
FPGAs in the Network and Novel Communicator

Support Accelerate MPI Collectives∗

Pouya Haghi∗ Anqi Guo∗ Qingqing Xiong∗ Rushi Patel∗ Chen Yang∗ Tong Geng∗

Justin T. Broaddus† Ryan Marshall† Anthony Skjellum† Martin C. Herbordt∗

∗Dept. of Electrical and Computer Engineering, Boston University
†Simcenter & Dept. of Computer Science and Engineering, University of Tennessee at Chattanooga

Abstract—MPI collective operations can often be performance
killers in HPC applications; we seek to solve this bottleneck by
offloading them to reconfigurable hardware within the switch
itself, rather than, e.g., the NIC. We have designed a hardware
accelerator MPI-FPGA to implement six MPI collectives in the
network. Preliminary results show that MPI-FPGA achieves on
average 3.9× speedup over conventional clusters in the most
likely scenarios. Essential to this work is providing support for
sub-communicator collectives. We introduce a novel mechanism
that enables the hardware to support a large number of com-
municators of arbitrary shape, and that is scalable to very large
systems. We show how communicator support can be integrated
easily into an in-switch hardware accelerator to implement MPI
communicators and so enable full offload of MPI collectives.
While this mechanism is universally applicable, we implement
it in an FPGA cluster; FPGAs provide the ability to couple
communication and computation and so are an ideal testbed
and have a number of other architectural benefits. MPI-FPGA
is fully integrated into MPICH and so transparently usable by
MPI applications.

Index Terms—MPI, Collectives, FPGA-Centric Clusters, High
Performance Computing, In-Network Computing

I. INTRODUCTION

High performance computing (HPC) applications often rely

on collective communication for performing operations that

require interaction among multiple processes; collectives com-

prise a large fraction of total HPC communication [4], [5],

and in many applications they bottleneck performance [6]–

[8]. Simple examples of collectives are the broadcast of data

from one process to many, or the gathering of data from

many processes into one, usually combined (reduced) with

an operator such as add or max. As collectives are integral

to HPC programming, they are necessarily a key part of

the Message Passing Interface (MPI) [9]. And since virtually

all communication in production HPC is based on MPI [5],

addressing the acceleration of collectives necessarily means

dealing with them within that framework.

Collectives in MPI implementations (such as MPICH [9])

generally consist of point-to-point messages with computa-

tions in between. Thus much support has been added at the

software level [6], [10], [11]; this includes new algorithms

that can improve performance by optimizing, e.g., either for

low latency with small data sets or for high throughput when

∗ Parts of this work have been presented at workshops with no proceedings
[1], [2] and as a published extended abstract [3].

dealing with large arrays [10]. However, the addition of these

algorithms has greatly complicated the software stack [12].

In this work we offload MPI collectives into FPGA hard-

ware (MPI-FPGA); in particular, into logic appended to the

communication switches. This has at least five benefits. First,

it removes those extra layers of software; second, the hardware

implementations are generally at least an order-of-magnitude

faster than the software; third, it frees up the processor for

other work; fourth, it distributes the execution of collective

computation throughout the network, rather than forcing it into

source (for broadcast) or destination (for reduction); and fifth,

it reduces network load as messages generally only travel a

single hop before being merged or duplicated.

Previous work in offloading collective support into hardware

has been mostly limited to processing in the NIC [13]–[17].

While valuable, the NIC-only approach still leaves much

performance on the table, in particular, the fourth and fifth

benefits just described. Most obviously, the NIC is an end-

point and subject to serialized processing of packets as they

arrive, rather than being able to distribute the processing across

the network as is possible with in-switch processing.

General compute-in-the-network has been studies since the

early days of computing through structures such as adder

trees and sorting networks; it is also fundamental to the

more powerful PRAM models explored in the 1980s [18].

However, there appear to be just two recent commercial

versions of in-switch computing: the IBM BlueGene family

[7], [19] and certain switches from Mellanox [8]. Both of

these have limitations (described below) that are, in part, the

result of being ASIC-based and so having strictly bounded and

inflexible capabilities. Moreover, being commercial products,

the details available about their actual implementation are very

limited.

There are at least two plausible models for using FPGAs

for in-switch compute-in-the-network. One is to use reconfig-

urable logic in the router (already common for other purposes

[20]) in an indirect network. A second is in FPGA-centric

clusters [21]–[30] with direct FPGA-FPGA interconnects. In

this work we assume the latter model as it allows us to evaluate

working prototypes; the major results, however, are applicable

to the first model as well. FPGA implementations have several

inherent advantages: first, they are not limited to a small,

fixed set of operations; second, for any application, they only

need to implement the operations that are substantially used;



third, support can be extended beyond simple datatypes to

higher order structures such as matrices, tensors, etc.; and

fourth, compute-in-the-network can be generalized still further

to support altruistic or opportunistic computing.

An essential part of implementing MPI collectives is han-

dling the critical MPI feature of the communicator; these are

used to define a safe communication context for message

passing within a specific group of processes. They are pri-

marily used for performing collective operations over a subset

of processes in the application. Handling sub-communicator

collectives in hardware does not come without its share

of complications. Communicators have significant scalability

issues [31], meaning we cannot implement them in hardware

with the same methods used for managing communicators

in software. As we approach exascale, the added latency

and memory costs of managing communicators would soon

exceed any realistic hardware constraints. In this work we

introduce an in-switch design capable of efficiently supporting

communicators and the collectives that run on them. We

are able to achieve this with a new Communicator Table

(CT) design, which provides general communicator support

while consuming minimal memory resources. Moreover, as

the resources are guaranteed to grow no faster than the log of

the number of nodes, this solution is likely to remain relevant

far beyond exascale.

