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Abstract

Automating algorithm configuration is growing
increasingly necessary as algorithms come with
more and more tunable parameters. It is com-
mon to tune parameters using machine learning,
optimizing algorithmic performance (runtime or
solution quality, for example) using a training set
of problem instances from the specific domain
at hand. We investigate a fundamental question
about these techniques: how large should the train-
ing set be to ensure that a parameter’s average
empirical performance over the training set is
close to its expected, future performance? We
answer this question for algorithm configuration
problems that exhibit a widely-applicable struc-
ture: the algorithm’s performance as a function
of its parameters can be approximated by a “sim-
ple” function. We show that if this approximation
holds under the L°°-norm, we can provide strong
sample complexity bounds, but if the approxima-
tion holds only under the LP-norm for p < oo,
it is not possible to provide meaningful sample
complexity bounds in the worst case. We em-
pirically evaluate our bounds in the context of
integer programming, obtaining sample complex-
ity bounds that are up to 700 times smaller than
the previously best-known bounds (Balcan et al.,
2018a).

1. Introduction

Algorithms typically have tunable parameters that signifi-
cantly impact their performance, measured in terms of run-
time, solution quality, and so on. Machine learning is often
used to automate parameter tuning (Horvitz et al., 2001;
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Hutter et al., 2009; Kadioglu et al., 2010; Sandholm, 2013):
given a training set of problem instances from the appli-
cation domain at hand, this automated procedure returns a
parameter setting that will ideally perform well on future,
unseen instances.

It is important to be careful when using this automated ap-
proach: if the training set is too small, a parameter setting
with strong average empirical performance over the training
set may have poor future performance on unseen instances.
Generalization bounds provide guidance when it comes to
selecting the training set size. They bound the difference
between an algorithm’s performance on average over the
training set (drawn from an unknown, application-specific
distribution) and its expected performance on unseen in-
stances. These bounds can be used to evaluate a parameter
setting returned by any black-box procedure: they bound the
difference between that parameter’s average performance
on the training set and its expected performance.

At a high level, we provide generalization bounds that hold
when an algorithm’s performance as a function of its pa-
rameters exhibits a widely-applicable structure: it can be
approximated by a “simple” function. We prove that it is
possible to provide strong generalization bounds when the
approximation holds under the L°°-norm. Meanwhile, it
is not possible to provide strong guarantees in the worst-
case if the approximation only holds under the LP-norm for
p < oo. Therefore, this connection between learnability and
approximability is balanced on a knife-edge.

Our analysis is based on structure exhibited by primal and
dual functions (Assouad, 1983), which we now describe at
a high level. To provide generalization bounds, a common
strategy is to bound the intrinsic complexity of the following
function class F: for every parameter vector = (such as
a CPLEX parameter setting) there is a function f, € F
that takes as input a problem instance x (such as an integer
program) and returns f,.(x), the algorithm’s performance on
input  when parameterized by r. Performance is measured
by runtime, solution quality, or some other metric. The
functions f;. are called primal functions.

The class F is gnarly: in the case of integer programming
algorithm configuration, the domain of every function in F
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Figure 1. Examples of dual functions f; : R — R (solid blue
lines) which are approximated by simpler functions g, (dotted
black lines).

consists of integer programs, so it is unclear how to visualize
or plot these functions, and there are no obvious notions of
Lipschitzness or smoothness to rely on. Rather than fixing
a parameter setting r and varying the input = (as under the
function f,.), it can be enlightening to instead fix the input
x and analyze the algorithm’s performance as a function of
r. This dual function is denoted f (7). The dual functions
have a simple, Euclidean domain, they are typically easy
to plot, and they often have ample structure we can use to
bound the intrinsic complexity of the class F.

Our contributions. We observe that for many configura-
tion problems, the dual functions can be closely approxi-
mated by “simple” functions, as in Figure 1. This raises the
question: can we exploit this structure to provide strong gen-
eralization guarantees? We show that if the dual functions
are approximated by simple functions under the L°°-norm
(meaning the maximum distance between the functions is
small), then we can provide strong generalization guarantees.
However, this is no longer true when the approximation only
holds under the LP-norm for p < oco: we present a set of
functions whose duals are well-approximated by the simple
constant function g(z) = 3 under the LP-norm (meaning

(/ il | fr(r) — %|p dr is small), but which are not learnable.

We provide an algorithm that finds approximating simple
functions in the following widely-applicable setting: the
dual functions are piecewise-constant with a large number
of pieces, but can be approximated by simpler piecewise-
constant functions with few pieces, as in Figure 1(a). This
is the case in our integer programming experiments.

