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Abstract

While Nash equilibrium in extensive-form games is well un-
derstood, very little is known about the properties of extensive-
form correlated equilibrium (EFCE), both from a behavioral
and from a computational point of view. In this setting, the
strategic behavior of players is complemented by an external
device that privately recommends moves to agents as the game
progresses; players are free to deviate at any time, but will
then not receive future recommendations. Our contributions
are threefold. First, we show that an EFCE can be formulated
as the solution to a bilinear saddle-point problem. To showcase
how this novel formulation can inspire new algorithms to com-
pute EFCEs, we propose a simple subgradient descent method
which exploits this formulation and structural properties of
EFCEs. Our method has better scalability than the prior ap-
proach based on linear programming. Second, we propose two
benchmark games, which we hope will serve as the basis for
future evaluation of EFCE solvers. These games were chosen
so as to cover two natural application domains for EFCE: con-
flict resolution via a mediator, and bargaining and negotiation.
Third, we document the qualitative behavior of EFCE in our
proposed games. We show that the social-welfare-maximizing
equilibria in these games are highly nontrivial and exhibit sur-
prisingly subtle sequential behavior that so far has not received
attention in the literature.

1 Introduction

Nash equilibrium (NE) (Nash, 1950), the most seminal con-
cept in non-cooperative game theory, captures a multi-agent
setting where each agent is selfishly motivated to maximize
their own payoff. The assumption underpinning NE is that
the interaction is completely decentralized: the behavior of
each agent is not regulated by any external orchestrator. Con-
trasted with the other—often utopian—extreme of a fully
managed interaction, where an external dictator controls the
behavior of each agent so that the whole system moves to a
desired state, the social welfare that can be achieved by NE is
generally lower, sometimes dramatically so (Koutsoupias and
Papadimitriou, 1999; Roughgarden and Tardos, 2002). Yet,
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in many realistic interactions, some intermediate form of cen-
tralized control can be achieved. In particular, in his landmark
paper, Aumann (1974) proposed the concept of correlated
equilibrium (CE), where a mediator (the correlation device)
can recommend behavior, but not enforce it. In a CE, the
correlation device is constructed so that the agents—which
are still modeled as fully rational and selfish just like in an
NE—have no incentive to deviate from the private recom-
mendation. Allowing correlation of actions while ensuring
selfishness makes CE a good candidate solution concept in
multi-agent and semi-competitive settings such as traffic con-
trol, load balancing (Ashlagi, Monderer, and Tennenholtz,
2008), and carbon abatement (Ray and Gupta, 2009), and it
can lead to win-win outcomes.

In this paper, we study the natural extension of correlated
equilibrium in extensive-form (i.e., sequential) games, known
as extensive-form correlated equilibrium (EFCE) (von Sten-
gel and Forges, 2008). Like CE, EFCE assumes that the
strategic interaction is complemented by an external media-
tor; however, in an EFCE the mediator only privately reveals
the recommended next move to each acting player, instead of
revealing the whole plan of action throughout the game (i.e.,
recommended move at all decision points) for each player
at the beginning of the game. Furthermore, while each agent
is free to defect from the recommendation at any time, this
comes at the cost of future recommendations.

While the properties of correlation in normal-form games
are well-studied, they do not automatically transfer to the
richer world of sequential interactions. It is known in the
study of NE that sequential interactions can pose different
challenges, especially in settings where the agents retain pri-
vate information. Conceptually, the players can strategically
adjust to dynamic observations about the environment and
their opponents as the game progresses. Despite tremendous
interest and progress in recent years for computing NE in
sequential interactions with private information, with signif-
icant milestones achieved in poker games (Bowling et al.,
2015; Brown and Sandholm, 2017; Morav¢ik et al., 2017,
Brown and Sandholm, 2019b) and other large, real-world do-
mains, not much has been done to increase our understanding
of (extensive-form) correlated equilibria in these settings.

