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Abstract

Automating algorithm configuration is growing

increasingly necessary as algorithms come with

more and more tunable parameters. It is com-

mon to tune parameters using machine learning,

optimizing algorithmic performance (runtime or

solution quality, for example) using a training set

of problem instances from the specific domain

at hand. We investigate a fundamental question

about these techniques: how large should the train-

ing set be to ensure that a parameter’s average

empirical performance over the training set is

close to its expected, future performance? We

answer this question for algorithm configuration

problems that exhibit a widely-applicable struc-

ture: the algorithm’s performance as a function

of its parameters can be approximated by a “sim-

ple” function. We show that if this approximation

holds under the L∞-norm, we can provide strong

sample complexity bounds, but if the approxima-

tion holds only under the Lp-norm for p < ∞,

it is not possible to provide meaningful sample

complexity bounds in the worst case. We em-

pirically evaluate our bounds in the context of

integer programming, obtaining sample complex-

ity bounds that are up to 700 times smaller than

the previously best-known bounds (Balcan et al.,

2018a).

1. Introduction

Algorithms typically have tunable parameters that signifi-

cantly impact their performance, measured in terms of run-

time, solution quality, and so on. Machine learning is often

used to automate parameter tuning (Horvitz et al., 2001;
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Hutter et al., 2009; Kadioglu et al., 2010; Sandholm, 2013):

given a training set of problem instances from the appli-

cation domain at hand, this automated procedure returns a

parameter setting that will ideally perform well on future,

unseen instances.

It is important to be careful when using this automated ap-

proach: if the training set is too small, a parameter setting

with strong average empirical performance over the training

set may have poor future performance on unseen instances.

Generalization bounds provide guidance when it comes to

selecting the training set size. They bound the difference

between an algorithm’s performance on average over the

training set (drawn from an unknown, application-specific

distribution) and its expected performance on unseen in-

stances. These bounds can be used to evaluate a parameter

setting returned by any black-box procedure: they bound the

difference between that parameter’s average performance

on the training set and its expected performance.

At a high level, we provide generalization bounds that hold

when an algorithm’s performance as a function of its pa-

rameters exhibits a widely-applicable structure: it can be

approximated by a “simple” function. We prove that it is

possible to provide strong generalization bounds when the

approximation holds under the L∞-norm. Meanwhile, it

is not possible to provide strong guarantees in the worst-

case if the approximation only holds under the Lp-norm for

p < ∞. Therefore, this connection between learnability and

approximability is balanced on a knife-edge.

Our analysis is based on structure exhibited by primal and

dual functions (Assouad, 1983), which we now describe at

a high level. To provide generalization bounds, a common

strategy is to bound the intrinsic complexity of the following

function class F : for every parameter vector r (such as

a CPLEX parameter setting) there is a function fr ∈ F
that takes as input a problem instance x (such as an integer

program) and returns fr(x), the algorithm’s performance on

input x when parameterized by r. Performance is measured

by runtime, solution quality, or some other metric. The

functions fr are called primal functions.

The class F is gnarly: in the case of integer programming

algorithm configuration, the domain of every function in F
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whereas the guarantees in this paper apply to more gen-

eral measures of algorithmic performance, such as solution

quality.

A related line of research has studied integer programming

algorithm configuration (Hutter et al., 2009; Sabharwal et al.,

2012; Sandholm, 2013; He et al., 2014; Balafrej et al., 2015;

Khalil et al., 2016; 2017; Di Liberto et al., 2016; Lodi and

Zarpellon, 2017; Alvarez et al., 2017; Kruber et al., 2017;

Balcan et al., 2018a), as do we, though our results apply

more generally. The results in these papers are primarily

empirical, with the exception of the paper by Balcan et al.

(2018a), with which we compare extensively in Section 4.2.

2. Notation and Background

We study functions that map an abstract domain X to [0, 1].
We denote the set of all such functions as [0, 1]X . The

learning algorithms we analyze have sample access to an un-

known distribution D over examples x ∈ X and aim to find

a function f ∈ F with small expected value Ex∼D[f(x)].