In our experiments, we demonstrate significant practical
implications of our analysis. We configure CPLEX, one of
the most widely-used integer programming solvers. Integer
programming has diverse applications throughout science.
Prior research has shown that the dual functions associated
with various CPLEX parameters are piecewise constant and
has provided generalization bounds that grow with the num-
ber of pieces (Balcan et al., 2018a). However, the number of
pieces can be so large that these bounds can be quite loose.
We show that these dual functions can be approximated un-
der the L°°-norm by simple functions (as in Figure 1(a)),
so our theoretical results imply strong generalization guar-
antees. In our experiments, we demonstrate that in order to
obtain the same generalization bound, the training set size
required under our analysis is up to 700 times smaller than
that of Balcan et al. (2018a). Improved sample complexity
guarantees imply faster learning algorithms, since the learn-
ing algorithm needs to analyze fewer training instances.

Related research. In algorithm configuration, several pa-
pers have provided generalization guarantees for specific
algorithm families, including greedy algorithms (Gupta and
Roughgarden, 2017; Balcan et al., 2018b), clustering al-
gorithms (Balcan et al., 2017; 2018c; 2020a), and integer
programming algorithms (Balcan et al., 2018a). In contrast,
we provide general guarantees that apply to any configu-
ration problem that satisfies a widely-applicable structure:
the dual functions are approximately simple. A strength of
our results is that they are not tied to any specific algorithm
family, though we show that our guarantees can be empir-
ically much stronger than the best-known bounds. Balcan
et al. (2019) show that if the dual functions are simple—for
example, they are piecewise-constant with few pieces—then
it is possible to provide strong generalization bounds. We
observe, however, that often the dual functions themselves
are not particularly simple, but can be approximated by sim-
ple functions. We exploit this structure to provide more
general guarantees. The analysis tools from prior research
do not apply to this more general structure, so we require
new, refined proof techniques.

Our guarantees are configuration-procedure-agnostic: no
matter how one tunes the parameters using the training set,
we bound the difference between the resulting parameter
setting’s performance on average over the training set and
its expected performance on unseen instances. A related
line of research has provided learning-based algorithm con-
figuration procedures with provable guarantees (Kleinberg
et al., 2017; 2019; Weisz et al., 2018; 2019; Balcan et al.,
2020b). Unlike the results in this paper, their guarantees
are not configuration-procedure-agnostic: they apply to the
specific configuration procedures they propose. Moreover,
their procedures only apply to finding configurations that
minimize computational resource usage, such as runtime,
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whereas the guarantees in this paper apply to more gen-
eral measures of algorithmic performance, such as solution
quality.

A related line of research has studied integer programming
algorithm configuration (Hutter et al., 2009; Sabharwal et al.,
2012; Sandholm, 2013; He et al., 2014; Balafrej et al., 2015;
Khalil et al., 2016; 2017; Di Liberto et al., 2016; Lodi and
Zarpellon, 2017; Alvarez et al., 2017; Kruber et al., 2017;
Balcan et al., 2018a), as do we, though our results apply
more generally. The results in these papers are primarily
empirical, with the exception of the paper by Balcan et al.
(2018a), with which we compare extensively in Section 4.2.

2. Notation and Background

We study functions that map an abstract domain X’ to [0, 1].
We denote the set of all such functions as [0,1]%. The
learning algorithms we analyze have sample access to an un-
known distribution D over examples z € X’ and aim to find
a function f € F with small expected value E,p[f(x)].

2.1. Problem Definition

We provide generalization guarantees, which bound the dif-
ference between the expected value E,.p[f(x)] of any func-
tion f € F and its empirical average value +; ZZ\LI f(xs)
over a training set x1, ..., xn ~ D. We focus on functions
that are parameterized by a set of vectors R C R?. Given

a vector r € R, we denote the corresponding function as
fr: X = [0,1], and we define F = {f,. | r € R}.

Generalization guarantees are particularly useful for an-
alyzing the expected performance of empirical risk min-
imization learning algorithms for the following reason.
Suppose we know that for any function f € F,

%sz\il [ () — ExND[f(x)]‘ < e. Let f be the func-

tion in F with smallest average value over the training set:
f = argmin; vazl f (z;). Then f has nearly optimal

expected value: Epp {f(w)} —minfer Eanp[f(2)] < 26

2.2. Integer Programming Algorithm Configuration

We use integer programming algorithm configuration as a
running example, though our results are much more general.
An integer program (IP) is defined by a matrix A € R™*",
a constraint vector b € R™, an objective vector ¢ € R", and
a set of indices I C [n]. The goal is to find a vector z € R™
such that ¢ - z is maximized, subject to the constraints that
Az < band for every index i € I, z; € {0,1}.