The main contribution is the design, implementation, and

evaluation of a set FPGA in-switch MPI collectives. We

believe this to be the first FPGA version to be fully integrated

into a general router. Also, MPI-FPGA is fully integrated into

MPICH with publicly available code and API; MPI-FPGA is

therefore currently transparently usable by any MPI applica-

tion. It is also easily extended to support additional collectives

or integrated into other MPI implementations. The second

contribution is the finding that all collective routing decisions–

including those with arbitrarily complex communicators–can

be made using only a small amount local information.

Our experiments show that MPI-FPGA can achieve an

improvement of about 10x for MPI collectives over a CPU

cluster for medium sized messages, with greater speedup for

smaller messages and less for larger messages. These collec-

tives can be run over sub-communicators without sacrificing

performance. In addition, there is little added cost over the

general router itself and the enhanced router only takes a small

fraction of the total device resources on current FPGAs.

II. CONCEPTS

We examine the MPI software stack to identify opportunities

for, and the benefits of, offloading collectives. We then cover

MPI communicators and the difficulties they create for a

hardware implementation. We explain how placing communi-

cator support in the network would normally exceed hardware

constraints, thus motivating a novel in-switch design.

A. MPI Software Stack

MPI collectives force processes into executing long se-

quences of point-to-point messaging and computation. This

0

1 2

3

4

5 6

7

0 1 2 3 5 6 74

0 1 2 3 5 6 74

(a) Binomial Tree

(b) Recursive Doubling

(c) Recursive Halving

Fig. 1: Algorithms used by MPICH Collectives

is because the new collective algorithms being developed and

implemented in MPI are designed to reduce the number of

packets that have to traverse the network and avoid congestion.

This translates to more work in software for figuring out which

chunks of data to send and receive, and which processes with

which to communicate. For example, a trivial implementation

of MPI Reduce has every process send data directly to the

root, leading to serious congestion in a large network. With a

binomial tree algorithm, as seen in Figure 1(a), each process is

either a leaf, an intermediate node, or the root. Leaf processes

simply send data to their parent, but intermediate nodes must

compute who all of their children are, receive the data from

them, and perform the reduction operation on the received

data. They then compute who their parent is in order to

then send their intermediate result. The algorithm lessens the

number of packets in the network and unclogs the root, but it

forces additional work in software.

a) MPI-FPGA Software Support: MPI-FPGA aims to

remove all of this software from the responsibility of the

CPU and pass the functionality onto the FPGA switch. MPI-

FPGA is transparent making it completely portable: it can be

integrated into HPC applications without requiring the pro-

grammer to have any knowledge of the underlying hardware

or making any changes to existing programs. Instead, con-

structs automatically access MPI-FPGA capabilities through

enhanced middleware. The design also makes no assumptions

about the types of end-systems being used, as it is only

affects data as it is routed through the FPGAs in the network.

We create new functions for each collective that we offload

(e.g., MPI-FPGA Reduce), and we place these underneath

existing MPI collective functions. If the hardware supports

the offload of a particular collective, then the MPI-FPGA

replacement functions are used. If a collective does not have

offload support, then it is performed as usual by the software.

Upon receiving the function message, the FPGA begins

the collective operation and perform all of the necessary

steps to complete it. If an MPI process is not required to

receive the final data, such as the root process in a broadcast

operation, then it can return to the application and continue

doing work. If the calling process does need to receive

results, such as any process in an AllGather operation, then

the process can still continue doing other work, but will be

interrupted when the final collective operation results have



MPICH + MPI_FPGA

MPI Application

MPI Collectives MPI_FPGA

Collectives

ADI

Channel Interface

FPGA Driver

MPI Pt2Pt

FPGA Switch

Fig. 2: MPI-FPGA Software Stack

been received and passed up to the CPU from the network.

In the MPICH implementation of MPI middleware [9], all of

the functionality of the ADI is maintained. We are currently

using MPICH-3.2 [32]; tasks such as packing and computing

predefined reduction operations are performed identically in

our design. At the channel interface of MPICH we add in the

FPGA communication code that transfers data into the FPGA

network, with the actual FPGA hardware sitting below the

channel interface (see Figure 2).

b) Hardware Model: The collective execution logic is

placed adjacent to the routing logic so that it can perform

computations on data as it passes through the network. As

shown in Figure 3, the accelerator logic is broken up into two

components: the Collective Control Module (CCM) and the

Reduction Unit (RU) (details in Section IV). By placing the

accelerator around the switch rather than integrating it into the

switch, we keep the two separate and allow the accelerator

to be portable to any type of network switch. When the

CCM receives packets, it operates on the packets if necessary.

Otherwise, it simply passes the packet into the switch without

modification. The RU on the other side of the switch, again,

only operates on packets if they are a part of a reduction

operation. Although we have implemented the design on an

FPGA, its portability ensures that it is also independent of the

type of hardware used.

B. Communicators

Communicator support is absolutely essential in performing

collectives in the network, yet little work on collective offload

into the network addresses it. It is generally assumed that

the only communicator is MPI COMM WORLD, meaning

the number of ranks involved in any collective operation

is the same throughout a program. However many MPI

programs use multiple communicators: they are a central

MPI capability and must be supported in creating a useful

system. A common example of using sub-communicators is

when partitioning workload among an array of MPI processes

and performing collectives on an entire row or column of

processes. The most common way to do so is to call a

function like MPI Comm Split, one of the many for creating

communicators, to divide the global communicator into sub-

communicators. Another common reason for having multiple

S
w

it
c

h

C
o

ll
e

c
ti

v
e

C
o

n
tr

o
l 

L
o

g
ic

R
e

d
u

c
ti

o
n

 U
n

it

User LogicFPGA

In
p

u
t

O
u

tp
u

t

Fig. 3: MPI-FPGA Hardware Model

communicators is to divide MPI processes into masters and

slaves and then performing collectives on these separately.

