Private Query Release Assisted by Public Data

Raef Bassily ! Albert Cheu? Shay Moran® Aleksandar Nikolov* Jonathan Ullman? Zhiwei Steven Wu?

Abstract

We study the problem of differentially private
query release assisted by access to public data.
In this problem, the goal is to answer a large
class H of statistical queries with error no more
than « using a combination of public and private
samples. The algorithm is required to satisfy dif-
ferential privacy only with respect to the private
samples. We study the limits of this task in terms
of the private and public sample complexities.
Our upper and lower bounds on the private sam-
ple complexity have matching dependence on the
dual VC-dimension of H. For a large category of
query classes, our bounds on the public sample
complexity have matching dependence on .

1. Introduction

The ability to answer statistical queries on a sensitive data
set in a privacy-preserving way is one of the most funda-
mental primitives in private data analysis. In particular,
this task has been at the center of the literature of differ-
ential privacy since its emergence (Dinur & Nissim, 2003;
Dwork et al., 2006) and is also central to the upcoming
US Census 2020 release (Dajani et al., 2017). In its ba-
sic form, the problem of differentially private query release
can be described as follows. Given a class H of queries
h : X — {#£1}' defined over some domain X, and a
data set Z of i.i.d. samples from some unknown distribution
D over X, the goal is to construct an (g, §)-differentially
private algorithm that, given H and Z, outputs a mapping
G : H — [—1,1] such that for every h € H, G(h) gives an
accurate estimate for the true mean w]ED [h(z)] up to some
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error . A central question in this problem is concerned
with characterizing the private sample complexity, which
is the least amount of private samples required to perform
this task up to some error .. This question has been exten-
sively studied in the literature on differential privacy (Dinur
& Nissim, 2003; Hardt & Rothblum, 2010; Muthukrish-
nan & Nikolov, 2012; Blum et al., 2013; Bun et al., 2018;
Steinke & Ullman, 2015). For general query classes, it was
shown that the optimal bound on the private sample com-
plexity in terms of |X|, |H, and the privacy parameters is
attained by the Private Multiplicative Weights (PMW) al-
gorithm due to Hardt and Rothblum (Hardt & Rothblum,
2010). This optimality was established by the lower bound
due to Bun et al. (Bun et al., 2018). This result implied the
impossibility of differentially private query release for cer-
tain classes of infinite size. Moreover, subsequent results
by (Bun et al., 2015; Alon et al., 2019b) implied that this
impossibility is true even for a simple class such as one-
dimensional thresholds over R. On the other hand, without
any privacy constraints, the query release problem is equiv-
alent to attaining uniform convergence over H, and hence
the sample complexity is given by d/a?, where d is the
VC-dimension of H.

In practice, it is often feasible to collect some amount of
“public” data that poses no privacy concerns. For example,
in the language of consumer privacy, there is considerable
amount of data collected from the so-called “opt-in” users,
who voluntarily offer or sell their data to companies or or-
ganizations. Such data is deemed by its original owner to
pose no threat to personal privacy. There are also a variety
of other sources of public data that can be harnessed.

Motivated by the above observation, and by the limitations
in the standard model of differentially private query release,
in this work, we study a relaxed setting of this problem,
which we call Public-data-Assisted Private (PAP) query
release. In this setting, the query-release algorithm has
access to two types of samples from the unknown distri-
bution: private samples that contain personal and sensitive
information (as in the standard setting), and public sam-
ples. The goal is to design algorithms that can exploit as
little public data as possible to achieve non-trivial savings
in sample complexity over standard DP query-release algo-
rithms, while still providing strong privacy guarantees for
the private dataset.
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1.1. Our results

In this work we study the private and public sample com-
plexities of PAP query-release algorithms, and give upper
and lower bounds on both.

1. Upper bounds: We give a construction of a PAP al-
gorithm that solves the query release problem for any
query class H using only ~ d/« public samples, and
~ /pd*/?/a? private samples, where d is the VC-
dimnension of H and p is the dual VC-dimension of H.