In our experiments, we tune the parameters of branch-and-
bound (B&B) (Land and Doig, 1960), the most widely-
used algorithm for solving IPs. It is used under the hood
by commercial solvers such as CPLEX and Gurobi. We

provide a brief, high-level overview of B&B, and refer the
reader to the textbook by Nemhauser and Wolsey (1999) for
more details. B&B builds a search tree to solve an input
IP x. At the tree’s root is the original IP z. At each round,
B&B chooses a leaf of the search tree, which represents an
IP z’. It does so using a node selection policy; common
choices include depth- and best-first search. Then, it chooses
an index ¢ € I using a variable selection policy. It next
branches on z;: it sets the left child of z’ to be that same
integer program z’, but with the additional constraint that
z; = 0, and it sets the right child of 2’ to be that same integer
program, but with the additional constraint that z; = 1. It
solves both LP relaxations, and if either solution satisfies
the integrality constraints of the original IP z, it constitutes
a feasible solution to z. B&B fathoms a leaf—which means
that it never will branch on that leaf—if it can guarantee
that the optimal solution does not lie along that path. B&B
terminates when it has fathomed every leaf. At that point,
we can guarantee that the best solution to = found so far is
optimal. In our experiments, we tune the parameters of the
variable selection policy, which we describe in more detail
in Section 4.2.

In this setting, &’ is a set of IPs and the functions in F are pa-
rameterized by CPLEX parameter vectors € R?, denoted
F ={fr | 7 € R} . In keeping with prior work (Balcan
etal., 2018a), f,.(z) equals the size of the B&B tree CPLEX
builds given the parameter setting r and input IP x, nor-
malized to fall in [0, 1]. The learning algorithms we study
take as input a training set of IPs sampled from D and re-
turn a parameter vector. Since our goal is to minimize tree
size, ideally, the size of the trees CPLEX builds using that
parameter setting should be small in expectation over D.

3. Dual Functions

Our goal is to provide generalization guarantees for the
function class F = {f,. | € R}. To do so, we use struc-
ture exhibited by the dual function class. Every function
in the dual class is defined by an element z € X', denoted
fX:R —[0,1]. Naturally, f(r) = fr(z). The dual class
F* ={f¥ |z € X} is the set of all dual functions.

The dual functions are intuitive in our integer programming
example. For any IP z, the dual function f;} measures the
size of the tree CPLEX builds (normalized to lie in the inter-
val [0, 1]) when given z as input, as a function of the CPLEX
parameters. Duals are also straightforward in more abstract
settings: if X = R? and F is the set of linear functions
fr(x) = r - 2, each dual function f;(r) = r - « is also lin-
ear. When F consists of the constant functions f,(z) = r,
each dual function is the identity function f(r) = .

Prior research shows that when the dual functions are
simple—for example, they are piecewise-constant with a
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small number of pieces—it is possible to provide strong
generalization bounds (Balcan et al., 2019). In many set-
tings, however, we find that the dual functions themselves
are not simple, but are approximated by simple functions,
as in Figure 1. We formally define this concept as follows.

Definition 3.1 ((v,p)-approximate). Let F =
{fr|re€R} and G = {gr|r € R} be two sets of
functions mapping X’ to [0,1]. We assume that all dual
functions f; and g are integrable over the domain
R. We say that the dual class G* (v, p)-approximates
the dual class F* if for every element x, the distance
between the functions f and ¢ is at most v under the
LP-norm. For p € [1,00), this means that || f; — gz, ==

Jr | fx(r) — gi(r)[” dr < ~ and when p = oo, this
means that || £ — g3l = supper [f7(r) — g (7)] <7

4. Learnability and Approximability

In this section, we investigate the connection between learn-
ability and approximability. In Section 4.1, we prove that
when the dual functions are approximable under the L .-
norm by simple functions, we can provide strong generaliza-
tion bounds. In Section 4.2, we empirically evaluate these
improved guarantees in the context of integer programming.
Finally, in Section 4.3, we prove that it is not possible to
provide non-trivial generalization guarantees (in the worst
case) when the norm under which the dual functions are
approximable is the L,-norm for p < oo.

4.1. Data-dependent Generalization Guarantees

We now show that if the dual class F* is (v, 00)-
approximated by the dual of a “simple” function class G, we
can provide strong generalization bounds for the class F.
There are many different tools for measuring how “simple” a
function class is. We use Rademacher complexity (Koltchin-
skii, 2001), which intuitively measures the extent to which
functions in F match random noise vectors o € {—1,1}V.

Definition 4.1 (Rademacher complexity). The empiri-
cal Rademacher complexity of a function class F =
{fr|r€R} given a set S = {x1,...,zy} C X

.5 N
is Z5(F) = % Eongornp [sPrer DIy 0ife (@)
where each o; equals —1 or 1 with equal probability.

