096FC) ImageNet 224 × 224 × 3 1000

a high-end CPU Intel Xeon E5-2680v3 and an NVIDIA Tesla
V100 GPU.

A. Performance with different data-widths
We first evaluate the CQNN performance working with

QNN layers with different data-widths and numbers of input
channels. Table I shows the latency results and hardware
utilization of BCONV components. All layers have 128 output
channels and 2×2 MAX-Pooling. The size of Input feature
maps is 128×128. The CQNN with 64×48 CGRA array
consumes 358K (67%) LUTs and 427K Flip-Flops (40%) of
the FPGA chip. Results show that the overall utilization of
CQNN is over 90% for most of the QNN layers. With a
certain CQNN, the execution latency increases linearly with
the increase in the QNN layer workload. The end-to-end
latency reported in Table I includes instruction fetch, decode,
SRC signal generation, feature and parameter read, write from
and to off-chip memory, and QNN layer processing. Offline
compilation is not included.

B. Cross-platform Comparison
We compare the performance of CQNN to TensorFlow-

based QNN implementations on NVIDIA Tesla V100 and
P100 GPUs. We use the Vgg-like network [2] of Cifar-10,
AlexNet [12], and VGG-16 [21] of ImageNet as benchmarks
(Table III). We also compare our results to existing FPGA-
based QNN accelerators designed for specific NN models;

this shows, in addition to better flexibility, higher performance
as well (Table II). Admittedly, we do not claim CQNNs
outperform existing designs for QNNs since the improvement
of performance may be due to a larger board and higher
clock frequency. Still, the comparison confirms that the CQNN
design does not sacrifice performance to achieve high flexi-
bility. With CQNN, the inference of Vgg-like, AlexNet, and
VGG-16 with 4-bit features and 3-bit parameters takes only
0.10ms, 0.13ms, and 2.63ms, respectively. The inference of
binary Vgg-like, AlexNet, and VGG-16 take only 8.1µs, 9.6µs
and 190µs, respectively. Board-level power consumption is
measured with a power meter.

VI. CONCLUSION

We propose CQNN, a CGRA-based acceleration framework
for QNNs. The architecture of CQNN is composed of a pro-
grammable control processor, binary components for CONV,
BN, Pooling kernels, and reconfigurable NOCs. The control
processor reconfigures the NOCs and integrates the binary
components at runtime to realize the optimal designs for QNN
layers being processed. CQNN has compilation, simulation,
and RTL generation support for fast implementation and
evaluation. Experimental results show the proposed framework
can compute inference of AlexNet and VGG-16 within 0.13ms
and 2.63ms, respectively.



REFERENCES

[1] M. Blott, T. B. Preusser, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, p. 16, 2018.

[2] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, 2015, pp. 3123–
3131.

[3] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[4] T. Geng, T. Wang, A. Li, X. Jin, and M. Herbordt, “A scalable framework
for acceleration of cnn training on deeply-pipelined fpga clusters with
weight and workload balancing,” arXiv preprint arXiv:1901.01007,
2019.

[5] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xuy, R. Patel, and
M. Herbordt, “Fpdeep: Acceleration and load balancing of cnn training
on fpga clusters,” in 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE,
2018.

[6] T. Geng, T. Wang, C. Wu, C. Yang, S. L. Song, A. Li, and M. Herbordt,
“Lp-bnn: Ultra-low-latency bnn inference with layer parallelism,” in
2019 IEEE 30th International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), vol. 2160. IEEE, 2019,
pp. 9–16.

[7] T. Geng, T. Wang, C. Wu, C. Yang, W. Wu, A. Li, and M. C. Herbordt,
“O3bnn: an out-of-order architecture for high-performance binarized
neural network inference with fine-grained pruning,” in Proceedings of
the ACM International Conference on Supercomputing. ACM, 2019,
pp. 461–472.

[8] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet: Residual
binarized neural network,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2018, pp. 57–64.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[10] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[11] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725–1732.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[13] M. Lam, Z. Yedidia, C. Banbury, and V. J. Reddi, “Quantized
neural network inference with precision batching,” arXiv preprint
arXiv:2003.00822, 2020.

[14] A. Li, T. Geng, T. Wang, M. Herbordt, S. L. Song, and K. Barker,
“Bstc: a novel binarized-soft-tensor-core design for accelerating bit-
based approximated neural nets,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2019, pp. 1–30.

[15] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural
network on fpga,” Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[16] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[17] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

[18] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network ac-
celerator based on outlier-aware low-precision computation,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2018, pp. 688–698.

[19] E. Park, S. Yoo, and P. Vajda, “Value-aware quantization for training
and inference of neural networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 580–595.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] W. Tang, G. Hua, and L. Wang, “How to train a compact binary neural
network with high accuracy?” in AAAI, 2017, pp. 2625–2631.

[23] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65–74.

[24] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2019, pp.
8612–8620.

[25] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.