Recall that d/a? samples are necessary even without
privacy constraints, so our upper bound on the public
sample complexity shows a nearly quadratic saving.

2. Lower bound on private sample complexity: We
show that there is a query class H with VC-dimension
log(p) and dual VC-dimension p such that any PAP
algorithm either requires 2(1/a?) public samples or
requires Q(\/ﬁ/a) total samples. Thus the \/p de-
pendence above is unavoidable. For this class,
O(log(p)/a?) public samples are enough to solve the
problem with no private samples, and O(log(p)/a? +
/P/ ) private samples are enough to solve the problem
with no public samples. Thus, public samples do not
help, unless there are nearly enough public samples to
solve the problem without private samples.

3. Lower bound on public sample complexity: We show
that if the class A has infinite Littlestone dimension,?
then any PAP query-release algorithm for  must have
public sample complexity ©(1/«). The simplest ex-
ample of such a class is the class of one-dimensional
thresholds over R. This class has VC-dimension 1, and
therefore demonstrates that the upper bound above is
nearly tight.

1.2. Techniques

Upper bounds: The first key step in our construction for
the upper bound is to use the public data to construct a finite
class H that forms a “good approximation” of the original
class H. Such approximation is captured via the notion of
an a-cover (Definition 1). The number of public examples
that suffices to construct such approximation is about d/«
(Alon et al., 2019a). Given this finite class ’;Q, we then
reduce the original domain X to a finite set Xz of repre-
sentative domain points, which is defined via an equiva-
lence relation induced by H over X (Definition 2). Using
Sauer’s Lemma, we can show that the size of such a repre-

S\ P
sentative domain is at most (%) , where p is the dual

The Littlestone dimension is a combinatorial parameter that
arises in online learning (Littlestone, 1988; Ben-David et al.,
20009).

VC-dimension of H. At this point, we can reduce our prob-
lem to DP query-release for the finite query class 7 and the
finite domain Xﬁ, which we can solve via the PMW algo-
rithm (Hardt & Rothblum, 2010; Dwork & Roth, 2014).

Lower bound on private sample complexity: The proof
of the lower bound is based on the robust tracing attack
of Dwork et al. (Dwork et al., 2015). That work proves
privacy lower bounds for the class of decision stumps over
the domain {—1, 1}?, which contains queries of the form
qi(Z) = z;. Specifically, they show that for any algorithm
that takes at most s ~ ,/p/a samples, and releases the class
of decision stumps with accuracy «, there is some attacker
that can “detect” the presence of at least t ~ 1/a? of the
samples. Therefore, if the number of public samples is at
most ¢t — 1, the attacker can detect the presence of one of
the private samples, which means the algorithm cannot be
differentially private with respect to the private samples.

Lower bound on public sample complexity: This lower
bound is derived in two steps. First, we show that PAP
query-release for a class H implies PAP learning (studied
in (Beimel et al., 2013; Alon et al., 2019a)?) of the same
class with the same amount of public data. This step fol-
lows from a straightforward generalization of an analogous
result by (Beimel et al., 2013) in the standard DP model
with no public data. Second, we invoke the lower bound
of (Alon et al., 2019a) on the public sample complexity of
PAP learning.

1.3. Other related work

To the best of our knowledge, our work is the first to
formally study differentially private query release assisted
with public data. There have been a few works that consid-
ered the analog of our problem in the supervised-learning
setting. In particular, the notion of differentially private
PAC learning assisted with public data was introduced by
Beimel et al. in (Beimel et al., 2013), where it was called
“semi-private learning.” They gave a construction of a
learning algorithm in this setting, and derived upper bounds
on the private and public sample complexities. The paper
(Alon et al., 2019a) revisited this problem and gave nearly
optimal bounds on the private and public sample complex-
ities in the agnostic PAC model. The work of (Alon et al.,
2019a) emphasizes the notion of a-covers as a useful tool
in the construction of such learning algorithms. Our PAP
algorithm demonstrates the usefulness of this notion in the
query-release setting.