All communicators have a context id, identifying the com-

municator, and a process group containing the list of processes

in that communicator. When a new communicator is created,

a new process group is created and stored in memory. In

large systems, with correspondingly large communicators,

the memory consumption of these process groups leads to

scaling issues [31]. To have an entire process group in FPGA

memory would require storing the list of all ranks included

in the communicator. The number of bits required would be

the product of COMM SIZE and BITS PER RANK, meaning

that the resource utilization would grow linearly with the

communicator size. For a system with millions of nodes, it

would require millions of bits in FPGA for each of many

communicators in a single application. Since high performance

depends on having routing information on the device, repli-

cating information about these entire process groups would

quickly use up memory resources, even for mid-sized clusters.

C. Related Work

Previous work has shown that significant performance

speedups can be achieved by offloading collectives onto hard-

ware. These generally assume that the hardware is located in

the NIC [13]–[16], tightly connected with the host CPU via

interconnects such as PCI, whereas we add hardware support

in the switch. For instance, Arap, et al. [13] offload collectives

onto an FPGA cluster; however, they do not mention any

communicator support, nor do they integrate into a switch.

Their reduction unit also differs from ours as theirs waits until

all reduction data is received before performing the reduction,

whereas ours can begin reductions as soon as data is received.

Schmidt, et al. [14] implement MPI Reduce in an FPGA

cluster for the AIREN network. Their reduction core consists

of floating point units and the output can be looped back as the

inputs for further accumulations. This architecture is simple,

but lacks flexibility in its reduction capabilities; it can only

support one reduction at a time, while our design can support

multiple reductions occurring simultaneously.

There are several other hardware offload designs imple-

mented on FPGAs; they also lack communicator support, and

their collective hardware, e.g., the reduce unit, can only handle

one operation at a time [15], [33]. In [34], [35] collectives on

FPGA clusters is studied, but the emphasis is on scheduling



algorithms. Other work accelerating MPI with FPGAs includes

[36], [37].

A general solution was provided by Voltaire [38] which

included processing support in the router for collectives; this

work differs from ours in that the offload is to an in-router

CPU rather than a hardware augmentation of the switch.

The IBM BlueGene systems [39] offload collectives into

the network router and also, to some degree, handle commu-

nicators. For instance, BlueGene/Q [40] provides a summing

unit for accelerating collective operations which is available

for subcommunicators. BlueGene/Q, however, requires class

routes for collective operations and there are only 13 class

routes available: a node can only be in 13 communicators

before hardware acceleration for collectives becomes unavail-

able. More importantly, it does not support packet process-

ing in the network where the accelerator must maintain its

own memory [39]. Overall, the BlueGene solutions show the

difficulties in implementing in-switch collective support in

fixed logic. While high wire utilization is achieved, there

are still many limitations. Collectives are supported in a

separate network. The number of communicators is bounded

and restricted to either the whole network or a rectangular

subset. The collectives and the operations on those collectives

are a fixed subset and not extensible.

Recent work by Mellanox [8] appears to address many of

these problems, but also has similar limitations, in particular,

supporting only a small number of simple operations with

no extensibility; also there are no published (or generally

available) design details. We compare with published results

in the evaluation section.

In contrast to previous work, we are the first to offload both

communicator tables and the processing of an entire collective

operation in hardware while supporting irregular communica-

tors and providing hardware acceleration of collective packet

processing. Compared with the NIC offload solutions, the in-

switch solution is able to make the shortest collective routes

with the ability to process and distribute packets across the

network. Compared with ASIC solutions, the reconfigurable

logic allows arbitrary functions and datatypes to be supported.

Also, at any time, only those operators/functions that are

needed for a particular application need to be instantiated.

III. COMMUNICATOR PROCESSING

A. Communicator Table (CT)

The purpose of the CT is to manage communicator infor-

mation that is needed for the CCM to make packet forwarding

decisions. To minimize the resources required, the table only

holds the local data that is necessary to complete the imple-

mented collectives. This means that each switch needs a way

of obtaining this local data, which is a list of the other ranks

with which it must communicate to perform each collective.

The contents of this list, for a given communicator, can be

determined immediately after its initialization.

Table I shows the different algorithms that are used in

the MPICH-3.2 implementations of six popular collectives.

The three most used algorithms are binomial tree, recursive

TABLE I: MPICH-3.2 Collective Algorithms

MPI Collective Algorithms

Reduce Binomial Tree Recursive Halving and Doubling

Allreduce Recursive Doubling Recursive Halving and Doubling

Broadcast Binomial Tree Binomial Tree and Ring

Scatter Binomial Tree Binomial Tree

Gather Binomial Tree Binomial Tree

Allgather Recursive Doubling Ring

halving, and recursive doubling. The ring algorithm is also

sometimes used, but its implementation is trivial so we focus

on the others for now. By being able to implement these

three algorithms, we can perform all of the collectives that

use them. Looking back at Figure 1, for each rank we can

identify the subset with which a given rank must communicate.

For example, rank 0 must communicate with the following set

in all three algorithms: 1, 2, 4. For rank 5, although it only

communicates with rank 4 in the binomial tree algorithm, its

communicating set for all algorithms is 4, 7, 1.

Storing this subset in FPGA memory is much more efficient

than storing an entire process group: it is equal to the log of

the communicator size (which can be proved directly from the

properties of binomial trees).

Once the FPGA obtains this subset of ranks for a com-

municator, it stores the addresses in a table along with the

subsets from other communicators. As shown in Table II, the

CT holds a row for each communicator that the current FPGA

is a member of. In each row, we store a small amount of

meta-information, such as the communicator size and the rank

within the communicator that the current FPGA is associated

with, followed by the subset of processes that the FPGA will

be communicating with. Each communicator entry is indexed

into the table using its context id. For an incoming packet it is

thus easy to look up the communicator it is from: the context

id is a field in the packet header.