The summation Zf\il 0; fr (z;) measures the correlation
between the vector (f (1), ..., fr (zx)) and the random
noise vector o. By taking the supremum over all parameter
vectors r € R, we measure how well functions in thg class
F correlate with o over the sample S. Therefore, Zs(F)
measures how well functions in the class F correlate with
random noise on average over S. Rademacher complexity
thus provides a way to measure the intrinsic complexity of

F because the more complex the class F is, the better its
functions can correlate with random noise. For example, if
the class JF consists of just a single function, @5(]’) = 0.
At the other extreme, if X = [0,1] and F = [0,1](>1,
Zs(F) = 1.

2

Classic learning-theoretic results provide guarantees based
on Rademacher complexity, such as the following.

Theorem 4.2 (e.g., Mohri et al. (2012)). For any § €
(0,1), with probability 1 — & over the draw of N sam-
ples S = {x1,...,on} ~ DY, for all functions f, €

Fd SX e ) ~Elf@)]| = O (Bs(F) +1/%)

(the dependence on § is logarithmic.)

Theorem 4.2 is a generalization guarantee because it mea-
sures the extent to which a function’s empirical average
value over the samples generalizes to its expected value.

Ideally, @5(]—" ) converges to zero as the sample size N
grows so the bound in Theorem 4.2 also converges to zero.
If the class F consists of just a single function, Zs(F) =
0, and Theorem 4.2 recovers Hoeffding’s bound. If, for
example, X = [0,1] and F = [0,1]101), Zs(F) = 3, and
the bound from Theorem 4.2 is meaningless.

We show that if the dual class F* is (v, co)-approximated
by the dual of a class G with small Rademacher complexity,
then the Rademacher complexity of F is also small. The
full proof of the following theorem in Appendix B.1.

Theorem 4.3. Let F = {f.|r€R} and G =
{gr | 7 € R} consist of functions mapping X to [0, 1]. For
any S € X, Zs(F) < %s(G) + 1351 Les 15 — 9ill -

Proof sketch. To prove this theorem, we use the fact that
for any parameter vector r € R, any element x € X,
and any binary value o € {—1,1}, ofp(2) = of(r) <
og;(r) + 117 = gille = 090 (@) + £ — 92l -

1

If the class G* (v, c0)-approximates the class J*, then
IT%I > wes lfa — g5l is at most ~. If this term is smaller

than ~ for most sets S ~ DV, then the bound on Zs (F)in
Theorem 4.3 will often be even better than Zs(G) + .

Theorems 4.2 and 4.3 imply that with probability 1 — §
over the draw of the set S ~ DY, for all parameter vec-
tors r € R, the difference between the empirical aver-
age value of f,. over S and its expected value is at most

0 (% Loes i = g2l + Zs5(G) + /). n our in-
teger programming experiments, we show that this data-
dependent generalization guarantee can be much tighter
than the best-known worst-case guarantee.

Algorithm for finding approximating functions. We
provide a dynamic programming (DP) algorithm (Algo-
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rithm 1 in Appendix B.2) for the widely-applicable case
where the dual functions f; are piecewise constant with
a large number of pieces. Given an integer k, the algo-
rithm returns a piecewise-constant function g, with at most
k pieces such that || f — g3/ is minimized, as in Fig-
ure 1(a). Letting ¢ be the number of pieces in the piecewise
decomposition of [, the DP algorithm runs in O (ktz) time.
As we describe in Section 4.2, when k and || f — ¢%|| . are
small, Theorem 4.3 implies strong guarantees. We use this
DP algorithm in our integer programming experiments.

Structural risk minimization. Theorem 4.3 illustrates
a fundamental tradeoff in machine learning. The sim-
pler the class G, the smaller its Rademacher complex-
ity, but—broadly speaking—the worse functions from its
dual will be at approximating functions in F*. In other
words, the simpler G is, the worse the approximation
> eslfi = g3l will likely be. Therefore, there is
a tradeoff between generalizability and approximability. It
may not be a priori clear how to balance this tradeoff. Struc-
tural risk minimization (SRM) is a classic, well-studied ap-
proach for optimizing tradeoffs between complexity and
generalizability which we use in our experiments.

Our SRM approach is based on the following corollary of
Theorem 4.3. Let G1, G, G, . .. be a countable sequence
of function classes where each G; = {g;» | » € R} isaset
of functions mapping X to [0, 1]. We use the notation g; . to
denote the duals of the functions in Gj, so g} ,.(7) = g;»(z).