In the learning setting, there are also several other works
that considered similar relaxations, e.g., (Chaudhuri &
Hsu, 2011; Beimel et al., 2013) who studied the notion of

3These works use the term “semi-private” instead of PAP.
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“label-private learning”, where only the labels in the train-
ing set are considered private. Another line of work con-
siders the setting in which the learning task can be reduced
to privately answering classification queries (Hamm et al.,
2016; Papernot et al., 2017; 2018; Bassily et al., 2018;
Nandi & Bassily, 2019), where the goal is to construct a
differentially private classification algorithm that predicts
the labels of a sequence of public feature-vectors given a
private training set as input.

2. Preliminaries

We use X to denote an arbitrary data universe, D to denote
a distribution over X, and H C {£1} to denote a binary
hypothesis class.

2.1. Tools from learning theory

The VC dimension of a binary hypothesis class H C
{£1}* is denoted by VC(H).

We will use the following notion of coverings:

Definition 1 (a-cover for a hypothesis class). A family of
hypotheses H is said to form an a-cover for a hypothe-
sis class H C {1} with respect to a distribution D
over X if for every h € H, there is h € ﬁ such that

P [h(g:) ”] B(x)] <a.

Definition 2 (Representative domain (a.k.a. the dual
class)). Let H C {41}* be a hypothesis class. Define
an equivalence relation on X' by x ~ 2’ if and only if
(Vh € H) : h(x) = h(z’). The representative domain
induced by H on X, denoted by X, is a complete set of
distinct representatives from X for this equivalence rela-
tion.

For example, let H be a class of M binary thresholds over
R givenby: h, (z) = +1iffx < t¢j, j € [M], —00 < 13 <
ty < ... <ty < oo. Then, arepresentative domain in this
case is a set of M + 1 distinct elements; one from each
of the following intervals (—oo, t1], (t1,t2], ..., (tar, 00).
More generally, if H is a class of halfspaces then a repre-
sentative domain contains exactly one point in each cell of
the hyperplane arrangement induced by H (see Figure 1).

Note that when H is finite then any representative do-
main for H has size at most 2|H|, since the equivalence
class of each x € & is determined by the binary vector
(h(z))),c;- Moreover, one can also make the following
simple claim, which is a direct consequence of the Sauer-
Shelah Lemma (Sauer, 1972) together with the fact that
a representative domain X;; has a one-to-one correspon-
dence with the dual class of H. We use VC* (H) to denote

the dual VC-dimension of a hypothesis class 7, namely,
VC*(H) is the VC-dimension of the dual class of .

Figure 1. A representative domain for a finite class of halfspaces

Claim 3. Let H be a finite class of binary functions defined
over a domain X. Then, the size of a representative domain

>vcl(ﬁ)

. e|H
Xy satisfies: | Xy | < (Vcl(%)
The following useful fact gives a worst-case upper bound
on the dual VC-dimension in terms of the VC-dimension.

Fact 4 ((Assouad, 1983)). Let H be a binary hypothesis

class. The dual VC-dimension of H satisfies: VC(H) <
2VC(’H)+1_

Notation: In Section 3, we will use the following nota-
tion. Let H be a hypothesis class defined over a domain
X. Forany x € X, we define X;(z) as the represen-
tative s € Xﬁ such that z ~ s, where ~ is the equiv-
alence relation described in Definition 2. Note that by
definition this s € X is unique. Moreover, for any n
and any ¥ = (#1,...,2,) € X", we define Xz (7) £
(Xﬁ(l‘l), ey Xﬁ(l‘n))

Definition 5 (Query Release). Given a distribution D over
X and a binary hypothesis class H, a query release data
structure G € [—1,1] (equivalently, G : H — [-1,1])
estimates the expected label IED [h(z)] for all h € H. The

worst-case error is defined as

Errp 5(G) £ sup |G(h) — E_[h(2)]]

2.2. Tools from Differential Privacy

Two datasets &, ' € X™ are neighboring when they differ
on one element.

