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Abstract

Algorithms—for example for scientific analysis—typically have tunable parameters that sig-
nificantly influence computational efficiency and solution quality. If a parameter setting leads
to strong algorithmic performance on average over a set of training instances, that parameter
setting—ideally—will perform well on previously unseen future instances. However, if the set of
training instances is too small, average performance will not generalize to future performance.
This raises the question: how large should this training set be? We answer this question for any
algorithm satisfying an easy-to-describe, ubiquitous property: its performance is a piecewise-
structured function of its parameters. We provide the first unified sample complexity framework
for algorithm parameter configuration; prior research followed case-by-case analyses. We present
example applications to diverse domains including biology, political science, economics, integer
programming, and clustering.

1 Introduction

For decades, algorithmic innovations have led to breakthroughs throughout science. Algorithms are
step-by-step procedures for finding solutions to mathematical problems, and typically have many
tunable parameters. These adjustable settings can significantly influence an algorithm’s requisite
computational resources and the quality of the solutions it returns. Poorly-tuned parameters can
even mislead scientists into making false claims. Domain experts often fine-tune algorithm pa-
rameters by hand. During this time-consuming search, they may overlook many high-performing
settings of the parameters.

Optimal parameter settings typically depend intimately on the specific application domain.
As a concrete example, computational biologists use algorithms to align DNA, RNA, and protein
strings. Ideally, the resulting alignments identify regions of similarity that indicate functional,
structural, or evolutionary relationships among the sequences. Scientists typically aim to optimize
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-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP 

E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

(a) A ground-truth alignment. The original two sequences consist only of alphabetic
characters, and the inserted dash characters align the strings.

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP 

 ||||                       |||||||||||      ||||||||||||      || 

EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

(b) An alignment returned by an algorithm with poorly-tuned parameters.

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP 

 ||||||||||||||   |||||||||||||||||||      |||||||||||||     || 

EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

(c) An alignment returned by an algorithm with well-tuned parameters.

Figure 1: A ground-truth alignment of two protein sequences over the amino acid alphabet are
shown in Figure (a). Figures (b) and (c) illustrate two alignments the Opal [Wheeler and Kececioglu,
2007] algorithm returns using two different parameter settings. The bar characters in the bottom
two figures illustrate where the alignments match the ground-truth alignment. The alignment in
Figure (c) matches the ground-truth alignment much better than the alignment in Figure (b):
Figure (c) matches 46 columns as opposed to the 27 matched in Figure (b). The only difference
between the two computed alignments are the parameter settings the alignment algorithm uses.

alignment features such as the number of matching characters, the length of the alignments, and
so on. A string alignment algorithm uses parameters to weight these features, and then solves for
the alignment that maximizes the features’ weighted sum. In practice, it is rarely clear how to tune
these parameters.

We study automated algorithm parameter tuning via machine learning, with broad applications
such as sequence alignment in biology, mechanisms for collective decision making in political sci-
ence and economics, integer programming in optimization, clustering, and so on. This automated
approach relieves domain experts of this error-prone, yet essential task. Our analysis applies to
settings where the domain expert has a set of typical problem instances from her application do-
main, also known as a training set. The domain expert might also have access to ground-truth
solutions to these problem instances — computational biologists, for example, often have access to
a small number of ground-truth alignments for a handful of sequences, as we illustrate in Figure 1
— though this is not always necessary, as we exemplify in our applications from economics and
political science later on. A natural approach is for the domain expert to find a parameter setting
with satisfactory algorithmic performance on average over the training set, then apply those pa-
rameters to solve all future problem instances. Algorithmic performance can mean different things
in different application domains, ranging from solution quality (the similarity between the ground-
truth solution and the solution the algorithm finds, for example) to computational resource usage

2



(run time or memory usage, for instance); our approach applies to all of the above. The domain
expert must be careful, however, when employing this technique: if her set of training instances
is too small, parameters with strong performance on average over the training set may have poor
future performance. This phenomenon, known as “overfitting,” raises the question:

How many samples are sufficient to ensure that any parameter setting’s average perfor-
mance over the training set generalizes to its future performance?

More succinctly, how many samples are sufficient to ensure generalization? Formally, we assume
that both the future problem instances and those in the training set are independently drawn from
the same unknown, application-specific distribution.