Corollary 4.4. With probability 1 — § over the draw of the
set S ~ DN forallr € Randall j > 1,

1
¥ D fr@) = E_[fo(@)

z~D
zeS *

A 1 * * 7 1
0<NZ||fI ~ Gl + %5 (Gi) + N>. (1)

z€eS

The proof of this corollary is in Appendix B.1.

In our experiments, each dual class G J* consists of piecewise-
constant functions with at most j pieces. This means that as
j grows, the class G becomes more complex, or in other

words, the Rademacher complexity R (G;) also grows.
Meanwhile, the more pieces a piecewise-constant function
gx has, the better it is able to approximate the dual function
fx. In other words, as j grows, the approximation term
~ Ywes | fi = 95| shrinks. SRM is the process of
finding the level j in the nested hierarchy that minimizes
the sum of these two terms, and therefore obtains the best
generalization guarantee via Equation (1).

Remark 4.5. We conclude by noting that the empirical
average % Y owes Hf; — g;‘xHoo in Equation (1) can be

fi - gpall..]- see
Corollary B.1 in Appendix B.1 for the proof.

replaced by the expectation Ez~p [|

4.2. Improved Integer Programming Guarantees

In this section, we demonstrate that our data-dependent gen-
eralization guarantees from Section 4.1 can be much tighter
than worst-case generalization guarantees provided in prior
research. We demonstrate these improvements in the con-
text of integer programming algorithm configuration, which
we introduced in Section 2.2. Our formal model is the same
as that of Balcan et al. (2018a), who studied worst-case
generalization guarantees. Each element of the set X is an
IP. The set R consists of CPLEX parameter settings. We
assume there is an upper bound « on the size of the largest
tree we allow B&B to build before we terminate, as in prior
research (Hutter et al., 2009; Kleinberg et al., 2017; Balcan
et al., 2018a; Kleinberg et al., 2019). In Appendix B.2, we
describe our methodology for choosing «. Given a parame-
ter setting r and an IP x, we define f,(z) to be the size of
the tree CPLEX builds, capped at x, divided by « (this way,
fr(z) € [0,1]). We define the set F = {f, | r € R}.

We tune the parameter of B&B’s variable selection policy
(VSP). We described the purpose of VSPs in Section 2.2.
We study score-based VSPs, defined as follows. Let score
be a function that takes as input a partial B&B tree T, a leaf
of T representing an IP z, and an index ¢ € [n], and returns
areal-valued score(T,x,i). Let V be the set of variables
that have not been branched on along the path from the root
of T to . A score-based VSP branches on the variable
argmax_ .y {score(7T,w,i)} at the node x.

We study how to learn a high-performing convex combi-
nation of any two scoring rules. We focus on four scoring
rules in our experiments. To define them, we first introduce
some notation. For an IP z with objective function ¢ - z,
we denote an optimal solution to the LP relaxation of x as
Zy = (%31, .. Zzn). We also use the notation ¢, = ¢ - Z,.
Finally, we use the notation :z:;" (resp., z; ) to denote the IP
x with the additional constraint that z; = 1 (resp., z; = 0).!

We study four scoring rules scorey, scoreg, scorea,
and scorep:

G, } Un-
der scorey, B&B branches on the variable leading to
the Largest change in the LP objective value.

e scorer(T,z,i) = max {éw — Coty Gy —
:

o scoreg(T,x,i) = min{éw — Gyt s Gy — éf} Un-
der scoreg, B&B branches on the variable leading to
the Smallest change.

It :zc;r (resp., z; ) is infeasible, then we define ¢, — ¢_+ (resp.,

¢z — €,_—) to be some large number greater than llell1-
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o scoreu(T,x,1) = tscorer(T,z,i) +
Sscoreg(T,x,i). This is a scoring rule that
Achterberg (2009) recommended. It balances the
optimistic approach to branching under scorey, with
the pessimistic approach under scoreg.

e scorep(T,xz,i) = max {EL — Cpts 10_6}

max {ém — ¢, 10*6}. This is known as the Product
scoring rule. lComparing Cp — C,— and &y — €+ 1O
1076 allows the algorithm to comlpare two variai)les
even if ¢, — éa:; =0oré, — éﬁ = 0. After all,
suppose the scoring rule simply calculated the product
(éx - éx_f> |l — éz_+> without comparing to 1075.
Ifé, — E;; = 0, then the score equals 0, canceling out
the value of ¢, — é$i+ and thus losing the information
encoded by this difference.