Definition 6 (Differential Privacy). A randomized algo-
rithm A : A" — Z is (e, d)-differentially private if for
all neighboring 7,7’ and all Z C Z

PA(Z) € Z] <eP[A(Z') e Z] + 6
Private Multiplicative Weights (PMW): In our con-

struction in Section 3, we will use, as a black box, a well-
studied algorithm in differential privacy known as Private
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Multiplicative-Weights (Hardt & Rothblum, 2010). We
will use a special case of the offline version of the PMW
algorithm. Namely, the input query class H is finite, and
PMW runs over all the queries in the input class (in any or-
der) to perform its updates, and finally outputs a query re-
lease data structure G € [—1,1]*. When the input private
data set §'is drawn i.i.d. from some unknown distribution
D, the accuracy goal is to have a data structure G such that
Errp 7(G) is small. The outline (inputs and output of the
PMW algorithm) is described in Algorithm 1.

Algorithm 1 An outline for the Private Multiplicative
Weights Algorithm (PMW)

Input: Private data set § € xn (where X is a finite
domain); A finite query (hypothesis) class H C
{£1}%; accuracy parameters a, 3; privacy param-
eters €, 4. o

Output: A data structure G : H — [—1,1].

The following lemma is an immediate corollary of the ac-
curacy guarantee of the PMW algorithm (Hardt & Roth-
blum, 2010; Dwork & Roth, 2014). In particular, it fol-
lows from combining the empirical accuracy of PMW with
a standard uniform-convergence argument.

Lemma 7 (Corollary of Theorem 4.15 in (Dwork & Roth,
2014)). Forany0 < €,8 < 1, the PMW algorithm s (g, )-
differentially private. Let D be any distribution over ~/1~’ .
Forany 0 < «a, 8 < 1, given an input data set § ~ D"
such that

w290 o (1) tog(2/0)

~ 128 log (\f |)

1 ( H ) 1 _ ,

og ([H]) +log o5

then, with probability at least 1 — 3, PMW outputs a data
structure G satisfying Errg (G) < a.

2.3. Our Model: Differentially private query release
assisted by public data

In this paper, we study an extension of the problem of
differentially private query release (Dwork & Roth, 2014)
where the input data to the algorithm comes in two types:
private and public. More precisely, the problem we study
can be defined as follows. Let D be any distribution over
a data domain X. Let H C {£1}?¥ be a set of queries
(here, we assume that H is a binary hypothesis class). We
consider a family of algorithms whose generic description
(namely, inputs and outputs) is given by Algorithm 2.

Given the query class 7, a private data set £ ~ D" (i.e.,
a data set whose elements belong to n private users), and a

Algorithm 2 An outline for a generic Public-data-Assisted

Private (PAP) algorithm for query release

Input: Private data set & € X"; public data set W € X"
A query (hypothesis) class H C {4-1}; accuracy
and confidence parameters «, (3; privacy parameters
e, 0.

Output: A data structure G : H — [—1,1].

public data set w € X (i.e., a data set whose elements be-
long to m users with no privacy constraint), the algorithm
outputs a query release data structure G : H — [—1,1].
Such an algorithm is required to be (e, d)-differentially
private but only with respect to the private data set. We
call such an algorithm Public-data-Assisted Private (PAP)
query-release algorithm. The accuracy/utility of the algo-
rithm is determined by the worst-case estimation error in-
curred by its output data structure GG on any query (hypoth-
esis) h € H.

Definition 8 ((«, 5,¢,9) PAP query-release algorithm).
Let H C {£1}* be a query class. Let A : X* — [-1,1]*
be a randomized algorithm in the family outlined in Algo-
rithm 2. We say that A is («, 3, €, d) Public-data-Assisted
Private (PAP) query-release algorithm for H with private
sample size n and public sample size m if the following
conditions hold:

1. For every distribution D over X, given data sets & ~
D" and @ ~ D™ as inputs to A, with probability
at least 1 — 3 (over the choice of Z,, and the ran-
dom coins of A), A outputs a function (data structure)
A(7,0) = G € [-1,1]" satisfying Errp (G) <
Q.