2.1. Problem Definition

We provide generalization guarantees, which bound the dif-

ference between the expected value Ex∼D[f(x)] of any func-

tion f ∈ F and its empirical average value 1
N

∑N

i=1 f (xi)
over a training set x1, . . . , xN ∼ D. We focus on functions

that are parameterized by a set of vectors R ⊆ R
d. Given

a vector r ∈ R, we denote the corresponding function as

fr : X → [0, 1], and we define F = {fr | r ∈ R}.

Generalization guarantees are particularly useful for an-

alyzing the expected performance of empirical risk min-

imization learning algorithms for the following reason.

Suppose we know that for any function f ∈ F ,∣∣∣ 1N
∑N

i=1 f (xi)− Ex∼D[f(x)]
∣∣∣ ≤ ε. Let f̂ be the func-

tion in F with smallest average value over the training set:

f̂ = argminf∈F

∑N

i=1 f (xi). Then f̂ has nearly optimal

expected value: Ex∼D

[
f̂(x)

]
−minf∈F Ex∼D[f(x)] ≤ 2ε.

2.2. Integer Programming Algorithm Configuration

We use integer programming algorithm configuration as a

running example, though our results are much more general.

An integer program (IP) is defined by a matrix A ∈ R
m×n,

a constraint vector b ∈ R
m, an objective vector c ∈ R

n, and

a set of indices I ⊆ [n]. The goal is to find a vector z ∈ R
n

such that c · z is maximized, subject to the constraints that

Az ≤ b and for every index i ∈ I , zi ∈ {0, 1}.

In our experiments, we tune the parameters of branch-and-

bound (B&B) (Land and Doig, 1960), the most widely-

used algorithm for solving IPs. It is used under the hood

by commercial solvers such as CPLEX and Gurobi. We

provide a brief, high-level overview of B&B, and refer the

reader to the textbook by Nemhauser and Wolsey (1999) for

more details. B&B builds a search tree to solve an input

IP x. At the tree’s root is the original IP x. At each round,

B&B chooses a leaf of the search tree, which represents an

IP x′. It does so using a node selection policy; common

choices include depth- and best-first search. Then, it chooses

an index i ∈ I using a variable selection policy. It next

branches on zi: it sets the left child of x′ to be that same

integer program x′, but with the additional constraint that

zi = 0, and it sets the right child of x′ to be that same integer

program, but with the additional constraint that zi = 1. It

solves both LP relaxations, and if either solution satisfies

the integrality constraints of the original IP x, it constitutes

a feasible solution to x. B&B fathoms a leaf—which means

that it never will branch on that leaf—if it can guarantee

that the optimal solution does not lie along that path. B&B

terminates when it has fathomed every leaf. At that point,

we can guarantee that the best solution to x found so far is

optimal. In our experiments, we tune the parameters of the

variable selection policy, which we describe in more detail

in Section 4.2.

In this setting, X is a set of IPs and the functions in F are pa-

rameterized by CPLEX parameter vectors r ∈ R
d, denoted

F =
{
fr | r ∈ R

d
}
. In keeping with prior work (Balcan

et al., 2018a), fr(x) equals the size of the B&B tree CPLEX

builds given the parameter setting r and input IP x, nor-

malized to fall in [0, 1]. The learning algorithms we study

take as input a training set of IPs sampled from D and re-

turn a parameter vector. Since our goal is to minimize tree

size, ideally, the size of the trees CPLEX builds using that

parameter setting should be small in expectation over D.

3. Dual Functions

Our goal is to provide generalization guarantees for the

function class F = {fr | r ∈ R}. To do so, we use struc-

ture exhibited by the dual function class. Every function

in the dual class is defined by an element x ∈ X , denoted

f∗
x : R → [0, 1]. Naturally, f∗

x(r) = fr(x). The dual class

F∗ = {f∗
x | x ∈ X } is the set of all dual functions.

The dual functions are intuitive in our integer programming

example. For any IP x, the dual function f∗
x measures the

size of the tree CPLEX builds (normalized to lie in the inter-

val [0, 1]) when given x as input, as a function of the CPLEX

parameters. Duals are also straightforward in more abstract

settings: if X = R
d and F is the set of linear functions

fr(x) = r · x, each dual function f∗
x
(r) = r · x is also lin-

ear. When F consists of the constant functions fr(x) = r,

each dual function is the identity function f∗
x(r) = r.