Fix any two scoring rules score; and scorey. We de-
fine f.(z) to be the size of the tree B&B builds (normal-
ized to lie in [0, 1]) when it uses the score-based VSP
defined by (1 — r)score; + rscores. Our goal is to
learn the best convex combination of the two scoring rules.
When score; = scorerp and scoreys = scoreg,
prior research has proposed several alternative settings for
the parameter r (Gauthier and Ribiere, 1977; Bénichou
et al., 1971; Beale, 1979; Linderoth and Savelsbergh, 1999;
Achterberg, 2009), though no one setting is optimal across
all applications. Balcan et al. (2018a) prove the following
lemma about the structure of the functions f;.

Lemma 4.6. For any IP x with n variables, the dual func-
tion f is piecewise-constant with at most n25+D) pieces.

Lemma 4.6 implies the following worst-case bound on
Xs (F). See Lemma B.4 in Appendix B.2 for the proof.

Corollary 4.7. For any set S C X of integer programs,
21n(|$|(712(“+1)—1)+1)

Zs (F) g\/ = :

This corollary and Theorem 4.2 imply the following worst-
case generalization bound: with probability 1 — & over
the draw of N samples S ~ DY, for all » € [0,1],

| % Yses [r(@) = Eanp [fr(2)]| is bounded above by

2In(N (n2(++D) —1) + 1) [1 2

This worst-case bound can be large when « is large. We
find that although the duals f;; are piecewise-constant with
many pieces, they can be approximated piecewise-constant
functions with few pieces, as in Figure 1(a). As a result,
we improve over Equation (2) via Theorem 4.3, our data-
dependent bound.

To make use of Theorem 4.3, we now formally define
the function class whose dual (v, co)-approximates F*.
We first define the dual class, then the primal class. To
this end, fix some integer j > 1 and let H; be the
set of all piecewise-constant functions mapping [0, 1] to
[0,1] with at most j pieces. For every IP x, we define
95 » € argminy, oy || f3 — D[, breaking ties in some fixed
but arbitrary manner. The function g7 , can be found via
dynamic programming; see Algorithm 1 in Appendix B.2.
We define the dual class G = {gj*x | # € X'}. Therefore,
the dual class G is consists of piecewise-constant functions
with at most j pieces. In keeping with the definition of pri-
mal and dual functions from Section 3, for every parameter
r € [0,1] and IP =, we define g; .(v) = g; . (r). Finally,
we define the primal class G; = {g;,» | 7 € [0,1]}.

To apply our results from Section 4.1, we must bound the
Rademacher complexity of the set G;. Doing so is simple
due to the structure of the dual class g;. The following

2

lemma- is a corollary of Lemma B.4 in Appendix B.2.

Lemma 4.8. For any set S C X of integer programs,
= 21In(|S|(j—1)+1
Zs (G;) < /21n(| |‘(§| )+1)

This lemma together with Remark 4.5 and Corollary 4.4 im-
ply that with probability 1 — & over S ~ DY, for all parame-

ters r € [07 ” andj > 1’ % ZmGS fr(x) — Ez~D [fr(x)”
is upper-bounded by the minimum of Equation (2) and

2In(N(j — 1) + 1) 2

2(mj)?
35

3)

where v; = Ezup U fo =G, |OJ As j grows, Zs (G;)
grows, but the dual class G 7 18 better able to approximate
JF*. In our experiments, we optimize this tradeoff between
generalizability and approximability.

Experiments. We analyze distributions over IPs formulat-
ing the combinatorial auction winner determination problem
under the OR-bidding language (Sandholm, 2002), which
we generate using the Combinatorial Auction Test Suite
(CATS) (Leyton-Brown et al., 2000). We use the “arbitrary”
generator with 200 bids and 100 goods, resulting in IPs with
200 variables, and the “regions” generator with 400 bids
and 200 goods, resulting in IPs with 400 variables.

We use the algorithm described in Appendix D.1 of the
paper by Balcan et al. (2018a) to compute the functions f.
It overrides the default VSP of CPLEX 12.8.0.0 using the
C API. We use Algorithm 1 in Appendix B.2 to compute
the approximating duals. All experiments were run on a
64-core machine with 512 GB of RAM.

2This bound on Zs (G;) could potentially be optimized even
further using a data-dependent approach, such as the one summa-
rized by Theorem E.3 in the paper by Balcan et al. (2018a).
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Figure 2. Results using SRM on the CATS “regions” generator
with score; = scorer, and scores = scoreg.
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Figure 3. Results using SRM on the CATS “arbitrary” generator
with score; = scoreyr, and scores = scoreg.

In Figures 2-4, we select scorej,scores €
{scorer,scoreg,scorey,scorep} and com-
pare the worst-case and data-dependent bounds. First, we
plot the worst-case bound from Equation (2), with 6 = 0.01,
as a function of the number of training examples N. This is
the black, dotted line in Figures 2-4.