2. Forall W € X™, A(-, W) is (g, d)-differentially pri-
vate.

Remark 9. In our description in Algorithm 2, the algo-
rithm is required to output a data structure G : H —
[—1, 1] and not necessarily a “synthetic” data set U € xn
for some number n' as in what is referred to as “pri-
vate proper sanitizers” in (Beimel et al., 2013). In that
special case, obviously the output data set can be used
to define a data structure G'; namely, for any h € H,
G'(h) & % > iefn) M(vi). Moreover, in the general case,
ignoring computational complexity, the output data struc-
ture can also be used to construct a data set as pointed
out in Remark 2.18 of (Beimel et al., 2013) . In partic-
ular, given a data structure G whose error < «, then it
suffices find a data set 7 € X™, where n' > VC(H)/o?2,
such that | 5 Yie hvi)) — G(h)| < 2a forall h € H,
and hence the accuracy requirement would follow by the
triangle inequality. Also, we know that this data set must
exist. This is because by a standard uniform-convergence
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argument, a data set § ~ D" will, with a non-zero
probability, satisfy | Diem h(si)) — ]ED [h](z)] < «
for all h € H, and hence, by the triangle inequality,
1 i P(si)) — G(h)| < 2a forall h € H.

n’

3. A PAP Query-Release Algorithm for
Classes of Finite VC-Dimension

We now describe a construction of a public-data-assisted
private query release algorithm that works for any class
with a finite VC-dimension.

Our construction is given by Algorithm 3. The key idea of
the construction is to use the public data to create a finite
a-cover H for the input query class H (see Definition 1),
then, run the PMW algorithm on the finite cover and the
representative domain X'z given by the dual of H (see Def-
inition 2).

Theorem 10 (Upper Bound). Apap (Algorithm 3) is an
(a, B,¢€,0) public-data-assisted private query-release al-
gorithm for H whose private and public sample complexi-
ties satisfy:

o <<d log(1/) +log(1/5))*"* \/p I logu/a))

€

o (d log(1/0) +10g(1/ﬁ)> |

a
where d = VC(H) and p = VC*(H).

Remark: Using Fact 4, we can further bound the private
sample complexity for general query classes as

—0 ((d log(1/a) +log(1/8))** /27 1og<1/6>> .

e

In the proof of Theorem 10, we use the following lemma
from (Alon et al., 2019a).

Lemma 11 (Lemma 3.3 in (Alon et al.,, 2019a)). Let
W ~ D™ where m = O(dlog(l/a)+log(l/ﬁ)). Then

(e

with probability at least 1 — /2, the family H con-
structed in Step 3 of Algorithm 3 is an «/4-cover for
H w.rt. D. In particular, for every h € H, we have

]P’D {h(:c) # ﬁ(x)} < /4, where h = Project ~(h)
(see Algorithm 3 for the definition of Project . ).

Proof of Theorem 10. First, note that for any realization of
the public data set W, Apap is (g, 0)-differentially private
w.r.t. the private data set. Indeed, the private data set &
is only used to construct § = X (&), which is the input

H
data set to the PMW algorithm. The output of PMW is

Algorithm 3 Apap Public-data-assisted Private Query-
Release Algorithm

Input: Private data set ¥ = (z1,...,z,) € X"; public
data set W = (wq,...,wy) € X™; A query class
H C {£1}; accuracy and confidence parameters
o, 3; privacy parameters ¢, 0.

Output: A data structure G : H — [—1,1].

/+ Use public data to construct a-cover
for H «/

Let T = {un,..., W} be the set of points in X" appearing

at least once in .

Let 1Ty (T) = {(h(i1), ..., k(i) : h e H}.

Initialize H = 0.

For each j = (y1,...,ym) € Oy (T)

L Add to H one arbitrary h € H that satisfies h(w;) = y;

forevery j =1,...,m.

Let X;; be a representative domain induced by HonX (as
in Definition 2).
/* replace each point in the private

—

data set ¥ with its representative
. in /Eﬁ */
5 Xg(T)
/* Run PMW algorithm over the data-set
of representatives §€(¥% and H =/
G « PMW (§ H, )2, B2, <. 5).
Return G = G(w,’ﬁ,é,-)
below */

/x see code

i
/* Construct a function G:H — [-1,1] as
follows: «/
Function GzG(u?, H, é, )
Input: A query (hypothesis) h € H.
Output: An estimate r € [—1,1].
h « Projecty _(h),

H, D
where Projecty; -(h) denotes the unique h € H s.t.