The main result in this paper is a bound on the number of samples sufficient to ensure gener-
alization for any parameterized algorithm that satisfies an easy-to-describe ubiquitous structural
property. Namely, for any problem instance, the algorithm’s performance as a function of its param-
eters is piecewise structured : the parameter space decomposes into a small number of equivalence
classes, or components, such that within each component, the algorithm’s performance is well-
behaved. Each component is delineated by boundary functions (such as hyperplanes) and within
each component, the function relating the algorithm’s performance to its parameters belongs to a
function class with small intrinsic complexity (for example, the class of constant, linear, or quadratic
functions). We prove that the number of samples sufficient to ensure generalization depends on
the intrinsic complexity of both the boundary functions and of the component functions defining
algorithm’s performance within each component. Moreover, we prove that the sample complex-
ity grows minimally with the number of boundary functions that split the parameter space into
components. We precisely quantify the complexity of these function classes.

We instantiate the theorem’s sample complexity guarantees in settings ranging from computa-
tional biology to algorithmic economics. A strength of our result is that it applies no matter which
configuration algorithm the domain expert employs; for any parameters she selects, we guarantee
that average performance over a sufficiently large training set generalizes to future performance.
We also provide a general application-independent procedure for applying this theorem that domain
experts can use for their own tunable algorithms. Finally, we provide experiments from biology and
economics that demonstrate that carefully tuning an algorithm’s parameters can have a substantial
effect on the quality of its output (Section 4.4).

Researchers have studied automated parameter tuning — also called algorithm configuration,
automated algorithm design, and parameter advising — for decades, leading to advances in optimiza-
tion in artificial intelligence [Horvitz et al., 2001, Sandholm, 2013, Xu et al., 2008], computational
biology [DeBlasio and Kececioglu, 2018, May et al., 2017, Majoros and Salzberg, 2004], and myriad
other fields. This applied research often adopts a model identical to ours: the practitioner has a
set of typical problem instances from her domain and uses computational tools to tune parameters
based on this training set. In contrast to our framework, the vast majority of this prior research is
purely empirical, not providing any guarantees.

We present the most general sample complexity bounds yet for algorithm configuration. A
nascent line of research [Gupta and Roughgarden, 2017, Balcan et al., 2017, 2018c,a,b] presents
sample complexity guarantees for a selection of tunable algorithms. Unlike the results presented
this paper, those papers analyze each algorithm individually, employing case-by-case analyses to
derive sample complexity guarantees. We prove that our approach recovers the sample complexity
guarantees from prior research, and our results apply broadly across application domains and
algorithms.

Computational learning theory has already been used to study generalization in machine learn-
ing. A key challenge distinguishes our results from that line of research on sample complexity: the
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general volatility of an algorithm’s performance as a function of its parameters. For well-understood
functions in machine learning, there is a simple connection between a function’s parameters and
its value; as we vary the parameters, the value changes smoothly. This straightforward connec-
tion is typically the key to providing sample complexity guarantees. Meanwhile, for most tunable
algorithms, slightly perturbing the parameters can cause a cascade of changes in the algorithm’s
behavior, thus triggering a jump in the algorithm’s performance. Another difference from most
(but not all) research on machine learning theory is that here, as we will discuss in detail, we have
to study the complexity of a dual class. Due to these differences, we must uncover an alternative
structure that links the algorithm’s parameters and its performance in order to provide sample com-
plexity guarantees. The piecewise structure we present is specific enough to imply strong sample
complexity bounds, yet abstract enough that it applies to a diverse array of algorithm configuration
problems.

1.1 A theory for parametric algorithm configuration

To prove our general theorem, we build on a long line of research in machine learning theory on
sample complexity: given a set of functions together with sample access to an unknown distribution
over its domain, classic results from learning theory bound the number of samples sufficient to
ensure that for any function in the class, its average value over the samples nearly matches its
expected value. At a high level, these bounds are formulated in terms of the function class’s intrinsic
complexity. A standard tool for measuring intrinsic complexity is pseudo-dimension [Pollard, 1984],
which we formally define in Section 2.3. We denote the intrinsic complexity of a class F of functions
mapping a domain X to R using the notation CF . Generally speaking, this real-valued CF measures
the ability of functions in F to fit complex patterns over many domain elements x ∈ X .

Intuitively, the more complex a function class is, the more samples we require to guarantee that
each function’s average value over the samples is nearly equal to its expected value. Pollard [1984]
formalized this intuition, proving that when the range of the functions f in F is [0, 1], then with
probability 1− δ over the draw of
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sample problem instances, the average value of any function over the samples is within ε of its
expected value. As one shrinks ε and δ, the requisite sample size increases while the guarantee
becomes stronger.