Prior research shows that when the dual functions are

simple—for example, they are piecewise-constant with a
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small number of pieces—it is possible to provide strong

generalization bounds (Balcan et al., 2019). In many set-

tings, however, we find that the dual functions themselves

are not simple, but are approximated by simple functions,

as in Figure 1. We formally define this concept as follows.

Definition 3.1 ((γ, p)-approximate). Let F =
{fr | r ∈ R} and G = {gr | r ∈ R} be two sets of

functions mapping X to [0, 1]. We assume that all dual

functions f∗
x and g∗x are integrable over the domain

R. We say that the dual class G∗ (γ, p)-approximates

the dual class F∗ if for every element x, the distance

between the functions f∗
x and g∗x is at most γ under the

Lp-norm. For p ∈ [1,∞), this means that ‖f∗
x − g∗x‖p :=

p

√∫
R |f∗

x(r)− g∗x(r)|
p
dr ≤ γ and when p = ∞, this

means that ‖f∗
x − g∗x‖∞ := sup

r∈R |f∗
x(r)− g∗x (r)| ≤ γ.

4. Learnability and Approximability

In this section, we investigate the connection between learn-

ability and approximability. In Section 4.1, we prove that

when the dual functions are approximable under the L∞-

norm by simple functions, we can provide strong generaliza-

tion bounds. In Section 4.2, we empirically evaluate these

improved guarantees in the context of integer programming.

Finally, in Section 4.3, we prove that it is not possible to

provide non-trivial generalization guarantees (in the worst

case) when the norm under which the dual functions are

approximable is the Lp-norm for p < ∞.

4.1. Data-dependent Generalization Guarantees

We now show that if the dual class F∗ is (γ,∞)-
approximated by the dual of a “simple” function class G , we

can provide strong generalization bounds for the class F .

There are many different tools for measuring how “simple” a

function class is. We use Rademacher complexity (Koltchin-

skii, 2001), which intuitively measures the extent to which

functions in F match random noise vectors σ ∈ {−1, 1}N .

Definition 4.1 (Rademacher complexity). The empiri-

cal Rademacher complexity of a function class F =
{fr | r ∈ R} given a set S = {x1, . . . , xN} ⊆ X

is R̂S(F) = 1
N Eσ∼{−1,1}N

[
sup

r∈R

∑N

i=1 σifr (xi)
]
,

where each σi equals −1 or 1 with equal probability.

The summation
∑N

i=1 σifr (xi) measures the correlation

between the vector (fr (x1) , . . . , fr (xN )) and the random

noise vector σ. By taking the supremum over all parameter

vectors r ∈ R, we measure how well functions in the class

F correlate with σ over the sample S . Therefore, R̂S(F)
measures how well functions in the class F correlate with

random noise on average over S . Rademacher complexity

thus provides a way to measure the intrinsic complexity of

F because the more complex the class F is, the better its

functions can correlate with random noise. For example, if

the class F consists of just a single function, R̂S(F) = 0.

At the other extreme, if X = [0, 1] and F = [0, 1][0,1],

R̂S(F) = 1
2 .

Classic learning-theoretic results provide guarantees based

on Rademacher complexity, such as the following.

Theorem 4.2 (e.g., Mohri et al. (2012)). For any δ ∈
(0, 1), with probability 1 − δ over the draw of N sam-

ples S = {x1, . . . , xN} ∼ DN , for all functions fr ∈

F ,

∣∣∣ 1N
∑N

i=1 fr (xi)− E [fr(x)]
∣∣∣ = Õ

(
R̂S(F) +

√
1
N

)

(the dependence on δ is logarithmic.)

Theorem 4.2 is a generalization guarantee because it mea-

sures the extent to which a function’s empirical average

value over the samples generalizes to its expected value.

Ideally, R̂S(F) converges to zero as the sample size N

grows so the bound in Theorem 4.2 also converges to zero.

If the class F consists of just a single function, R̂S(F) =
0, and Theorem 4.2 recovers Hoeffding’s bound. If, for

example, X = [0, 1] and F = [0, 1][0,1], R̂S(F) = 1
2 , and

the bound from Theorem 4.2 is meaningless.