(ﬁ(wl), . .,B(wm)) = (h(wy), ..., h(wn))
r« G(h)
Return r
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then used to construct the output data structure G. More-
over, for any pair of neighboring data sets &, ', the pair
X (%), Xg(Z') cannot differ in more than one element.
Hence, (g, 0)-differential privacy of our construction fol-
lows from (g, §)-differential privacy of the PMW algorithm
together with the fact that differential privacy is closed un-

der post-processing.

Next, we prove the accuracy guarantee of our construc-
tion. By Lemma 11, it follows that with probability at least

£ sl 5, ()| <2

T~

1—8/2, we have sup
heH

where h = Projecty; -(h). Hence, it suffices to show that

with probability at least 1 — 3/2, Errpy 7(G) < /2 (recall
that G is the output data structure of the PMW algorithm).

em

Note that by Sauer’s lemma, we know |7—~l| < ( g )d7
where d = VC(H). From the setting of m in the theorem
statement, we hence have

log (|#]) = 0 <d1og(1/a> +d (10g (1 + bg(clg/ﬁ)»)
= O (d log(1/a) +log(1/8)),

Moreover, by Claim 3, we have

log (| X 1) = O (VC* () (d log(1/a) +10g(1/8)) )
< O (p(dlog(1l/a) +log(1/B))),

where p = VC*(H). Thus, given the setting of n in the
theorem statement, Lemma 7 implies that with probability
at least 1 — /2, our instantiation of the PMW algorithm
yields G that satisfies

/2 > sup

sup | G(h)
heH

T~

E ()

= sup
heH

= Eerﬁ (é) ,

] G(h) —

which completes the proof. O

4. A Lower Bound for Releasing Decision
Stumps

In this section we give an example of a hypothesis class—
decision stumps on {£1}P—where additional public data
“doesn’t help” for private query release. This concept class
can be released using either O(log(p)/a? + \/p/«) private
samples and no public samples, or using O(log(p)/a?)
public samples and no private samples, but we show
that every PAP query-release algorithm requires either
Q(,/p/) private samples or Q(1/a?) public samples.

That is, making some samples public does not reduce the
overall sample complexity until the number of the public
samples is nearly enough to solve the problem on its own.

The class of decision stumps on {£1}? has dual-VC-
dimension p, but VC-dimension just logp, so this lower
bound implies that the polynomial dependence on the dual-
VC-dimension in Theorem 10 cannot be improved—there
are classes with dual-VC-dimension p that require either
Q(\/fo/a) private samples or £2(1/a?) public samples.

Definition 12 (Binary Decision Stumps). For any p € N,
let S, be a hypothesis class of hypotheses i : {£1}? —
{+£1} consisting of all hypotheses of the form h;(z) = x;
for i € [p].

Theorem 13 (Lower Bound for Releasing Decision
Stumps). Fix any p € N and o > 0. Suppose A is a
PAP algorithm that takes n private samples and m pub-
lic samples, satisfies (1,1/4n)-differential privacy, and is
(ov, @)-accurate for the class of decision stumps S,. Then
either n = Q(g) orm = Q(1/a?).

Thus, if m = o(1/a?), then the number of private samples
must scale proportionally to /p as in our upper bound in
Theorem 10.

The main ingredient in the proof is a result of Dwork et
al. (Dwork et al., 2015). Informally, what this theorem says
is that for any algorithm that releases accurate answers to
the class of decision stumps using too small of a dataset,
there is an attacker who can identify a large number of that
algorithm’s samples.