In algorithm configuration, the function class of interest measures a parameterized algorithm’s
performance as a function of the algorithm’s input problem instance. We denote this function class
by A. Thus, every function in A is characterized by a parameter setting. If we can measure the
intrinsic complexity CA of the classA, then we can use Equation (1) to bound the number of samples
sufficient to ensure generalization. We can therefore guarantee that given 8
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)

training instances, the expected performance of the best parameters over those training instances
is nearly optimal.

We present a general theorem that bounds the complexity CA of the function class A corre-
sponding to a diverse array of algorithms. Our main innovation is to bound the intrinsic complexity
CA using structure exhibited by what we call the dual function class A∗ (illustrated in Figure 2).
Each function in the original family A is characterized by a parameter setting and takes as input a
problem instance; it measures algorithmic performance as a function of the input. Meanwhile, each
function in the dual family A∗ is characterized by a fixed problem instance; it measures algorithmic
performance as a function of the parameter when the algorithmic is given that instance as its input.
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call F∗ and G∗ respectively, can be used to bound the complexity of A and thereby obtain sample
complexity results. (Here these dual functions are defined in the standard abstract mathematical
sense from F and G, and may not have a semantic meaning in terms of algorithm configuration.)
Specifically, we prove that CA is bounded by

4 (CG∗ + CF∗) ln (4ek (CG∗ + CF∗)) .

The details of this guarantee and its proof are in Section 3.
Substituting this into Equation (1) then yields the main sample complexity theorem of this

paper.

Theorem 1.1. Assuming the range of the functions in A is normalized to [0, 1], then with proba-
bility 1− δ over the draw of
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training problem instances, for any setting of the algorithm parameters, the average performance
of the algorithm over the training instances is within ε of its actual expected performance over the
unknown real problem instance distribution.

Broad applicability of the main theorem. We find that the function classes F and G that
occur in most applications are typically structured in ways for which the intrinsic complexity of
their dual functions can be analyzed and shown to be low. Those complexity measures can then
be substituted into our main theorem to obtain the sample complexity guarantee. Examples of
important common structures include the following.

• When F is the class of constant functions and G is the class of d-dimensional hyperplanes (as
exemplified in Figure 3), CF∗ = 1 and CG∗ = d + 1. Therefore, by our main theorem, the
number of samples that suffices grows only linearly with the number of algorithm parameters
we are trying to learn. This structure occurs in many applications such as all of the biology
applications we discuss in this paper, integer linear programming optimization algorithm
configuration (which we discuss in Section 4.3.2), and in welfare maximization in social choice
mechanism design settings we discuss in this paper.

• More generally, when F is the class of linear functions and G is still the class of d-dimensional
hyperplanes, CF∗ = d+ 1 and CG∗ = d+ 1. Therefore, by our main theorem, the number of
samples that suffices again grows only linearly with the number of algorithm parameters we
are trying to learn. This structure occurs in many applications such as revenue maximization
mechanism design in auctions and pricing, as we discuss later in this paper.

• Furthermore, when the parameter is one-dimensional, we identify a structure that captures
dual functions that are piecewise constant, piecewise linear, piecewise polynomial, or more
generally, functions that oscillate a bounded number of times, as we formalize in Section 3.1.
This structure implies guarantees for applications such as revenue maximization in mechanism
design and nonlinear programming approximation algorithm configuration.

1.2 Applications

In this section, we instantiate our main sample complexity theorem in diverse applications from
computational biology and economics.

6



A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)

Figure 4: Example alignments of the sequences AACCCG and AAGGCC. Alignments (b) and (c) are
optimal for parameter settings α = 2, β = 1.25, and γ = 1.0, and (a) is the reference alignment.
Note that while both (b) and (c) are optimal under the alignment objective function, (b) recovers
an additional substitution from the reference giving it a higher utility value.

1.2.1 Applications in biology

We study the sample complexity of four common problems from biology: pairwise sequence align-
ment, multiple sequence alignment, RNA folding, and topologically associated domain finding. In
all of these applications, there are two unifying similarities, which we describe below.

First, a solution’s quality, which we also refer to as its utility, is measured with respect to
a ground-truth solution. This gold-standard solution is constructed in most cases by laboratory
experimentation, so it is only available for the problem instances in the training set. Algorithmic
performance is then measured in terms of the distance between the solution the algorithm outputs
and the ground-truth solution.