Once the FPGA has a table entry for a given communicator,

it can use that data to perform any collective that uses a

binomial tree, recursive halving, or recursive doubling. For

any collective algorithm in a communicator, each rank will

communicate with the same subset of ranks regardless of how

many times the collective is called. Once a valid entry is loaded

into the table, no updates on that entry are ever required until

the communicator is freed.

TABLE II: Communicator Table Structure

Valid
Context

ID
Comm

Size
Local
Bank

1st
Addr

2nd
Addr

3rd
Addr

1 0 8 0 1 2 4

1 1 4 0 1 2 N/A

B. Communicator Table (CT) Entry Creation

When a new communicator is created in software, the FPGA

needs a way of obtaining the CT entry from the host CPU. If

an MPI process is a member of a newly created communicator,

then the software generates a special message containing the

CT entry data and sends it to the FPGA. This requires that, for

each communicator creation function, the CPU calculates and

retrieves from memory the physical addresses of the subset of



Input FIFOX+

Input FIFOY+

Input FIFOZ+

Input FIFOX-

Input FIFOY-

Input FIFOZ-

Route Comp

Route Comp

User Logic

VC
VC
VC
VC
VC
VC

VC
VC
VC
VC
VC
VC

S
w

it
c
h

Async FIFO X+

Async FIFO Y+

Async FIFO Z+

Async FIFO X-

Async FIFO Y-

Async FIFO Z-

…
…

…

inject

…

eject

VC Allocator
Free VC 

Avail

CCM

CCM

RU

RU

Fig. 4: Router with MPI collective support: Collective Control

Module (CCM) and Reduction Unit (RU)

ranks that will be stored in the table entry. Once the new entry

is filled in, the FPGA can handle new collectives occurring

within this communicator.

In order for the CPU to obtain the necessary addresses, we

have written a hook function and inserted it at the end of

MPICH communicator creation functions. This hook function

checks whether an MPI process is a member of a new

communicator and, if so, calculates the subset of ranks for

it to communicate with. Then, for each rank in the subset, it

obtains the rank’s connection string from the key-value space

in memory which is used to hold virtual connections. From

this connection string, the physical address is extracted and

packaged alongside communicator meta-data into a message

to be sent to the FPGA. Although this operation does lead to

a small amount of overhead in creating communicators, this

overhead is only paid for once during communicator creation.

IV. IMPLEMENTATION

A. Overview

The base of the design is a virtual-channel dynamic router

(see Figure 4) designed to be used in an FPGA cluster

interconnected in a 3D torus. It has 6 input and 6 output

ports each connected to Multi-Gigabit Transceivers (MGTs);

these allow FPGAs to be directly connected to each other.

The base router has a classic 4 stage pipeline [41]: route

computation, virtual channel allocation, switch allocation, and

switch traversal. With the added MPI support the pipeline is

extended to six stages.

The MPI offload support was designed to keep the overall

design modular: the accelerator architecture is portable to any

other standard router. It is divided into 2 modules, the Col-

lective Control Module (CCM) and the Reduction Unit (RU).

The former is responsible for calculating new forwarding and

multicast destinations for collective packets; it contains the

communicator support. The module is placed before the router

so that the packets’ output ports can be calculated in the

route computation stage after it is assigned a new destination.

The RU sits on the output end of the router and is used for

performing MPI Reduce and MPI Allreduce computations. It

maintains a reduction table of buffers that store temporary

reduction results. Once all of the necessary packets for a

reduction are received, the resulting packet is released to its

output port. This unit is placed after the switch due to the fact

Upward
Binomial Tree

Downward
Binomial Tree

Recursive
Doubling

Recursive
Halving

Communicator
Table

P
a
rs

e
r

Input

Pkt

Output 

Pkt

Fig. 5: Collective Control Module

that all packets going into any particular reduction unit will

exit using the same output port. This frees the reduction unit

from having to manage the output ports of each packet.

B. Collective Control Module (CCM)

The CCM (Figure 5) is responsible for perform-

ing all of the algorithmic work found in the software

of MPI Reduce, MPI Allreduce, MPI Bcast, MPI Scatter,

MPI Gather, MPI Allgather, as well as any other collectives

implemented in the future. When packets enter the router, they

first go through the CCM. If they are not part of collective

operation, or are not destined for the current FPGA, then they

simply pass through unchanged. If they are part of an offloaded

collective, and the destination address in the packet header

matches that of the current FPGA, then the CCM uses the CT

to determine new destinations for the packet.

In order for the CCM to determine which collective a packet

is a part of, a collective opcode field has been added to the

packet header. With this, MPI-FPGA can perform work for

each collective algorithm in parallel and then use the opcode

to decide which algorithmic results to use for the packet (see

Figure 5. Within each of these algorithm blocks, MPI-FPGA

performs computations using input from the packet header and

CT entry. For a reduction, the router calculates the parent node

to send the packet to, or, for a broadcast, all of the child nodes

to multicast the packet to.

The communicator table also eases the computation required

to calculate these destinations. When a packet needs to be sent

to multiple destinations, these destinations are also adjacent in

the table entry. A bit vector is used for keeping track of these

destinations for multicast, which results in much less work

than if destinations were repeatedly calculated on-the-fly.

As in MPICH-3.2, the implementation also supports mul-

tiple algorithms for the same collective operations. The al-

gorithm used is often determined by packet size, e.g., short

versus long. In MPI-FPGA we support algorithm selection by

adding a bit to the packet header opcode field.