Contributions Our primary objective with this paper is



to spark more interest in the community towards a deeper

understanding of the behavioral and computational aspects

of EFCE.

e In Section 3 we show that an EFCE in a two-player general-
sum game is the solution to a bilinear saddle-point problem
(BSPP). This conceptual reformulation complements the
EFCE construction by von Stengel and Forges (2008),
and allows for the development of new and efficient al-
gorithms. As a proof of concept, by using our reformula-
tion we devise a variant of projected subgradient descent
which outperforms linear-programming(LP)-based algo-
rithms proposed by von Stengel and Forges (2008) in large
game instances.

e In Section 5 we propose two benchmark games; each game
is parametric, so that these games can scale in size as de-
sired. The first game is a general-sum variant of the classic
war game Battleship. The second game is a simplified
version of the Sheriff of Nottingham board game. These
games were chosen so as to cover two natural application
domains for EFCE: conflict resolution via a mediator, and
bargaining and negotiation.

e By analyzing EFCE in our proposed benchmark games,
we show that even if the mediator cannot enforce behavior,
it can induce significantly higher social welfare than NE
and successfully deter players from deviating in at least
two (often connected) ways: (1) using certain sequences
of actions as ‘passcodes’ to verify that a player has not de-
viated: defecting leads to incomplete or wrong passcodes
which indicate deviation, and (2) inducing opponents to
play punitive actions against players that have deviated
from the recommendation, if such a deviation is detected.
Crucially, both deterrents are unique to sequential inter-
actions and do not apply to non-sequential games. This
corroborates the idea that the mediation of sequential in-
teractions is a qualitatively different problem than that of
non-sequential games and further justifies the study of
EFCE as an interesting direction for the community. To
our knowledge, these are the first experimental results and
observations on EFCE in the literature.

The source code for our game generators and subgradient

method is published online'.

2 Preliminaries

Extensive-form games (EFGs) are sequential games that are
played over a rooted game tree. Each node in the tree belongs
to a player and corresponds to a decision point for that player.
Outgoing edges from a node v correspond to actions that can
be taken by the player to which v belongs. Each terminal
node in the game tree is associated with a tuple of payoffs
that the players receive should the game end in that state.
To capture imperfect information, the set of vertices of each
player is partitioned into information sets. The vertices in a
same information set are indistinguishable to the player that
owns those vertices. For example, in a game of Poker, a player
cannot distinguish between certain states that only differ in
opponent’s private hand. As a result, the strategy of the player
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(specifying which action to take) is defined on the information
sets instead of the vertices. For the purpose of this paper, we
only consider perfect-recall EFGs. This property means that
each player does not forget any of their previous action, nor
any private or public observation that the player has made.
The perfect-recall property can be formalized by requiring
that for any two vertices in a same information set, the paths
from those vertices to the root of the game tree contain the
exact same sequence of actions for the acting player at the
information set.

A pure normal-form strategy for Player ¢ defines a choice
of action for every information set that belongs to i. A player
can play a mixed strategy, i.e., sample from a distribution over
their pure normal-form strategies. However, this representa-
tion contains redundancies: some information sets for Player
1 may become unreachable reachable after the player makes
certain decisions higher up in the tree. Omitting these redun-
dancies leads to the notion of reduced-normal-form strategies,
which are known to be strategically equivalent to normal-
form strategies (e.g., (Shoham and Leyton-Brown, 2009) for
more details). Both the normal-form and the reduced-normal-
form representation are exponentially large in the size of the
game tree.

Here, we fix some notations. Let Z be the set of terminal
states (or equivalently, outcomes) in the game and u;(z) be
the utility obtained by player ¢ if the game terminates at z €
Z. Let I1; be the set of pure reduced-normal-form strategies
for Player i. We define II,(1), II;(I, a) and II,;(z) to be the
set of reduced-normal-form strategies that (a) can lead to
information set I, (b) can lead to [ and prescribes action a
at information set I, and (c) can lead to the terminal state
z, respectively. We denote by 3J; the set of information set-
action pairs (1, a) (also referred to as sequences), where I
is an information set for Player ¢ and « is an action at set /.
For a given terminal state z let 0;(z) be the last (I, a) pair
belonging to Player ¢ encountered in the path from the root
of the tree to z.

Extensive-Form Correlated Equilibrium Extensive-
form correlated equilibrium (EFCE) is a solution concept
for extensive-form games introduced by von Stengel and
Forges (2008).2 Like in the traditional correlated equilibrium
(CE), introduced by Aumann (1974), a correlation device
selects private signals for the players before the game starts.
These signals are sampled from a correlated distribution y—a
joint probability distribution over II; x IIs—and represent
recommended player strategies. However, while in a CE the
recommended moves for the whole game tree are privately
revealed to the players when the game starts, in an EFCE
the recommendations are revealed incrementally as the play-
ers progress in the game tree. In particular, a recommended
move is only revealed when the player reaches the decision
point in the game for which the recommendation is relevant.