Second, the biology algorithms we study all return solutions that maximize some parameterized
objective function. Often, there may be multiple solutions that maximize this objective function;
we call these solutions co-optimal. Although co-optimal solutions have the same objective function
value, they may have different utilities. In practice, in any region of the parameter space where
the set of co-optimal solutions is invariant, the algorithm’s output is invariant as well. We call this
type of algorithm co-optimal constant. Throughout the remainder of this section, we assume the
parameterized algorithms are co-optimal constant. This assumption ensures that within regions of
co-optimality in the parameter space, utility is constant, which allows us to apply our main sample
complexity theorem.

Global pairwise sequence alignment. Aligning two strings — English sentences, biological
sequences, and so on — is a fundamental problem throughout science. The high-level goal is to
line up the two strings in order to identify regions of similarity, and there are several classical
algorithms that accomplish this task [Needleman and Wunsch, 1970, Smith and Waterman, 1981].
In biology, for example, these similar regions ideally indicate functional, structural, or evolutionary
relationships between the sequences.

Given two sequences S1, S2 ∈ Σ∗ over an alphabet Σ, an alignment is formally a 2 × k grid L
with k ≥ max {|S1| , |S2|}, where each row contains the characters from one of the sequences, in
order, with inserted gap characters (denoted ‘-’ /∈ Σ). Figure 4 shows several alignments of the
same sequences.

There are many features of an alignment that can be used as the optimization criteria. The four
most common are the number of columns in the alignment that have the same character (matches,
denoted mt(S1, S2, L)), the number of columns that do not have the same character (mismatches,
denoted ms(S1, S2, L)), the total number of gap characters (indels, short for insertion/deletion,
denoted id(S1, S2, L)), and the number of groups of consecutive gap characters in any one row of the
grid (gaps, denoted gp(S1, S2, L)). In Figure 4, the alignment in (a) has 3 matches, 3 mismatches,
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0 indels, and 0 gaps; the alignments in (b) and (c) have 4 matches, 1 mismatch, 2 indels, and 2
gaps. This figure exemplifies the reason we consider co-optimal constant algorithms: if (a) is the
ground-truth alignment, then alignments (b) and (c) would have the same objective function score
but different utility scores. The utility, or distance to the ground truth, of an alignment is the
fraction of aligned characters from the ground truth that are recovered in the computed alignment.
Since (b) recovers more columns from (a) than (c)—the ones highlighted—it has a higher utility.

There are many variations on this problem. In this section, we study global pairwise alignment
with affine-gap penalties [Gotoh, 1982], a widely-studied formulation which can be optimized effi-
ciently [Myers and Miller, 1988]. Here the term affine refers to the fact that the number of gaps and
the number of indels may be weighted differently. In the evolutionary process that the objective
function models, it may be easier to extend an existing run of insertions or deletions than to create
a new one.

The goal is to find an alignment L that maximizes the objective function

mt(S1, S2, L)− α ·ms(S1, S2, L)− β · id(S1, S2, L)− γ · gp(S1, S2, L) (3)

where α, β, γ ∈ R≥0 are tunable parameters.
In our model, the domain expert has access to a training set of sequence pairs. For each pair,

she is given a ground-truth alignment. Our goal is to learn parameters α, β, γ ∈ R≥0 so that on a
new problem instance, the parameterized sequence-alignment algorithm returns a solution that is
close to the unknown, ground-truth alignment. Thus, the performance of the sequence-alignment
algorithm is measured in terms of the distance between its output and the ground-truth alignment.
Our main theorem provides a bound on the number of samples sufficient to ensure that if we find
parameters with strong algorithmic performance on average over the training set, then they will
also have strong performance on future problem instances. To instantiate our main theorem, we
follow the procedure we provided in the previous section. In our calculations, we assume there is
an upper bound, n, on the length of the sequences the algorithm is asked to align.

First, we fix an arbitrary pair of sequences S1 and S2. A line of research by Gusfield et al. [1994],
Fernández-Baca et al. [2004], and Pachter and Sturmfels [2004a] proved that for some constant
c ∈ R, there are cn3/2 distinct optimal solutions over the range of parameters (α, β, γ) ∈ R

3.