C. Reduction Unit (RU)

The RU performs the reduction computations

for MPI Reduce and MPI Allreduce. Once packets pass

the switch traversal stage of the router pipeline, if they are

identified as part of one of these collectives by their opcode

field, then they are transferred to the RU. RU has a reduction



Floating-Point

Add

Floating-Point

Multiply

Floating-Point

Min/Max

R
e

d
u

c
ti
o

n
T
a

b
le Reduction

Control

P
a

c
k
e

t 
A

s
s
e

m
b

le
r Switch

FIFO

Ctrl

In
p

u
t 
F

IF
O

Fig. 6: Reduction Computation Unit Data-Flow

table which is indexed and capable of supporting multiple

reductions simultaneously.

When a reduction packet enters the RU, the unit’s control

logic examines the packet header and places the data in

the appropriate table slot. If the reduction table slot for an

incoming packet is empty, then the packet is simply copied into

the reduction table slot. If the table slot is not empty, it means

that the reduction has already begun. In this case, the data

payload of the incoming packet and the data already contained

in the reduction table are combined, with the result later being

fed back into the reduction table entry (see Figure 6).

The arithmetic unit is constructed from using standard meth-

ods including use of vendor IP. The default design supports

addition, multiplication, max, and min, but is trivially extend-

able for other operations including user specified functions.

All functions are run in parallel.

Each reduction table entry slot also keeps track of the

number of child nodes for any given reduction. Whenever an

incoming packet enters the unit, the reduction table slot records

how many child nodes are required for that particular reduction

and keeps track of the number of child nodes remaining as

the reduction continues. When a reduction table entry has

received packets from all child nodes, and the reduction has

been completed, a new packet is built and sent back to the

router. The router is then notified that a reduction has been

completed and gives the result to the proper output port.

By designing the reduction table to have multiple entry slots,

MPI-FPGA can support multiple reductions executing simul-

taneously. If the reduction is large and needs to be subdivided,

each occupies a different slot of the reduction table. This unit

can also support separate unrelated reductions and is flexible

enough to allow any order of reductions occurring throughout

the reduction table. To handle the case of the reduction table

filling up due to a reduction of a large enough array, a local

control unit keeps track of the capacity of the reduction table

and buffers incoming reduction packets until the reduction

table has open slots.

V. EVALUATION

We have implemented, tested, and verified MPI-FPGA

on a four FPGA system. Each Gidel ProcV FPGA board

hosts an Intel/Altera Stratix V 5GSMD8 chip with 12 MGT

ports exposed to users. The FPGAs are configured to run at

150MHz. The inter-FPGAs link is realized with Multi-Gigabit

Transceivers (MGTs) with a bandwidth of 40Gbps and latency

of 200ns. To give an idea of how MPI-FPGA scales with

current technology we have also implemented it for an Intel

Stratix 10 1SG280LU2F50E2VG FPGA; results there are post

place-and-route.

A. Resource Utilization

TABLE III: Resource usage on Stratix V & Stratix 10 FPGAs

Design Device ALM BRAM DSP

Baseline Stratix V 38K(15%) 234(9%) 0(0%)

Baseline Stratix 10 18K(2%) 234(2%) 0(0%)

Collective Stratix V 42K(16%) 267(11%) 12(1%)

Collective Stratix 10 20K(2%) 267(2%) 10(1%)

FPGA resource consumption is shown in Table III. The

resource consumption of the CT can vary based on a user

defined parameter, COMMUNICATOR COUNT, that specifies

how many communicators a single MPI process can be a part

of. Here it is set to 30. MPICH-3.2 has 12 predefined reduction

operations; here we implement all of them. Depending on

application requirements, the user can remove the support

for unused operations or add user-defined operations; these

actions of course decrease or increase resource utilization,

respectively.

The first two rows give the resource usage for the baseline

router design for Stratix V and Stratix 10 implementations.

The virtual channel number per link is set to 6 (bidirectional).

The next two rows give the resource usage for the MPI-

FPGA router. Compared with the baseline design, the added

MPI collective support increases the overall resource usage by

10% for ALMs and 14% for BRAMs. Overall resource usage

for the Stratix V is less than 20% and for the Stratix 10 is

around 2%. Especially in the latter case, this leaves abundant

on-chip resources for applications. For implementation of all

predefined reduction operations, the design consumes 12 DSP

blocks on the Stratix V and 10 on the Stratix 10.

Since the design is parameterized, the user can change the

communicator count based on resource budget and commu-

nication requirements. Let NUM COMM be the maximum

amount of communicators a process can be in, WORLD SIZE

be the number of ranks in MPI COMM WORLD, and

ADDR LEN be the number of bits is a process’s phys-

ical address. As shown above, a CT entry has at most

lg(WORLD SIZE) other ranks that it might need to com-

municate with, so the maximum number of bits used by the

CT, not included small amount of meta-data, is

bits =NUM COMM ∗ lg(WORLD SIZE)

∗ADDR LEN
(1)

B. MPI Collectives Performance

We evaluated MPI-FPGA for Reduce, Allreduce, Broad-

cast, Scatter, Gather, and Allgather using the OSU Micro-

benchmarks [42], a well-known set of MPI benchmarks. For

all collectives, double precision floating point was used. To

generate the FPGA cluster results, we first ran MPI-FPGA

on a testbed equipped with 4 FPGAs. Larger systems were

simulated using ModelSim and calibrated with measured pa-

rameters. For the CPU reference, benchmarks were run on



the Stampede2 [43] Skylake (SKX) compute cluster, accessed

through XSEDE, with 48-cores per node (2 sockets) 2.1 GHz

Intel Xeon Platinum 8160 CPUs, and a 100 Gb/sec Intel Omni-

Path (OPA) network (fat tree topology).