20ther CE-related solution concepts in sequential games include
the agent-form correlated equilibrium (AFCE), where agents con-
tinue to receive recommendations even upon defection, and normal-
form coarse CE (NFCCE). NFCCE does not allow for defections
during the game, in fact, before the game starts, players must de-
cide to commit to following al/l recommendations upfront (before
receiving them), or elect to receive none.



Moreover, if a player ever deviates from the recommended
move, they will stop receiving recommendations. To con-
cretely implement an EFCE, one places recommendations
into ‘sealed envelopes’ which may only be opened at its re-
spective information set. Sealed envelopes may implemented
using cryptographic techniques (see Dodis, Halevi, and Rabin
(2000) for one such example).

In an EFCE, the players know less about the set of rec-
ommendations that were sampled by the correlation device.
The benefits are twofold. First, the players can be more easily
induced to play strategies that hurt them (but benefit the over-
all social welfare), as long as “on average” the players are
indifferent as to whether or not to follow the recommenda-
tions: the set of EFCEs is a superset of that of CEs. Second,
since the players observe less, the set of probability distribu-
tions for the correlation device for which no player has an
incentive to deviate can be described succinctly in certain
classes of games: von Stengel and Forges (2008, Theorem
1.1) show that in two-player, perfect-recall extensive-form
games with no chance moves, the set of EFCEs can be de-
scribed by a system of linear equations and inequalities of
polynomial size in the game description. On the other hand,
the same result cannot hold in more general settings: von
Stengel and Forges (2008, Section 3.7) also show that in
games with more than two players and/or chance moves, de-
ciding the existence of an EFCE with social welfare greater
than a given value is NP-hard. It is important to note that
this last result only implies that the characterization of the
set of all EFCEs cannot be of polynomial size in general
(unless P = NP). However, the problem of finding one EFCE
can be solved in polynomial time: Huang (2011) and Huang
and von Stengel (2008) show how to adapt the Ellipsoid
Against Hope algorithm (Papadimitriou and Roughgarden,
2008; Jiang and Leyton-Brown, 2015) to compute an EFCE
in polynomial time in games with more than two players
and/or with chance moves. Unfortunately, that algorithm is
only theoretical, and known to not scale beyond extremely
small instances (Leyton-Brown, 2019).

3 Extensive-Form Correlated Equilibria as
Bilinear Saddle-Point Problems

Our objective for this section is to cast the problem of finding

an EFCE in a two-player game as a bilinear saddle-point prob-

lem, that is a problem of the form min, ¢y maxycy xAy,
where X and ) are compact convex sets. In the case of EFCE,

X and Y are convex polytopes that belong to a space whose

dimension is polynomial in the game tree size. This reformu-

lation is meaningful:

e From a conceptual angle, it brings the problem of comput-
ing an EFCE closer to several other solution concepts in
game theory that are known to be expressible as BSPP. In
particular, the BSPP formulation shows that an EFCE can
be viewed as a NE in a two-player zero-sum game between
a deviator, who is trying to decide how to best defect from
recommendations, and a mediator, who is trying to come
up with an incentive-compatible set of recommendations.

e From a geometric point of view, the BSPP formulation
better captures the combinatorial structure of the problem:

X and ) have a well-defined meaning in terms of the input
game tree. This has algorithmic implications: for example,
because of the structure of )/ (which will be detailed later),
the inner maximization problem can be solved via a single
bottom-up game-tree traversal.

e From a computational standpoint, it opens the way to the
plethora of optimization algorithms (both general-purpose
and those specific to game theory) that have been de-
veloped to solve BSPPs. Examples include Nesterov’s
excessive gap technique (Nesterov, 2005), Nemirovski’s
mirror prox algorithm (Nemirovski, 2004) and regret-
methods based methods such as mirror descent, follow-
the-regularized-leader (e.g., Hazan (2016)), and CFR and
its variants Zinkevich et al. (2007); Farina, Kroer, and
Sandholm (2019); Brown and Sandholm (2019a).

Furthermore, it is easy to show that by dualizing the inner

maximization problem in the BSPP formulation, one recovers

the linear program introduced by von Stengel and Forges

(2008) (we show this in Appendix A). In this sense, our

formulation subsumes the existing one.

Triggers and Deviations One effective way to reason
about extensive-form correlated equilibria is via the notion
of trigger agents, which was introduced (albeit used in a
different context) in Gordon, Greenwald, and Marks (2008)
and Dudik and Gordon (2009):

Definition 1. Let 6 := (f ,@) € X; be a sequence for Player i,

and let i be a distribution over T1;(I). A (6, fu)-trigger agent

for Player i is a player that follows all recommendations

given by the mediator unless they get recommended a at I

in that case, the player ‘gets triggered’, stops following the

recommendations and instead plays based on a pure strategy
sampled from [i until the game ends.