Theorem 14 (Special Case of Theorem 17 of (Dwork et al.,
2015) ). For every p € N and o > 0, there exists a num-
ber r = Q(%) and a number t = Q(-) such that the
following holds: For every query-release algorithm A with
total sample size s € [t,r + t] that is (o, «)-accurate for
the class S, of decision stumps on {£1}P, there exists a
distribution D over {+1}? and an attacker T who takes as

input the vector of answers q € [—1,1]P and an example
y € {£1}? and outputs either IN or OUT such that

P [|{z € [s]: T(g,2)=1IN} > %] >1-— W

21,..25~D
a~A(2)
Proof of Theorem 13. Fix p,a > 0 and let r and ¢ be the
values specified in Theorem 14. Suppose that A is a PAP
algorithm that is (o, a)-accurate for the class S, with n
private samples and m public samples. We will show that
either n > r or m > t/2. First, note that the accuracy
condition of A implies that we must have n + m > t
by the standard lower bound on the sample complexity of
query release even without any privacy constraints. Thus,
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to prove the theorem statement, it suffices to show that if
m < % —1, t<n+m <r+t,and Ais (o, a)-accurate,
then A cannot satisfy (1,1/4n)-differential privacy w.r.t.
its private samples. Indeed, this would imply that either
m>t/2 orn>t/24+1r>r.

Let D be the distribution promised by Theorem 14. Let

Z = (x1,...,2,) ~ D" be a set of n private samples and
w = (wy,...,wn,)~ D™ be a set of public samples, and
let Z = (z1,...,Tn,W1,...,Wy,) be the combined set of

samples. Let ¢ ~ A(Z). By Theorem 14,
Pll{i € [n+m]:T(q,
>P[{ien+m]:T(q,
>1—1/(r+1)?
>1—1/(n+m)?,

%) = IN}| > ¢/2]

where the first inequality follows from the assumption that

m < % — 1, and the last inequality follows from the as-

sumption that n +m < r 4 ¢.

That is, with high probability, the attacker identifies at least
m + 1 samples in the dataset. Let 1 (7 (¢, z;) = IN) be the
indicator of the event 7 (g, z;) = IN. Therefore, we have

i=1 i=1
=E il T(q,z;) =IN) +Zl (g, w;) = IN)
Z(m+1)' [l{i € [n+m]: T(q,2) =IN} >m+1]

>(m+1) (1—1/(n+m)2),

where the second step follows from Markov’s inequality.

Since
Z P[T

we can conclude that

ZIP’

(g, w;) =IN] <m

(¢21) = IN] > (m + 1)(1 = 1/(n+m)?) = m

— 1~ (m—1)/(n +m)?
>1-1/(n+m)
>1—1/n>1/2

Therefore, there must exist a private sample ¢* such that

P _ [T(qa x’b*)
x,w~D
q~A(z)

=1IN] >1/2n

Now, consider the dataset Z. ;= where we replace ;- in
Z with an independent sample y ~ D but the rest of the
samples in 2 ;« is the same as in Z. In this experiment

z;+ 1s now an independent sample from D, so Theorem 14
states that

P [T(gzi)=IN]<1/(n+m)? <1/n?

Z,0,y~D
A~ A(Z %)

However, note that the joint distribution (2, Z.;«) is a dis-

tribution over pairs of datasets that differ on at most one

private sample. Thus, we have shown that A cannot satisfy

(e, 1/4n)-differential privacy for its private samples unless

1 1 1

<t — <

o = 5+ o In(n/4) <e
The upshot is that A cannot be (1, 1/4n)-differentially pri-
vate for n > 11. O

5. A Lower Bound on Public Sample
Complexity

The goal of this section is to show a general lower bound
on the public sample complexity of PAP query release.
Our lower bound holds for classes with infinite Littlestone
dimension. The Littlestone dimension is a combinatorial
parameter of hypothesis classes that characterizes mistake
and regret bounds in Online Learning (Littlestone, 1988;
Ben-David et al., 2009). There are many examples of
classes that have finite VC-dimension, but infinite Little-
stone dimension. The simplest example is the class of
threshold functions over R whose VC-dimension is 1, but
has infinite Littlestone dimension. In (Alon et al., 2019b), it
was shown that if a class has infinite Littlestone dimension,
then it is not privately learnable.

Our lower bound is formally stated in the following theo-
rem.