For the CPU cluster, we restricted the mapping to one

process per node. To observe the behavioral differences among

a variety of process-node mappings, we ran a large number

of experiments on different numbers of nodes (< 128) and

different numbers of processes per node (< 48). Based on

our observations, we found that the number of processes per

node made little difference in scaling. The maximum of 128

processes in the results is due to limitations imposed by the

execution environment with the FPGA-related experiments.

a) Overall Collective Latency: fig. 7 shows the simula-

tion results of MPI and MPI-FPGA collectives for small to

medium array sizes on the 32-, 64-, and 128-rank systems

using the OSU benchmarks. Execution time is the time that it

took for the last process to complete the operation. It should

be noted that host-FPGA communication latency is included in

execution time. The message sizes (number of elements being

reduced) were varied from 1 - 128 elements (8 - 1024 bytes).

With counts higher than 128, reductions are usually split in

software [19].

One of the advantages of MPI-FPGA is that utilization of

the application layers in the network stack (such as MPI) can

be bypassed for the root node and intermediate nodes because

communicator support is offloaded, while reduction operations

(if any) can be performed by a network switch. Although

having a low-latency network topology (such as a fat tree)

for our experimental CPU cluster (as opposed to 3D torus

for the FPGA cluster) can offset the aforementioned benefits,

we can see that MPI-FPGA has a higher overall performance,

especially for small messages. Moreover, as it is evident from

fig. 7, MPI-FPGA speedup relative to CPU cluster is higher

for MPI Allgather and MPI Allreduce, since a greater number

of intermediate nodes are involved in these MPI collectives.

MPI-FPGA achieves a higher performance for small mes-

sage sizes than the CPU benchmarks. This advantage dimin-

ishes somewhat for reductions as the number of combined

elements increases because for large messages, reductions

turn from communication into computation problems. The

computation unit in MPI-FPGA is much smaller than that

in a CPU core, and the clock rate is generally much lower.

The obvious and simple solution is to add more parallelism

to MPI-FPGA, which translates to more resource usage; this

is likely to be worthwhile for many applications and we are

currently exploring this option. When looking at problem

size, of particular interest is that the MPI-FPGA speedup is

maintained as the number of processes grows, thus indicating

the expected benefit for larger systems of MPI-FPGA through

reducing network traffic.

To view the results in a different perspective, Table IV

shows the speedups for each of these collectives for a message

size of 128 bytes. Overall, MPI-FPGA achieves on average

3.9× speedups for different collectives.

TABLE IV: MPI-FPGA speedups over OSU Benchmarks

running on 32, 64, and 128 nodes of Stampede2

32 ranks 64 ranks 128 ranks

Reduce 1.51 1.28 1.53

Allreduce 4.26 5.85 10.1

Bcast 4.62 6.69 5.44

Scatter 0.76 5.58 5.31

Gather 1.66 1.43 1.43

Allgather 3.83 4.14 4.34

b) Average Case Results: We also collected the average

case results, or the average amount of time that it took for any

process in a collective to finish. We found that for Allreduce

and Allgather, the worst-case results and average-case results

were nearly identical. In these types of operations, every

process must wait for data from every other process, so no

process can complete the collective until all processes have at

least started it. For the other collectives, however, the speedup

is much larger for the average case. This is because if an

MPI-FPGA rank does not require the results of a collective,

then it simply sends a special message to the FPGA and

returns to the application. For example, in a Gather where

only the root process deals with the results, every other process

completes its work for the collective by just sending their

data to the FPGA. These processes could then continue doing

computational work for the application.

The average case results should not be represented as the

actual speedup of a collective, but are nevertheless significant.

It is common in MPI applications for one process be a master

that sends work to the other slave processes. When a slave

process completes its work, it notifies the master, which will

then assign more work items to the slave.

c) Discussion: We have presented initial results that

indicate performance benefit of compute-in-the-network using

FPGAs at modest resource cost. Especially promising is that

the harder the problem (larger, more messages), the greater

the benefit. Note performance is only one potential benefit.

We have just hinted at another, that nodes that finish early can

begin other computations. Other benefits remain for further

study, including the secondary effects of the reduced commu-

nication load, e.g., on other applications using the cluster.

Of great interest is the comparison of MPI-FPGA with the

commercial ASIC-based version of compute-in-the-network

from Mellanox. Unfortunately gaining access to SHARP-

based systems is extremely challenging. As a proxy we have

superimposed FPGA results onto SHARP results from [8].

SHARP performance improvement ranges from 17% for 32

ranks to 32% for 128 ranks. Since SHARP has a fanout of 36

versus 6 for the current MPI-FPGA fixture, and bandwidth

of 100Gps versus 40Gps, we consider these results highly

promising. This is even before considering FPGA advantages

of cost and flexibility, and planned enhancements to MPI-

FPGA described above.

VI. CONCLUSION

We present a new method for supporting MPI communi-

cators and accelerating collectives in the network switch. We



0 200 400 600 800 1000
Message Size (bytes)

(a)

0

10

20

30

40

50

60

70

80
La

te
nc

y 
(u

S)
osu_allgather

0 200 400 600 800 1000
Message Size (bytes)

(b)

0

10

20

30

40

50

60

70

La
te

nc
y 

(u
S)

osu_allreduce

0 200 400 600 800 1000
Message Size (bytes)

(c)

5

10

15

20

25

La
te

nc
y 

(u
S)

osu_bcast

0 200 400 600 800 1000
Message Size (bytes)

(d)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

La
te

nc
y 

(u
S)

osu_gather

0 200 400 600 800 1000
Message Size (bytes)

(e)

2

3

4

5

6

7

8

La
te

nc
y 

(u
S)

osu_reduce

0 200 400 600 800 1000
Message Size (bytes)

(f)

0

10

20

30

40

50

La
te

nc
y 

(u
S)

osu_scatter

SKX_128 FPGA_128 SKX_64 FPGA_64 SKX_32 FPGA_32

Fig. 7: MPI CPU cluster (SKX) vs MPI-FPGA execution time for 32, 64, and 128 nodes: (a) osu allgather, (b) osu allreduce,

(c) osu bcast, (d) osu gather, (e) osu reduce, and (f) osu scatter.