We show that if the dual class F∗ is (γ,∞)-approximated

by the dual of a class G with small Rademacher complexity,

then the Rademacher complexity of F is also small. The

full proof of the following theorem in Appendix B.1.

Theorem 4.3. Let F = {fr | r ∈ R} and G =
{gr | r ∈ R} consist of functions mapping X to [0, 1]. For

any S ⊆ X , R̂S(F) ≤ R̂S(G) +
1
|S|

∑
x∈S ‖f∗

x − g∗x‖∞ .

Proof sketch. To prove this theorem, we use the fact that

for any parameter vector r ∈ R, any element x ∈ X ,

and any binary value σ ∈ {−1, 1}, σfr(x) = σf∗
x(r) ≤

σg∗x(r) + ‖f∗
x − g∗x‖∞ = σgr(x) + ‖f∗

x − g∗x‖∞ .

If the class G∗ (γ,∞)-approximates the class F∗, then
1
|S|

∑
x∈S ‖f∗

x − g∗x‖∞ is at most γ. If this term is smaller

than γ for most sets S ∼ DN , then the bound on R̂S(F) in

Theorem 4.3 will often be even better than R̂S(G) + γ.

Theorems 4.2 and 4.3 imply that with probability 1 − δ

over the draw of the set S ∼ DN , for all parameter vec-

tors r ∈ R, the difference between the empirical aver-

age value of fr over S and its expected value is at most

Õ
(

1
N

∑
x∈S ‖f∗

x − g∗x‖∞ + R̂S(G) +
√

1
N

)
. In our in-

teger programming experiments, we show that this data-

dependent generalization guarantee can be much tighter

than the best-known worst-case guarantee.

Algorithm for finding approximating functions. We

provide a dynamic programming (DP) algorithm (Algo-
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rithm 1 in Appendix B.2) for the widely-applicable case

where the dual functions f∗
x are piecewise constant with

a large number of pieces. Given an integer k, the algo-

rithm returns a piecewise-constant function g∗x with at most

k pieces such that ‖f∗
x − g∗x‖∞ is minimized, as in Fig-

ure 1(a). Letting t be the number of pieces in the piecewise

decomposition of f∗
x , the DP algorithm runs in O

(
kt2
)

time.

As we describe in Section 4.2, when k and ‖f∗
x − g∗x‖∞ are

small, Theorem 4.3 implies strong guarantees. We use this

DP algorithm in our integer programming experiments.

Structural risk minimization. Theorem 4.3 illustrates

a fundamental tradeoff in machine learning. The sim-

pler the class G, the smaller its Rademacher complex-

ity, but—broadly speaking—the worse functions from its

dual will be at approximating functions in F∗. In other

words, the simpler G is, the worse the approximation
1
N

∑
x∈S ‖f∗

x − g∗x‖∞ will likely be. Therefore, there is

a tradeoff between generalizability and approximability. It

may not be a priori clear how to balance this tradeoff. Struc-

tural risk minimization (SRM) is a classic, well-studied ap-

proach for optimizing tradeoffs between complexity and

generalizability which we use in our experiments.

Our SRM approach is based on the following corollary of

Theorem 4.3. Let G1,G2,G3, . . . be a countable sequence

of function classes where each Gj = {gj,r | r ∈ R} is a set

of functions mapping X to [0, 1]. We use the notation g∗j,x to

denote the duals of the functions in Gj , so g∗j,x(r) = gj,r(x).

Corollary 4.4. With probability 1− δ over the draw of the

set S ∼ DN , for all r ∈ R and all j ≥ 1,

∣∣∣∣∣
1

N

∑

x∈S

fr(x)− E
x∼D

[fr(x)]

∣∣∣∣∣

= Õ

(
1

N

∑

x∈S

∥∥f∗
x − g∗j,x

∥∥
∞

+ R̂S (Gj) +

√
1

N

)
. (1)

The proof of this corollary is in Appendix B.1.

In our experiments, each dual class G∗
j consists of piecewise-

constant functions with at most j pieces. This means that as

j grows, the class G∗
j becomes more complex, or in other

words, the Rademacher complexity R̂S (Gj) also grows.