A correlated distribution y is an EFCE if and only if any
trigger agent for Player ¢ can get utility at most equal to the
utility that Player ¢ earns by following the recommendations
of the mediator at all decision points. In order to express
the utility of the trigger agent, it is necessary to compute
the probability of the game ending in each of the terminal
states. As we show in Appendix B, this can be done concisely
by partitioning the set of terminal nodes in the game tree
into three different sets. In particular, let Z fa be the set of
terminal nodes whose path from the root of the tree contains
taking action & at Iandlet Z ;7 be the set of terminal nodes

whose path from the root passes through I and are not in
Z .4~ We have

Lemma 1. Consider a (6, [i)-trigger agent for Player
1, where 6 = (I,a). The value of the trigger agent,
defined as the expected difference between the util-
ity of the trigger agent and the utility of an agent
that always follows recommendations sampled from cor-
related distribution p, is computed as vis({t, fl) =
2vez, m(2)61(03 2)y16(2) =2z, w(2)61(01(2); 2),
where §1(632) = Y . cm, (5) Dometly(») M(T1, T2) and
Y1,6(2) = Zﬁlenl(z) (7).

(A symmetric result holds for Player 2, with symbols
&(6;2) and y2 5(2).) It now seems natural to perform a



change of variables, and pick distributions for the random
variables y1 5 (), y2,6(+), &1 (+; -) and & (+; -) instead of p and
1. Since there are only a polynomial number (in the game
tree size) of combinations of arguments for these new random
variables, this approach allows one to remove the redundancy
of realization-equivalent normal-form plans and focus on a
significantly smaller search space. In fact, the definition of
& = (&1,&2) also appears in (von Stengel and Forges, 2008),
referred to as (sequence-form) correlation plan. In the case
of the ¥ 5 and y» 5 random variables, it is clear that the
change of variables is possible via the sequence form (von
Stengel, 2002); we let Y; 5 be the sequence-form polytope
of feasible values for the vector y; 5. Hence, the only hurdle
is characterizing the space spanned by &; and &5 as p varies
across the probability simplex. In two-player perfect-recall
games with no chance moves, this is exactly one of the merits
of the landmark work by von Stengel and Forges (2008). In
particular, the authors prove that in those games the space of
feasible £ can be captured by a polynomial number of linear
constraints. In more general cases the same does not hold
(see second half of Section 2), but we prove the following
(Appendix C):

Lemma 2. In a two-player game, as | varies over the
probability simplex, the joint vector of &1 (+;+), &2(+; ) vari-
ables spans a convex polytope X in R", where n is at most
quadratic in the game size.

Saddle-Point Reformulation According to Lemma 1,
for each Player ¢ and (&, fi)-trigger agent for them, the value
of the trigger agent is a biaffine expression in the vectors y; 5
and &;, and can be written as v; 5 (&;, yi ) = fiTA,;_ﬁyw —
bZ&& for a suitable matrix A; ;s and vector b; 5, where the
two terms in the difference correspond to the expected utility
for deviating at & according to the (sequence-form) strategy
i, and the expected utility for not deviating at 6. Given a
correlation plan { = (&1,&2) € X, the maximum value of
any deviation for any player can therefore be expressed as

v*(&) 1= maxy; sy, 3 Vie (&is Vi) =
max;e (1,2} MaXsex, MaXy, cv, 1§ Aisvis — b25§i}-

We can convert the maximization above into a continuous
linear optimization problem by introducing the multipliers
Mi.s € [0,1] (one per each Player ¢ € {1,2} and trigger
0 € Y;), and write

v*(§) = max }2 §§;Ai,&zi,& — Xiobi 5,

{Xi 6,216

where the maximization is subject to the linear constraints
[C1] Zie{1,2} Dsex, Aig = Land [Ca] zi6 € NigYis
forall i € {1,2},6 € X,. These linear constraints define a
polytope V.