Next, we plot the data-dependent bound, which is the
red, solid line in Figures 2-4. To calculate the data-
dependent bound in Equation (3), we have to estimate
Eeep [||f = g5l ] for all j € [1600].* To do so, we

draw M = 6000 IPs x4, ...,z s from the distribution D.

?We choose the range j € [1600] because under these distribu-
tions, the functions f, generally have at most 1600 pieces.

Number of training instances

Figure 4. Results using SRM on the CATS “arbitrary” generator
with score; = scorep and scores = scorey.

We estimate E,.p {H Ir = 9a Hm} via the empirical aver-

age ﬁ Zf\il || Tr: = 95 s o A Hoeffding bound guaran-
tees that with probability 0.995, for all j € [1600],

1 < 1
Bl - gl < 5 XN et 55 ©

We prove this inequality in Lemma B.3. We thereby esti-
mate our data-dependent bound Equation (3) using Equa-
tion (4); the only difference between these bounds is that
Equation (3) relies on the left-hand-side of Equation (5) and
Equation (4) relies on the right-hand-side of Equation (5)
and sets 6 = 0.005.* In Figures 2-4, the red solid line equals
the minimum of Equations (2) and (4) as a function of the
number of training examples V.

In Figures 2, 3, and 4, we see that our bound significantly
beats the worst-case bound up until the point there are ap-
proximately 100,000,000 training instances. At this point,
the worst-case guarantee is better than the data-dependent
bound, which makes sense because it goes to zero as IV goes
to infinity, whereas the term - M | fa = 9},
in our bound (Equation (4)) is a constant.

1
0 T 10

Figure 2 also illustrates that even when there are only 10°
training instances, our bound provides a generalization guar-
antee of approximately 0.1. Meanwhile, 7 - 107 training
instances are necessary to provide a generalization guar-
antee of 0.1 under the worst-case bound, so the sample

“Like the worst-case bound, Equation (4) holds with probability
0.99, because with probability 0.995, Equation (5) holds, and with
probability 0.995, the bound from Equation (3) holds.
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N

Figure 5. The dual functions f;, and f;, are well-approximated
by the constant function r — 3 under, for example, the L'-norm
because the integrals fR fa; (r) — % dr are small; for most r,
fa;(r) = 3. The approximation is not strong under the L>°-
norm, since maxrer | fs,(r) — 3| = 5. The function class F
corresponding to these duals has a large Rademacher complexity.

complexity implied by our analysis is 700 times better. Sim-
ilarly, in Figure 3, 500 times fewer samples are required to
obtain a generalization guarantee of 0.1 under our bound
versus the worst-case bound. In Figure 4, 250 times fewer
samples are required.

In this section, we approximated the dual functions f} with
piecewise constant functions that have a small number of
pieces — say, j pieces. We used SRM to find the value for
7 which leads to the strongest bounds, as in Equation (4).
In Appendix B.2.1, we compare against another baseline
where we do not use SRM, but simply set j to be the maxi-
mum number of pieces we observe over our training set. Of
course, this bound is much tighter than the worst-case bound
by Balcan et al. (2018a), the baseline in Figures 2-4. How-
ever, we still observe that for a target generalization error,
the number of samples required according to our bound is up
to four times smaller than the number of samples required
by this baseline.

4.3. Rademacher Complexity Lower Bound

In this section, we show that (v, p)-approximability with
p < oo does not necessarily imply strong generalization
guarantees of the type we saw in Section 4.1. We show that
it is possible for a dual class F* to be well-approximated
by the dual of a class G with @g(g ) = 0, yet for the primal
F to have high Rademacher complexity.

Figures 5 and 6 help explain why there is this sharp constrast
between the L°°- and LP-norms for p < oo. Figure 5
illustrates two dual functions f; (the blue solid line) and
[, (the grey dotted line). Let G be the extremely simple
function class G = {g, : r € R} where g,(z) = 1 for
every x € X. Itis easy to see that @g(g) = 0 for any
set S. Moreover, every dual function g is also simple,
because g (r) = gr(x) = %. From Figure 5, we can see

N

> T

Figure 6. The dual functions f;, and f;, are well-approximated
by the constant function r — % under the L°°-norm since
maxrer | f2, (r) — 3| is small. The function class F correspond-

ing to these duals has a small Rademacher complexity.

that the functions f; and f; are well approximated by the
constant function g% (r) = g% (r) = 3 under, for example,
the L'-norm because the integrals [, | fx (r) — 3| dr are
small. However, the approximation is not strong under the
L°°-norm, since max,cx |7, (r) — 3| = § fori € {1,2}.