Meanwhile, the more pieces a piecewise-constant function

g∗x has, the better it is able to approximate the dual function

f∗
x . In other words, as j grows, the approximation term
1
N

∑
x∈S

∥∥f∗
x − g∗j,x

∥∥
∞

shrinks. SRM is the process of

finding the level j in the nested hierarchy that minimizes

the sum of these two terms, and therefore obtains the best

generalization guarantee via Equation (1).

Remark 4.5. We conclude by noting that the empirical

average 1
N

∑
x∈S

∥∥f∗
x − g∗j,x

∥∥
∞

in Equation (1) can be

replaced by the expectation Ex∼D

[∥∥f∗
x − g∗j,x

∥∥
∞

]
. See

Corollary B.1 in Appendix B.1 for the proof.

4.2. Improved Integer Programming Guarantees

In this section, we demonstrate that our data-dependent gen-

eralization guarantees from Section 4.1 can be much tighter

than worst-case generalization guarantees provided in prior

research. We demonstrate these improvements in the con-

text of integer programming algorithm configuration, which

we introduced in Section 2.2. Our formal model is the same

as that of Balcan et al. (2018a), who studied worst-case

generalization guarantees. Each element of the set X is an

IP. The set R consists of CPLEX parameter settings. We

assume there is an upper bound κ on the size of the largest

tree we allow B&B to build before we terminate, as in prior

research (Hutter et al., 2009; Kleinberg et al., 2017; Balcan

et al., 2018a; Kleinberg et al., 2019). In Appendix B.2, we

describe our methodology for choosing κ. Given a parame-

ter setting r and an IP x, we define fr(x) to be the size of

the tree CPLEX builds, capped at κ, divided by κ (this way,

fr(x) ∈ [0, 1]). We define the set F = {fr | r ∈ R}.

We tune the parameter of B&B’s variable selection policy

(VSP). We described the purpose of VSPs in Section 2.2.

We study score-based VSPs, defined as follows. Let score

be a function that takes as input a partial B&B tree T , a leaf

of T representing an IP x, and an index i ∈ [n], and returns

a real-valued score(T , x, i). Let V be the set of variables

that have not been branched on along the path from the root

of T to x. A score-based VSP branches on the variable

argmaxzi∈V {score(T , x, i)} at the node x.

We study how to learn a high-performing convex combi-

nation of any two scoring rules. We focus on four scoring

rules in our experiments. To define them, we first introduce

some notation. For an IP x with objective function c · z,

we denote an optimal solution to the LP relaxation of x as

z̆x = (z̆x,1, . . . z̆x,n). We also use the notation c̆x = c · z̆x.

Finally, we use the notation x+
i (resp., x−

i ) to denote the IP

x with the additional constraint that zi = 1 (resp., zi = 0).1

We study four scoring rules scoreL, scoreS , scoreA,

and scoreP :

• scoreL(T , x, i) = max
{
c̆x − c̆x+

i
, c̆x − c̆x−

i

}
. Un-

der scoreL, B&B branches on the variable leading to

the Largest change in the LP objective value.

• scoreS(T , x, i) = min
{
c̆x − c̆x+

i
, c̆x − c̆x−

i

}
. Un-

der scoreS , B&B branches on the variable leading to

the Smallest change.

1If x+

i (resp., x−

i ) is infeasible, then we define c̆x − c̆
x
+
i

(resp.,

c̆x − c̆
x
−

i

) to be some large number greater than ||c||1.
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• scoreA(T , x, i) = 1
6scoreL(T , x, i) +

5
6scoreS(T , x, i). This is a scoring rule that

Achterberg (2009) recommended. It balances the

optimistic approach to branching under scoreL with

the pessimistic approach under scoreS .

• scoreP (T , x, i) = max
{
c̆x − c̆x+

i
, 10−6

}
·

max
{
c̆x − c̆x−

i
, 10−6

}
. This is known as the Product

scoring rule. Comparing c̆x − c̆x−

i
and c̆x − c̆x+

i
to

10−6 allows the algorithm to compare two variables

even if c̆x − c̆x−

i
= 0 or c̆x − c̆x+

i
= 0. After all,

suppose the scoring rule simply calculated the product(
c̆x − c̆x−

i

)
·
(
c̆x − c̆x+

i

)
without comparing to 10−6.