There are at most c2n3 hyperplanes that divide the parameter space into at most
(

c2n3 + 1
)3

cells such that any parameter vector (α, β, γ) in that cell, the alignment maximizing Equation (3)
is invariant. Within any one region, since the alignment the algorithm returns is invariant, the
algorithmic performance—distance to the ground-truth alignment—is constant. Thus, the dual
algorithm class is

(

F ,G, c2n3
)

-piecewise decomposable, where G is the set of hyperplanes in R
3 and

F is the set of constant functions. Our general theorem guarantees that with probability 1− δ over
the draw of
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sample problem instances, the average algorithmic performance of any parameter setting over the
samples is within ε of the parameter setting’s expected algorithmic performance. So, the number
of samples sufficient to ensure generalization increases only proportionally with lnn.

Furthermore, the work of Pachter and Sturmfels [2004a] enables us to provide sample complexity
bounds for any alignment objective that can be formulated as a hidden Markov model. This
includes most alphabet-dependent alignment schemes. In these cases the number of separating
hyperplanes has an exponential dependence on the number of parameters d. Thus we are able to

show that these alignment formulations are

(

F ,G, cn
2d(d−1)
d+1

)

-piecewise decomposable where G is
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the set of hyperplanes in R
d and F is the set of constant functions. Our general theorem then

guarantees number of samples sufficient to ensure generalization increases only linearly with d and
only logarithmically with n.

Progressive multiple sequence alignment. In many applications, such as phylogenetics and
homology search, there are more than two sequences to align. The extension from pairwise to
multiple sequence alignment, however, is computationally challenging: all common formulations
of the problem are NP-complete [Wang and Jiang, 1994, Kececioglu and Starrett, 2004]. So, ev-
ery algorithm that solves the multiple sequence alignment problem exactly can take an inordinate
amount of time to find a solution. Therefore, there are heuristics to find good, but possibly sub-
optimal, alignments. The most common heuristic approach is called progressive multiple sequence
alignment [Feng and Doolittle, 1987]. At its core, this technique uses the family of pairwise align-
ment algorithms from the previous section. At a high level, the algorithm uses a binary1 tree
to decompose the original alignment problem into a hierarchy of subproblems, each of which it
solves using the pairwise alignment algorithm. We formally describe the parameterized algorithm
in Section 4.1.2, and prove that the number of samples sufficient for generalization is proportional
to n ln(n`), where ` is the number of sequences and n is the maximum length of those sequences.
Our sample complexity guarantee is thus higher than in the case of pairwise sequence alignment.

RNA secondary structure prediction. RNA molecules have many essential roles, including
protein coding and enzymatic functions [Holley et al., 1965]. RNA is assembled as a chain of bases
denoted using the characters A, U, C, and G. It is often found as a single strand folded onto itself:
non-adjacent bases physically bound together. Given an unfolded RNA strand, the goal is to infer
the way it would naturally fold, which sheds light on its function. This problem is known as RNA
secondary structure prediction, or simply RNA folding.

More formally, given a sequence S ∈ {A, U, C, G}n, we represent a folding by a set of pairs
φ ⊆ {1, . . . , n} × {1, . . . , n}. If the pair (i, j) is in the folding φ, then the ith and jth bases of S
physically bind together. Typically, the bases A and U bind together, as do the bases C and G.
Other matchings may occur, but the resulting structure is likely to be less stable. We assume, as
is standard, that the folding does not contain any pseudoknots: pairs (i, j), (i′, j′) that cross with
i < i′ < j < j′.

A well-studied algorithm for the problem returns a folding that maximizes a parameterized
objective function [Nussinov and Jacobson, 1980]. At a high level, this objective function trades off
between global properties of the folding (the number of binding pairs |φ|) and local properties (the
likelihood that bases would appear close together in the folding). Specifically, given a parameter
α ∈ [0, 1], the algorithm returns the folding φ that maximizes the objective function

α |φ|+ (1− α)
∑

(i,j)∈φ

MSi,Sj ,Si−1,Sj+1I{(i−1,j+1)∈φ}, (4)

where Mw,x,y,z is a score for having neighboring pairs of the letters (w, x) and (y, z) and I is the
indicator function which returns 1 when the pair is in the folding and 0 otherwise. These scores
help identify sub-structures that are more stable than others.

In our model, the domain expert has access to a training set of RNA strands together with a
ground-truth folding, which she obtains via an expensive computation or laboratory experimenta-
tion. Our goal is to learn a parameter α ∈ [0, 1] so that given a new RNA strand, the algorithm
returns a solution that is close to the unknown, ground-truth folding.