<.fl 
::, 

4.25 

4.00 

3.75 

>, 
� 3.50
QJ ..,"'-'

3.25 

3.00 

2.75 

osu allreduce: FPGA vs SHArP 
' 

-e- FPGA_128 � 
·- -tr- SHArP_128 ---

-e- FPGA_64 � 

·- -tr- SHArP _64 ------
-e- FPGA_32 � ----1---cJ -
-tr- SHArP_32 ----·- if __,,,,_-

L---" = -
er 

� . 

� -----
� 

- c-----u 

� -
20 40 60 80 100 120 

Message Size (bytes) 

Fig. 8: Allreduce performance comparison of MPI-FPGA

versus SHARP (from [8]).

begin by considering the movement towards exascale comput-

ing and the need for offloading collectives and communicator

support into hardware, in particular, for collectives occurring

over irregular communicators. We find that a storing entire

process groups in the network is not a scalable solution. We

then introduce the Communicator Table (CT), which takes

advantage of the properties and patterns of collective com-

munication in order to provide the accelerator hardware with

the minimum amount of communicator information needed

to perform collectives. By supporting a full offload of six

popular collectives, we remove all of the collective operation

software from MPI and implement the functionality in the

switch. Our hardware support has been integrated into a

reconfigurable wormhole router, but remains portable enough

that it is independent of the type of router and and system

infrastructure. We evaluate MPI-FPGA with respect to a

CPU cluster and find that the in-switch accelerator achieves

significant and scalable speedups. Much higher performance

is easily attainable through the addition of ALUs, increased

fanout, and higher bandwidth connections.

ACKNOWLEDGEMENTS

Support is acknowledged from the National Science Foun-

dation under Grants Nos. CCF-1562659, CCF-1562306, CCF-

1618303, CCF-1617690, CCF-1822191, CCF-1821431, CCF-

1919130, and CNS-1925504; from the NIH through Award

R44GM128533; from grants from Microsoft and Red Hat; and

from Xilinx and by Intel through donated FPGAs, tools, and

IP. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] J. Stern, Q. Xiong, J. Sheng, A. Skjellum, and M. Herbordt, “Accelerat-
ing MPI Reduce with FPGAs in the Network,” in Workshop on Exascale

MPI, 2017.



[2] J. Stern, Q. Xiong, A. Skjellum, and M. Herbordt, “A Novel Approach
to Supporting Communicators for In-Switch Processing of MPI Collec-
tives,” in Workshop on Exascale MPI, 2018.

[3] Q. Xiong, C. Yang, P. Haghi, A. Skjellum, and M. Herbordt, “Ac-
celerating MPI Collectives with FPGAs in the Network and Novel
Communicator Support,” in IEEE Symposium on Field Programmable

Custom Computing Machines, 2020.

[4] B. Klenk and H. Froening, “An Overview of MPI Characteristics of Ex-
ascale Proxy Applications,” International Supercomputing Conference,
vol. 10266, pp. 217–236, 2017.

[5] D. Bernholdt, S. Boehm, G. Bosilca, M. Venkata, R. Grant, T. Naughton,
H. Pritchard, M. Schulz, and G. Vallee, “A Survey of MPI Usage in
the US Exascale Computing Project,” Concurrency and Computation:

Practice and Experience, vol. Special Issue, pp. 1 – 16, 2018.

[6] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and
J. J. Dongarra, “Performance analysis of MPI collective operations,” in
19th IEEE International Parallel and Distributed Processing Sympo-

sium, 2005.

[7] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels, “MPI col-
lective communications on the blue gene/P supercomputer: Algorithms
and optimizations,” Proceedings - Symposium on the High Performance

Interconnects, Hot Interconnects, pp. 63–72, 2009.

[8] R.L. Graham, et al., “Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data Reduction,” in
First International Workshop on Communication Optimizations in HPC

(COMHPC), 2016.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, pp. 789 – 828, 1996, doi: 10.1016/0167-
8191(96)00024-5.

[10] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” The International Journal of

High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[11] E. W. Chan, M. F. Heimlich, A. Purkayastha, and R. A. van de Geijn,
“On optimizing collective communication,” in 2004 IEEE International

Conference on Cluster Computing, Sep. 2004, pp. 145–155.

[12] K. Rafenetti, L. Oden, C. Archer, W. Bland, M. Blocksome, M. Si,
P. Cofman, J. Jose, A. Sannikov, M. Chuvelev, P. Fischer, M. Otten, and
M. Min, “Why Is MPI So Slow ? Analyzing the Fundamental Limits in
Implementing MPI-3 . 1,” Sc, 2017.

[13] O. Arap and M. Swany, “Offloading Collective Operations to Pro-
grammable Logic on a Zynq Cluster,” in IEEE 24th Annual Symposium

on High-Performance Interconnects (HOTI), 2016, pp. 76–83.

[14] A. G. Schmidt, W. V. Kritikos, S. Gao, and R. Sass, “An evaluation of an
integrated on-chip/off-chip network for high-performance reconfigurable
computing,” International Journal of Reconfigurable Computing, vol.
2012, p. 5, 2012.

[15] Y. Peng, M. Saldana, and P. Chow, “Hardware support for broadcast and
reduce in MPSOC,” in International Conference on Field Programmable

Logic and Applications, 2011, pp. 144–150.

[16] Mellanox, “Fabric Collective Accelerator (FCA),” https:
//www.mellanox.com/, 2019.

[17] Q. Xiong, C. Yang, R. Patel, T. Geng, A. Skjellum, and M. Herbordt,
“GhostSZ: A Transparent SZ Lossy Compression Framework with
FPGAs,” in 2019 IEEE 27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2019, pp. 258–
266, doi: 10.1109/ FCCM.2019.00042.

[18] D. Eppstein and Z. Galil, “Parallel algorithmic techniques for combi-
natorial computing,” Annual Review of Computer Science, vol. 3, pp.
233–283, 1988.