If c̆x − c̆x−

i
= 0, then the score equals 0, canceling out

the value of c̆x − c̆x+
i

and thus losing the information

encoded by this difference.

Fix any two scoring rules score1 and score2. We de-

fine fr(x) to be the size of the tree B&B builds (normal-

ized to lie in [0, 1]) when it uses the score-based VSP

defined by (1 − r)score1 + rscore2. Our goal is to

learn the best convex combination of the two scoring rules.

When score1 = scoreL and score2 = scoreS ,

prior research has proposed several alternative settings for

the parameter r (Gauthier and Ribière, 1977; Bénichou

et al., 1971; Beale, 1979; Linderoth and Savelsbergh, 1999;

Achterberg, 2009), though no one setting is optimal across

all applications. Balcan et al. (2018a) prove the following

lemma about the structure of the functions f∗
x .

Lemma 4.6. For any IP x with n variables, the dual func-

tion f∗
x is piecewise-constant with at most n2(κ+1) pieces.

Lemma 4.6 implies the following worst-case bound on

R̂S (F). See Lemma B.4 in Appendix B.2 for the proof.

Corollary 4.7. For any set S ⊆ X of integer programs,

R̂S (F) ≤

√
2 ln(|S|(n2(κ+1)−1)+1)

|S| .

This corollary and Theorem 4.2 imply the following worst-

case generalization bound: with probability 1 − δ over

the draw of N samples S ∼ DN , for all r ∈ [0, 1],∣∣ 1
N

∑
x∈S fr(x)− Ex∼D [fr(x)]

∣∣ is bounded above by

2

√
2 ln(N

(
n2(κ+1) − 1

)
+ 1)

N
+ 3

√
1

2N
ln

2

δ
. (2)

This worst-case bound can be large when κ is large. We

find that although the duals f∗
x are piecewise-constant with

many pieces, they can be approximated piecewise-constant

functions with few pieces, as in Figure 1(a). As a result,

we improve over Equation (2) via Theorem 4.3, our data-

dependent bound.

To make use of Theorem 4.3, we now formally define

the function class whose dual (γ,∞)-approximates F∗.

We first define the dual class, then the primal class. To

this end, fix some integer j ≥ 1 and let Hj be the

set of all piecewise-constant functions mapping [0, 1] to

[0, 1] with at most j pieces. For every IP x, we define

g∗j,x ∈ argminh∈Hj
‖f∗

x − h‖∞, breaking ties in some fixed

but arbitrary manner. The function g∗j,x can be found via

dynamic programming; see Algorithm 1 in Appendix B.2.

We define the dual class G∗
j =

{
g∗j,x | x ∈ X

}
. Therefore,

the dual class G∗
j is consists of piecewise-constant functions

with at most j pieces. In keeping with the definition of pri-

mal and dual functions from Section 3, for every parameter

r ∈ [0, 1] and IP x, we define gj,r(x) = g∗j,x(r). Finally,

we define the primal class Gj = {gj,r | r ∈ [0, 1]} .

To apply our results from Section 4.1, we must bound the

Rademacher complexity of the set Gj . Doing so is simple

due to the structure of the dual class G∗
j . The following

lemma2 is a corollary of Lemma B.4 in Appendix B.2.

Lemma 4.8. For any set S ⊆ X of integer programs,

R̂S (Gj) ≤
√

2 ln(|S|(j−1)+1)
|S| .

This lemma together with Remark 4.5 and Corollary 4.4 im-

ply that with probability 1−δ over S ∼ DN , for all parame-

ters r ∈ [0, 1] and j ≥ 1,
∣∣ 1
N

∑
x∈S fr(x)− Ex∼D [fr(x)]

∣∣
is upper-bounded by the minimum of Equation (2) and

2γj + 2

√
2 ln(N(j − 1) + 1)

N
+

√
2

N
ln

2(πj)2

3δ
, (3)

where γj = Ex∼D

[∥∥f∗
x − g∗j,x

∥∥
∞

]
. As j grows, R̂S (Gj)

grows, but the dual class G∗
j is better able to approximate

F∗. In our experiments, we optimize this tradeoff between

generalizability and approximability.