A correlation plan ¢ is an EFCE if an only if v; 5 (&, y;.6) <
0 for every trigger agent, i.e., v*(£) < 0. Therefore, to find an
EFCE, we can solve the optimization problem ming ¢ x v*(£),
which is a bilinear saddle point problem over the convex
domains X and ), both of which are convex polytopes that
belong to R™, where n is at most quadratic in the input game
size (Lemma 2). If an EFCE exists, the optimal value should
be non-positive and the optimal solution is an EFCE (as
it satisfies v*(£) < 0). In fact, since EFCE’s always exist

(as EFCEs are supersets of CEs von Stengel and Forges
(2008)), and one can select triggers to be terminal sequences
for Player 1, the optimal value of the BSPP is always O.
The BSPP can be interpreted as the NE of a zero-sum game
between the mediator, who decides on a suitable correlation
plan & and a deviator who selects the y; 5’s to maximize each
vi,5(&i, Yi,6)- The value of this game is always 0.

Finally, we can enforce a minimum lower bound 7 on
the sum of players’ utility by introducing an additional vari-
able Ay € [0, 1] and maximizing the new convex objective

(€)= maxyepo,1) (1= Aw) - 0" (§) +
Aw [T = XLz m(2)61(252) = 2, 5 ua(2)€2(z;2)] ).

4 Computing an EFCE using Subgradient
Descent

von Stengel and Forges (2008) show that a SW-maximizing
EFCE of a two-player game without chance may be expressed
as the solution of an LP and solved using generic methods
such as the simplex algorithm or interior-point methods. How-
ever, this does not scale to large games as these methods
require storing and inverting large matrices. Another way of
computing SW-maximizing EFCEs was provided by Dudik
and Gordon (2009). However, their algorithm assumes that
sampling from correlation plans is possible using the Monte
Carlo Markov chain algorithm and does not factor in conver-
gence of the Markov chain. Furthermore, even though their
formulation generalizes beyond our setting of two-player
games without chance, our gradient descent method admits
more complex objectives. In particular, it allows the mediator
to maximize over general concave objectives (in correlation
plans) instead of only linear objectives with potentially some
regularization. Here, we showcase the benefits of exploiting
the combinatorial structure of the BSPP formulation of Sec-
tion 3 by proposing a simple algorithm based on subgradient
descent; in Section 6 we show that this method scales better
than commercial state-of-the-art LP solver in large games.

For brevity, we only provide a sketch of our algorithm,
which computes a feasible EFCE; the extension to the
slightly more complicated objective v, (¢) (Equation ??)
is straightforward—see Appendix D for more details. First,
observe that the objective v*(€) is convex since it is the
maximum of linear functions of £. This suggests that we
may perform subgradient descent on v*, where the subgradi-
ents are given by 9/08 v*(§) = A 5+Yj 5« — i 5+, Where
(i*,6%,y;« 5-) is a triplet which maximizes the objective
function v*(&). The computation of such a triplet can be
done via a straightforward bottom-up traversal of the game
tree. In order to maintain feasibility (that is, £ € X)), it is
necessary to project onto X', which is challenging in practice
because we are not aware of any distance-generating func-
tion that allows for efficient projection onto this polytope.
This is so even in games without chance (where & can be ex-
pressed by a polynomial number of constraints (von Stengel
and Forges, 2008)). Furthermore, iterative methods such as
Dykstra’s algorithm, add a dramatic overhead to the cost of
each iterate.

To overcome this hurdle, we observe that in games with
no chance moves, the set X’ of correlation plans—as charac-



terized by von Stengel and Forges (2008) via the notion of
consistency constraints—can be expressed as the intersection
of three sets: (i) A7, the sets of vectors £ that only satisfy con-
sistency constraints for Player 1; (ii) &>, the sets of vectors
¢ that only satisfy consistency constraints for Player 2; and
(iii) R, the non-negative orthant. X and X» are polytopes
defined by equality constraints only. Therefore, an exact pro-
jection (in the Euclidean sense) onto & and X can be carried
out efficiently by precomputing a suitable factorization the
constraint matrices that define X} and A5. In particular, we
are able to leverage the specific combinatorial structure of the
constraints that form X and &> to design an efficient and par-
allel sparse factorization algorithm (see Appendix D for the
full details). Furthermore, projection onto the non-negative
orthant can be done conveniently, as it just amounts to com-
puting a component-wise maximum between ¢ and the zero
vector. Since X = &} N A NR”, and since projecting onto
X1, X and R} individually is easy, we can adopt the recent
algorithm proposed by Wang and Bertsekas (2013) designed
to handle exactly this situation. In that algorithm, gradient
steps are interlaced with projections onto &7, X3 and R} ina
cyclical manner. This is similar to projected gradient descent,
but instead of projecting onto the intersection of &7, X> and
R” (which we believe to be difficult), we project onto just
one of them in round-robin fashion. This simple method was
shown to converge by Wang and Bertsekas (2013). However,
no convergence bound is currently known.