[19] G. Almàsi, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E.
Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of MPI
collective communication on BlueGene/L systems,” in 19th International

Conference on Supercomputing, 2005, pp. 253–262.

[20] Arista Networks, Inc., 2013, http://www.aristanetworks.com/
en/products/7100series/7124fx/, accessed 10/2013.

[21] R. Sass, et al., “Reconfigurable computing cluster (RCC) project:
Investigating the feasibility of FPGA-based petascale computing,” in
IEEE Symposium on Field Programmable Custom Computing Machines,
2007, pp. 127–138.

[22] S. Moore, P. Fox, A. Markettos, and A. Majumdar, “Bluehive–A
Field Programmable Custom Computing Machine for Extreme-Scale

Real-Time Neural Network Simulation,” in Proceedings of the IEEE

Symposium on Field Programmable Custom Computing Machines, 2012.

[23] A. Putnam, et al., “A Reconfigurable Fabric for Accelerating Large-
Scale Datacenter Services,” in International Symposium on Computer

Architecture, 2014, pp. 13–24, doi: 10.1109/ISCA.2014.6853195.

[24] J. Sheng, C. Yang, and M. Herbordt, “Towards Low-Latency Commu-
nication on FPGA Clusters with 3D FFT Case Study,” in International

Symposium on Highly Efficient Accelerators and Reconfigurable Tech-

nologies, 2015.

[25] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and
C. Yang, “Novo-G#: A Community Resource for Exploring Large-
Scale Reconfigurable Computing Through Direct and Programmable
Interconnects,” in 2016 IEEE High Performance Extreme Computing

Conference (HPEC), Waltham, MA, 2016, pp. 1–7, doi: 10.1109/
HPEC.2016.7761639.

[26] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in 49th IEEE/ACM

Int. Symp. Microarchitecture, 2016, pp. 1–13.

[27] J. Sheng, C. Yang, A. Caulfield, M. Papamichael, and M. Herbordt,
“HPC on FPGA Clouds: 3D FFTs and Implications for Molecular
Dynamics,” in 27th International Conference on Field Programmable

Logic and Applications, 2017, doi: 10.23919/ FPL.2017.8056853.

[28] J. Sheng, C. Yang, and M. Herbordt, “High Performance Dynamic
Communication on Reconfigurable Clusters,” in 28th International Con-

ference on Field Programmable Logic and Applications, 2018, doi:
10.1109/ FPL.2018.00044.

[29] C. Plessl, “Bringing FPGAs to HPC Production Systems and
Codes,” in H2RC’18 workshop at Supercomputing (SC’18), 2018, doi:
10.13140/RG.2.2.34327.42407.

[30] T. Miyajima, T. Ueno, A. Koshiba, J. Huthmann, K. Sano, and M. Sato,
“High-Performance Custom Computing with FPGA Cluster as an Off-
loading Engine,” in ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, 2018.

[31] H. Kamal, S. M. Mirtaheri, and A. Wagner, “Scalability of communica-
tors and groups in MPI,” in Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing. ACM, 2010,
pp. 264–275.

[32] W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur, and B. Toonen,
“MPICH Abstract Device Interface Version 3.3 Reference Manual,”
Draft MCS-TM-00, Argonne National Laboratory, 2002. http://www-
unix. mcs. anl. gov/mpi/mpich/adi3, Tech. Rep., 2003.

[33] M. Saldaña, A. Patel, C. Madill, D. Nunes, D. Wang, P. Chow,
R. Wittig, H. Styles, and A. Putnam, “MPI as a programming model
for high-performance reconfigurable computers,” ACM Transactions on

Reconfigurable Technology and Systems (TRETS), vol. 3, no. 4, p. 22,
2010.

[34] J. Sheng, C. Yang, and M. Herbordt, “Application-Aware Collective
Communication on FPGA Clusters,” in IEEE 24th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2016, doi: 10.1109/ FCCM.2016.55.

[35] J. Sheng, Q. Xiong, C. Yang, and M. Herbordt, “Collective Commu-
nication on FPGA Clusters with Static Scheduling,” ACM SIGARCH

Computer Architecture News, vol. 44, no. 4, 2016, doi: 10.1145/
3039902.3039904.

[36] Q. Xiong, A. Skjellum, and M. Herbordt, “Accelerating MPI Message
Matching Through FPGA Offload,” in 2018 28th International Confer-

ence on Field Programmable Logic and Applications (FPL), pp. 191–
1914, doi: 10.1109/ FPL.2018.00039.

[37] Q. Xiong, P. Bangalore, A. Skjellum, and M. Herbordt, “MPI Derived
Datatypes: Performance and Portability Issues,” in 25th European MPI

Users’ Group Meeting, 2018, doi: 10.1145/ 3236367.3236378.

[38] A. Wachtel, Boosting Scalability of InfiniBand-based HPC Clusters,
2010.

[39] S. Kumar, A. Mamidala, P. Heidelberger, D. Chen, and D. Faraj,
“Optimization of MPI collective operations on the IBM Blue Gene/Q
supercomputer,” The International Journal of High Performance Com-

puting Applications, vol. 28, no. 4, pp. 450–464, 2014.

[40] M. Gilge, IBM System Blue Gene Solution Blue Gene/Q Application

Development. An IBM Redbooks publication, 2013.

[41] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Elsevier, 2004.



[42] “OSU Micro-benchmarks.” [Online]. Available: http://mvapich.cse.
ohio-state.edu/benchmarks/

[43] D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard,
S. Mehringer, E. Wernert, H. Tufo, D. Panda, and P. Teller, “Stampede
2: The Evolution of an XSEDE Supercomputer,” in Practice and

Experience in Advanced Research Computing on Sustainability, Success

and Impact, 2017.