Moreover, despite the fact that ﬂ?g(g) = 0, we have that
Zs(F) = 1 when & = {z1,z2}, which makes Theo-
rem 4.2 meaningless. At a high level, this is because when
o1 = 1, we can ensure that o1 f, (z1) = o1 f;, (r) = 1 by
choosing r € {rg,r1} and when o7 = —1, we can ensure
that o1 f,- (z1) = 0 by choosing € {ra,r3}. A similar
argument holds for 5. In summary, (v, p)-approximability
for p < oo does not guarantee low Rademacher complexity.

Meanwhile, in Figure 6, g% (r) = % and f7 (r) are

close for every parameter . As a result, for any
noise vector o, sup,.cg {01/ (r) +o2f; (r)} is close
to sup,cg {0195, (r) + 0295, (r)}.  This implies that
the Rademacher complexities @s(g) and 9?5(]’ ) are
close. This illustration exemplifies Theorem 4.3: (v, 00)-
approximability implies strong Rademacher bounds.

We now prove that (-, p)-approximability by a simple class
for p < oo does not guarantee low Rademacher complexity.

Theorem 4.9. For any v € (0,1/4) and any p € [1,00),
there exist function classes F,G C [0,1]% such that the

dual class G* (v, p)-approximates F* and for any N > 1,

supg,|sj—n £s(G) = 0 and supg, 51—y #s(F) = 3.

Proof. We begin by defining the classes F and G. Let
R = (0,4?], and X = [y ?/2,00). For any r € R and
z € X,let fr(z) = +(1+cos(rz)) and F = {f. | r € R}.
These sinusoidal functions are based on the intuition from
Figure 5. As in Figure 5, for any r and z, let g, (z) = 1 and
G = {gr | r € R}. Since G consists of identical copies of a
single function, @g(g) = O forany set S C X'. Meanwhile,
in Lemma B.9 in Appendix B.3, we prove that for any
N > 1, supg,sj—n Zs(F) = 3-
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In Lemma B.8 in Appendix B.3, we prove that the dual class
G* (v, p)-approximates F*. To prove this, we first show

that [|f3 — g3, < 34/277 4+ 1. When p = 2, we know
L <292 50| f = g3ll, < 7. Otherwise, we use our bound

on || f¥ — g||,, Holder’s inequality, and the log-convexity
of the LP-norm to prove that [ f3 — gz ||, < 7. O

Remark 4.10. Suppose, for example, that R = [0, 1]¢. The-
orem 4.9 implies that even if | f(r) — g(r)]| is small for
all z in expectation over r ~ Uniform(R), the function
class F may not have Rademacher complexity close to G.

Statistical learnability. In Appendix B.4, we connect our
results to the literature on statistical learnability (Haussler,
1992). At a high level, a function class F is statistically
learnable (Definition A.2 in Appendix A) if there exists a
learning algorithm that returns a function whose expected
value converges—as the size of the training set grows—
to the smallest expected value of any function in F. We
introduce a relaxation: a function class F is y-statistically
learnable (Definition A.3) if, at a high level, there exists a
learning algorithm with error at most -y in the limit as the
training set size grows. We prove that if the dual class F* is
(7, 00)-approximated by the dual of a statistically learnable
class G, then F is v-statistically learnable. On the other
hand, Theorem 4.9 implies that there exists a class JF that
is not 7y-statistically learnable, yet it is (-, p)-approximated
by the dual of a statistically learnable class G.

5. Conclusions

We provided generalization guarantees for algorithm con-
figuration, which bound the difference between a param-
eterized algorithm’s average empirical performance over
a set of sample problem instances and its expected perfor-
mance on future, unseen instances. We did so by exploiting
structure exhibited by the dual functions which measure the
algorithm’s performance as a function of its parameters. We
analyzed the widely-applicable setting where the dual func-
tions are approximated by “simple” functions. We showed
that if this approximation holds under the L°°-norm, then it
is possible to provide strong generalization guarantees. If,
however, the approximation only holds under the LP-norm
for p < oo, we showed that it is impossible in the worst-
case to provide non-trivial bounds. Via experiments in the
context of integer programming algorithm configuration, we
demonstrated that our bounds can be significantly stronger
than the best-known worst-case guarantees (Balcan et al.,
2018a), leading to a sample complexity improvement of
70,000%.

We conclude with a promising direction for future re-
search. Suppose, for some prior P over parameters,
Euo~p rp [|fa(r) — ¢ (7)|] is small. From Remark 4.10,

we know strong generalization bounds are not possible in
the worst case, but what about under some realistic assump-
tions? This may help us understand, for example, why
random forests—which have a simple piecewise-constant
structure—are often able to accurately predict the runtime
of SAT and MIP solvers (Hutter et al., 2011).
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