S Introducing the First Benchmarks for
EFCE

In this section we introduce the first two benchmark games
for EFCE. These games are naturally parametric so that they
can scale in size as desired and hence used to evaluate dif-
ferent EFCE solvers. In addition, we show that the EFCE in
these games are interesting behaviorally: the correlation plan
in social-welfare-maximizing EFCE is highly nontrivial and
even seemingly counter-intuitive. We believe some of these
induced behaviors may prove practical in real-world scenar-
ios and hope our analysis can spark an interest in EFCEs and
other equilibria in sequential settings.

5.1 Battleship: Conflict Resolution via a Mediator

In this section we introduce our first proposed benchmark
game to illustrate the power of correlation in extensive-form
games. Our game is a general-sum variant of the classic game
Battleship. Each player takes turns to secretly place a set of
ships S (of varying sizes and value) on separate grids of size
H x W. After placement, players take turns firing at their
opponent—ships which have been hit at all the tiles they
lie on are considered destroyed. The game continues until
either one player has lost all of their ships, or each player has
completed 7 shots. At the end of the game, the payoff of each
player is computed as the sum of the values of the opponent’s
ships that were destroyed, minus ~ times the value of ships
which they lost, where v > 1 is called the loss multiplier of
the game. The social welfare (SW) of the game is the sum of
utilities to all players.

In order to illustrate a few interesting feature of social-
welfare-maximizing EFCE in this game, we will focus on

the instance of the game with a board of size 3 x 1, in which
each player commands just 1 ship of value and length 1, there
are 2 rounds of shooting per player, and the loss multiplier
is v = 2. In this game, the social-welfare-maximizing Nash
equilibrium is such that each player places their ship and
shoots uniformly at random. This way, the probability that
Player 1 and 2 will end the game by destroying the opponent’s
ship is 3/0 and 1/3 respectively (Player 1 has an advantage
since they act first). The probability that both players will
end the game with their ships unharmed is a meagre 1/o.
Correspondingly, the maximum SW reached by any NE of
the game is —8/9.

In the EFCE model, it is possible to induce the players to
end the game with a peaceful outcome—that is, no damage to
either ship—with probability 5/18, 2.5 times of the probability
in NE, resulting in a much-higher SW of —13/18. Before we
continue with more details as to how the mediator (correlation
device) is able to achieve this result in the case where v = 2,
we remark that the benefit of EFCE is even higher when the
loss multiplier v increases: Figure 1 (left) shows, as a function
of ~y, the probability with which Player 1 and 2 terminate the
game by sinking their opponent’s ship, if they play according
to the SW-maximizing EFCE. For all values of ~, the SW-
maximizing NE remains the same while with a mediator, the
probability of reaching a peaceful outcome increases as ~y
increases, and asymptotically gets closer to 1/3 and the gap
between the expected utility of the two players vanishes. This
is remarkable, considering Player 1’s advantage for acting
first.

We now resume our analysis of the SW-maximizing EFCE
in the instance where v = 2. In a nutshell, the correlation
plan is constructed in a way that players are recommended
to deliberately miss, and deviations from this are punished
by the mediator, who reveals to the opponent the ship loca-
tion that was recommended to the deviating player. First, the
mediator recommends the players a ship placement that is
sampled uniformly at random and independently for each
players. This results in 9 possible scenarios (one per possible
ship placement) in the game, each occurring with probability
1/9. Due to the symmetric nature of ship placements, only
two scenarios are relevant: whether the two players are rec-
ommended to place their ship in the same spot, or in different
spots. Figure 1 (right) shows the probability of each recom-
mendation from the mediator in the former case, assuming
that the players do not deviate. The latter case is symmetric
(see Appendix E for details). Now, we explain the first of
the two methods in which the mediator compels non-violent
behavior. We focus on the first shot made by Player 1 (i.e., the
root in Figure 3). The mediator suggests that Player 1 shoot
at the Player 2’s ship with a low 2/27 probability, and deliber-
ately miss with high probability. One may wonder how it is
possible for this behavior to be incentive-compatible (that is,
what are the incentives that compel Player 1 into not defect-
ing), since the player may choose to randomly fire in any of
the 2 locations that were not recommended, and get almost
1/2 chance of winning the game immediately. The key is that
if Player 1 does so and does not hit the opponent’s ship, then
the mediator can punish him by recommending that Player 2
shoot in the position where Player 1’s was recommended to
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Figure 1: (Left) Probabilities of players sinking their opponent when the players play according to the SW-maximizing EFCE. For v > 2, the
probability of the game ending with no sunken ship and the probability of Player 2 sinking Player 1 coincide. (Right) Example of a playthrough
of Battleship assuming both players are recommended to place their ship in the same position a. Edge labels represents the probability of an
action being recommended. Squares and hexagons denote actions taken by Players 1 and 2 respectively. Blue and red nodes represent cases
where Players 1 and 2 sink their opponent, respectively. The Shoot action is abbreviated ‘Sh.’.