Experiments. We analyze distributions over IPs formulat-

ing the combinatorial auction winner determination problem

under the OR-bidding language (Sandholm, 2002), which

we generate using the Combinatorial Auction Test Suite

(CATS) (Leyton-Brown et al., 2000). We use the “arbitrary”

generator with 200 bids and 100 goods, resulting in IPs with

200 variables, and the “regions” generator with 400 bids

and 200 goods, resulting in IPs with 400 variables.

We use the algorithm described in Appendix D.1 of the

paper by Balcan et al. (2018a) to compute the functions f∗
x .

It overrides the default VSP of CPLEX 12.8.0.0 using the

C API. We use Algorithm 1 in Appendix B.2 to compute

the approximating duals. All experiments were run on a

64-core machine with 512 GB of RAM.

2This bound on R̂S (Gj) could potentially be optimized even
further using a data-dependent approach, such as the one summa-
rized by Theorem E.3 in the paper by Balcan et al. (2018a).
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In Lemma B.8 in Appendix B.3, we prove that the dual class

G∗ (γ, p)-approximates F∗. To prove this, we first show

that ‖f∗
x − g∗x‖2 ≤ 1

4

√
2γp + 1

x
. When p = 2, we know

1
x
≤ 2γ2, so ‖f∗

x − g∗x‖2 < γ. Otherwise, we use our bound

on ‖f∗
x − g∗x‖2, Hölder’s inequality, and the log-convexity

of the Lp-norm to prove that ‖f∗
x − g∗x‖p ≤ γ.

Remark 4.10. Suppose, for example, that R = [0, 1]d. The-

orem 4.9 implies that even if |f∗
x(r)− g∗x(r)| is small for

all x in expectation over r ∼ Uniform(R), the function

class F may not have Rademacher complexity close to G.

Statistical learnability. In Appendix B.4, we connect our

results to the literature on statistical learnability (Haussler,

1992). At a high level, a function class F is statistically

learnable (Definition A.2 in Appendix A) if there exists a

learning algorithm that returns a function whose expected

value converges—as the size of the training set grows—

to the smallest expected value of any function in F . We

introduce a relaxation: a function class F is γ-statistically

learnable (Definition A.3) if, at a high level, there exists a

learning algorithm with error at most γ in the limit as the

training set size grows. We prove that if the dual class F∗ is

(γ,∞)-approximated by the dual of a statistically learnable

class G, then F is γ-statistically learnable. On the other

hand, Theorem 4.9 implies that there exists a class F that

is not γ-statistically learnable, yet it is (γ, p)-approximated

by the dual of a statistically learnable class G.

5. Conclusions

We provided generalization guarantees for algorithm con-

figuration, which bound the difference between a param-

eterized algorithm’s average empirical performance over

a set of sample problem instances and its expected perfor-

mance on future, unseen instances. We did so by exploiting

structure exhibited by the dual functions which measure the

algorithm’s performance as a function of its parameters. We

analyzed the widely-applicable setting where the dual func-

tions are approximated by “simple” functions. We showed

that if this approximation holds under the L∞-norm, then it

is possible to provide strong generalization guarantees. If,

however, the approximation only holds under the Lp-norm

for p < ∞, we showed that it is impossible in the worst-

case to provide non-trivial bounds. Via experiments in the

context of integer programming algorithm configuration, we

demonstrated that our bounds can be significantly stronger

than the best-known worst-case guarantees (Balcan et al.,

2018a), leading to a sample complexity improvement of

70,000%.

We conclude with a promising direction for future re-

search. Suppose, for some prior P over parameters,

Ex∼D,r∼P [|f∗
x(r)− g∗x(r)|] is small. From Remark 4.10,

we know strong generalization bounds are not possible in

the worst case, but what about under some realistic assump-

tions? This may help us understand, for example, why

random forests—which have a simple piecewise-constant

structure—are often able to accurately predict the runtime

of SAT and MIP solvers (Hutter et al., 2011).
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