Theorem 15 (Lower bound on public sample complexity).
Let H C {£1}* be any query class that has infinite Little-
stone dimension. Any PAP query-release algorithm for H
must have public sample complexity m = Q(1/«), where
« is the desired accuracy.

We stress that the above lower bound on the public sam-
ple complexity holds regardless of the number of private
samples, which can be arbitrarily large.

In the light of our upper bound in Section 3, our lower
bound on the public sample complexity exhibits a tight de-
pendence on the accuracy parameter «.. That is, one cannot
hope to attain public sample complexity that is o(1/«).

In the proof of the above theorem, we will refer to the fol-
lowing notion of private PAC learning with access to public
data that was defined in (Alon et al., 2019a). For complete-
ness, we restate this definition here.

Definition 16 (o, 3, ¢, ) PAP Learner). Let H C {£1}%
be a hypothesis class. A randomized algorithm A is
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(a, B,¢€,6) PAP learner for H with private sample size n
and public sample size m if the following conditions hold:

1. For every distribution D over Z = X x {£1}, given
data sets Z ~ D™ and @/ ~ D™ as inputs to A, with
probability at least 1 — 3 (over the choice of &, W,
and the random coins of A), A outputs a hypothesis
A (Z,%) = h € {£1}* satisfying

errp (h) < hlg?f{ errp (h) + a,
where, for any hypothesis h € {£1}%, errp(h) £
o p @) 7 Y-

2. Forallw € 2™, A(-, ) is (g, d)-differentially pri-
vate.

We say that A is proper PAP learner if A (Z,w) € H with
probability 1.

Proof. We prove the above theorem in two simple steps:
we show that PAP query-release implies PAP learning, then
invoke a lower bound on PAP learning classes with infi-
nite Littlestone dimension. Both steps are formalized in
the lemmas below.

Lemma 17 (General version of Theorem 5.5 in (Beimel
et al,, 2013) ). Let H C {£1}* be any class of bi-
nary functions. If there exists an («, 8,¢,0) PAP query-
release algorithm for H with private sample complexity
n and public sample complexity m, then there exists an
(O(a),0(B),0(g),0(6)) PAP learner for H with private
sample complexity n’ = O(nlog(1/af3)/a?B), and public
sample complexity m.

Lemma 18 (Theorem 4.1 in (Alon et al., 2019a)). Let H
be any class with an infinite Littlestone dimension (e.g., the
class of thresholds over R). Then, any PAP learner for H
must have public sample complexity m = Q(1/ca), where
v is the excess error.

Given these two lemmas, the proof is straightforward. To
elaborate, note that Lemma 17 shows that for any class
‘H, a PAP query-release algorithm for H with public sam-
ple complexity m implies the existence of a PAP learner
for H with the same public sample complexity (and essen-
tially the same accuracy and privacy parameters). Hence,
by Lemma 18, if H has infinite Littlestone dimension, then
such public sample complexity must satisfy m = Q(1/a).
This proves our theorem.

Although the proof of Lemma 17 is almost straightforward
given Theorem 5.5 in (Beimel et al., 2013), we will elab-
orate on a couple of minor details. First, note that even
though the reduction in (Beimel et al., 2013) involves pure

differentially private algorithms, the same construction in
their reduction would also work for the case of (g,0d)-
differential privacy with minor and obvious changes in the
privacy analysis. Second, we note that the reduction in
(Beimel et al., 2013) is for “proper sanitizers,” which are
query-release algorithms that are restricted to output a data
set from the input domain rather than any data structure
that maps H to [—1, 1]. As discussed in Remark 9, ignor-
ing computational complexity, any PAP query-release al-
gorithm satisfying Definition 8 can be transformed into a
PAP query-release algorithm that outputs a data set from
the input domain and has the same accuracy (up to a con-
stant factor). Now, given these minor details and since
any PAP algorithm can obviously be viewed as a differ-
entially private algorithm operating on the private data set
(by “hardwiring” the public data set into the algorithm),
Lemma 17 follows by invoking the reduction in (Beimel
etal., 2013). O
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