place their ship. Since players value their ships more than de-
stroying their opponents’, the player is incentivized to avoid
such a situation by accepting the recommendation to (most
probably) miss. We see the first example of deterrent used by
the mediator: inducing the opponent to play punitive actions
against players that have deviated from the recommendation,
if ever that deviation can be detected from the player. A simi-
lar situation arises in the first move of Player 2, where Player
2 is recommended to deliberately miss, hitting each of the 2
empty spots with probability 1/2. A more detailed analysis is
available in Appendix E.

5.2 Sheriff: Bargaining and Negotiation

Our second proposed benchmark is a simplified version of
the Sheriff of Nottingham board game. The game models the
interaction of two players: the Smuggler—who is trying to
smuggle illegal items in their cargo—and the Sheriff—who is
trying to stop the Smuggler. At the beginning of the game, the
Smuggler secretly loads his cargo with n € {0,... Ny}
illegal items. At the end of the game, the Sheriff decides
whether to inspect the cargo. If the Sheriff chooses to inspect
the cargo and finds illegal goods, the Smuggler must pay a
fine worth p - n to the Sheriff. On the other hand, the Sheriff
has to compensate the Smuggler with a utility s if no illegal
goods are found. Finally, if the Sheriff decides not to inspect
the cargo, the Smuggler’s utility is v - n whereas the Sheriff’s
utility is 0. The game is made interesting by two additional
elements (which are also present in the board game): bribery
and bargaining. After the Smuggler has loaded the cargo
and before the Sheriff chooses whether or not to inspect, they
engage in r rounds of bargaining. Ateachround: =1,... 7,
the Smuggler tries to tempt the Sheriff into not inspecting the
cargo by proposing a bribe b; € {0, . .. bmax }, and the Sheriff
responds whether or not they would accept the proposed
bribe. Only the proposal and response from round r will be
executed and have an impact on the final payoffs—that is, all
but the r-th round of bargaining are non-consequential and
their purpose is for the two players to settle on a suitable bribe
amount. If the Sheriff accepts bribe b,., then the Smuggler
gets p - n — b,, while the Sheriff gets b,.. See Appendix F for

a formal description of the game.

We now point out some interesting behavior of EFCE in
this game. We refer to the game instance where v = 5,p =
1,8 = 1,nmax = 10,bpmax = 2,7 = 2 as the baseline in-
stance.

Effect of v, p and s. First, we show what happens in the
baseline instance when the item value v, item penalty p,
and Sheriff compensation (penalty) s are varied in isolation
over a continuous range of values. The results are shown
in Figure 2. In terms of general trends, the effect of the
parameter to the Smuggler is fairly consistent with intuition:
the Smuggler benefits from a higher item value as well as
from higher sheriff penalties, and suffers when the penalty
for smuggling is increased. However, the finer details are
much more nuanced. For one, the effect of changing the
parameters not only is non-monotonic, but also discontinuous.
This behavior has never been documented and we find it
rather counterintuitive. More counterintuitive observations
can be found in Appendix F.

Effect of nmax, bmax, and r. Here, we try to empirically
understand the impact of n and b on the SW maximizing
equilibrium. As before we set v = 5,p = 1,s = 1 and
vary n and r simultaneously while keeping by, constant.
The results are shown in Table 2. The most striking obser-
vation is that increasing the capacity of the cargo np,x may
decrease social welfare. For example, consider the case when
bmax = 2, NMmax = 2,7 = 1 (shown in blue in Table 2, right)
where the payoffs are (8.0, 2.0). This achieves the maximum
attainable social welfare by smuggling nm.,x = 2 items and
having the Sheriff accept a bribe of 2. When n,,x is increased
to 5 (red entry in the table), the payoffs to both players drop
significantly, and even more so when n,,x increases further.
‘While counter-intuitive, this behavior is consistent in that
the Smuggler may not benefit from loading 3 items every
time he was recommended to load 2; the Sheriff reacts by
inspecting more, leading to lower payoffs for both players.
That behavior is avoided by increasing the number of rounds
r: by increasing to r = 2 (entry shown in purple), the be-
havior disappears and we revert to achieving a social wel-
fare of 10 just like in the instance with np,x = 2,7 = 1.
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Figure 2: Utility of players with varying v, p and s for the SW-maximizing EFCE. We verified that these plots are not the result of equilibrium

selection issues.

(H,W) r Ship #Actions #Releve.mt Time (LP) Time (ours)
’ length | P11 PI2  seq.pairs | 10! 10-2 1073 | 10-* 1072 108
2,2) 3 1 741 917 35241 2s 2s 2s 1s 2s 3s
3,2) 3 1 15k 47k 3.89M 3m6s 3m17s 3m 24s 8s 34s 52s
3,2) 4 1 145k 306k 26.4M |42m39s 42m44s 43m |2m48s 14m 1s 23m 24s
3,2) 4 2 970k 2.27M 111M — out of memoryJr — — did not achieve ¥ —

Table 1: #Relevant seq. pairs is the dimension of £ under the compact representation of von Stengel and Forges (2008). For LPs, we report the
fastest of Barrier, Primal and Dual Simplex, and 3 different formulations (Appendix G). T Gurobi went out of memory and was killed by the
system after ~ 3000 seconds ¥ Our method requires 1 hour per iteration and did not achieve the required accuracy after 6 hours.

With sufficient bargaining steps, the Smuggler, with the aid
of the mediator, is able to convince the Sheriff that they
have complied with the recommendation by the mediator.
This is

because the o | T =1 r=2 r=3
mediator 1 [(3.00,2.00) (3.00,2.00) (3.00,2.00)

d 2 | (8.00,2.00) (8.00,2.00) (8.00,2.00)
spends 5 [(2.28,1.26) (8.00,2.00) (8.00,2.00)
the first 10 |(1.76,0.93) (7.26,1.82) (8.00,2.00)

r — 1 bribes
to give a Table 2: Payoffs for (Smuggler, Sheriff) in the
‘passcode’ SW-maximizing EFCE.

to the Smuggler so that the Sheriff can verify compliance—if
an ‘unexpected’ bribe is suggested, then the Smuggler
must have deviated, and the Sheriff will inspect the cargo
as punishment. With more rounds, it is less likely that
the Smuggler will guess the correct passcode. See also
Appendix F for additional insights.

6 Experimental Evaluation

Even our proof-of-concept algorithm based on the BSSP for-
mulation and subgradient descent, introduced in Section 3,
is able to beat LP-based approaches using the commercial
solver Gurobi (Gurobi Optimization, 2018) in large games.
This confirms known results about the scalability of methods
for computing NE, where in the recent years first-order meth-
ods have affirmed themselves as the only algorithms that are
able to handle large games.

We experimented on Battleship over a range of parameters
while fixing v = 2. All experiments were run on a machine
with 64 cores and S00GB of memory. For our method, we

tuned step sizes based on multiples of 10. In Table 1, we
report execution times when all constraints (feasibility and
deviation) are violated by no greater than 10~%, 102 and
10~3. Our method outperforms the LP-based approach for
larger games. However, while we outperform the LP-based
approach for accuracies up to 10~2, Gurobi spends most of its
time reordering variables and preprocessing and its solution
converges faster for higher levels of precision; this is expected
of a gradient-based method like ours. On very large games
with more than 100 million variables, both our method and
Gurobi fail—in Gurobi’s case, it was due to a lack of memory
while in our case, each iteration required nearly an hour which
was prohibitive. The main bottleneck in our method was the
projection onto X; and AX5. We also experimented on the
Sheriff game and obtained similar findings (Appendix H).

7 Conclusions

In this paper, we proposed two parameterized benchmark
games in which EFCE exhibits interesting behaviors. We
analyzed those behaviors both qualitatively and quantitatively,
and isolated two ways through which a mediator is able to
compel the agents to follow the recommendations. We also
provided an alternative saddle-point formulation of EFCE
and demonstrated its merit with a simple subgradient method
which outperforms standard LP based methods.

We hope that our analysis will bring attention to some
of the computational and practical uses of EFCE, and that
our benchmark games will be useful for evaluating future
algorithms for computing EFCE in large games.
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