1In general, guide trees do not have to be binary; for ease of analysis, we impose this limit.
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To apply our main theorem we first fix an arbitrary strand S. The total number of foldings with

no pseudoknots is bounded by
(

n2

n/2

)

≤ nn. In Section 4.1.3, we argue that for any pair of foldings,

there is a threshold α0 ∈ R where Equation (4) is larger for the first folding when α is on one side
of the threshold, and its larger for the second folding when α is on the other side of the threshold.
Within any interval induced by these n2n thresholds, the folding that maximizes Equation (4) is
invariant, and thus algorithmic performance — distance to the ground-truth folding — is constant.
Therefore, the dual algorithm class is

(

F ,G, n2n
)

-piecewise decomposable, where G is the set of
thresholds in R and F is the set of constant functions. Our general theorem guarantees that with
probability 1− δ over the draw of

8

ε2

(

4 (ln (4e) + 2n lnn) ln
8

ε2
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1

4
ln

1

δ

)

sample problem instances, the average algorithmic performance of any parameter setting over the
samples is within ε of the parameter setting’s expected algorithmic performance. The number of
samples sufficient to ensure generalization increases proportionally with n lnn.

As our bounds demonstrate, sample complexity is not necessarily tied to the computational
complexity of a problem. The sample complexity of both the RNA folding and progressive mul-
tiple sequence alignment problems grows proportionally with n lnn, whereas the computational
complexities are distinct: RNA folding can be solved in polynomial time and multiple sequence
alignment is NP-complete.

Prediction of topologically associating domains. Inside a cell, the linear DNA of the genome
wraps into three-dimensional structures that influence genome function. Some regions of the genome
are closer than others and thereby interact more. An important class of structure is called topological
associating domains (TADs) that are contiguous segments of the genome that fold into compact
regions. Formally, given a DNA sequence of length n, a TAD set T is a set of non-overlapping
intervals from the set {1, . . . , n}. If an interval [a, b] is in the TAD set T , then the bases within the
corresponding substring physically interact more frequently among one another than with bases
from the rest of the genome. Disrupting TAD boundaries can affect the expression of nearby genes,
which can trigger diseases such as congenital malformations and cancer [Lupiáñez et al., 2016].

Biological experiments facilitate predicting the location of TADs by measuring the contact fre-
quency of any two locations in the genome [Lieberman-Aiden et al., 2009]. TAD finding algorithms
use these contact frequency measurements to identify regions along the genome that are frequently
in contact. We denote these contact frequencies using a matrix M ∈ R

n×n. One common pa-
rameterized algorithm for finding TADs [Filippova et al., 2014] returns the set of intervals T that
maximizes the objective function

∑

(i,j)∈T

SMγ(i, j)− µγ(j − i), (5)

where γ ∈ R is a parameter,

SMγ(i, j) =
1

(j − i)γ

∑

i≤p<q≤j

Mpq,

and

µγ(d) =
1

n− d

n−d
∑

t=0

SMγ(t, t+ d).
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Unlike in the sequence alignment and RNA folding algorithms, the parameter γ appears in the
exponent of the objective function, thus demonstrating the general applicability of our approach.

We assume the domain expert has access to a training set of DNA strands, each of which has a
ground-truth TAD set, which she obtains via hand curation. Our goal is to learn a parameter γ ∈ R

so that given a new DNA strand, the algorithm returns a solution that is close to the unknown,
ground-truth TAD set.

To apply our main theorem, we first fix an arbitrary strand S. Since each TAD set is a subset
of all possible pairs of locations in the string, there are at most 2n

2
possible TAD sets the algorithm

might return. In Section 4.1.4, we argue that for any pair of TAD sets, there are t ≤ n2 thresholds
γ1, . . . , γt ∈ R, on either side of which the TAD set maximizing Equation (5) is invariant. We use
this fact to instantiate our general theorem, which guarantees that with probability 1− δ over the
draw of
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8

ε2
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1

4
ln

1

δ
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sample problem instances, the average algorithmic performance of any parameter setting over the
samples is within ε of the parameter setting’s expected algorithmic performance. The number of
samples sufficient to ensure generalization increases proportionally with n2.

1.2.2 Applications in economics and political science

A fundamental problem in economics is designing protocols that help groups of agents come to
collective decisions. For example, the literature on partnership dissolution [Cramton et al., 1987,
McAfee, 1992] investigates questions such as: when a jointly-owned company must be dissolved,
which partner should buy the others out, and for how much? When a couple divorces or children
inherit an estate, how should they divide the property? How should a town decide which public
projects to take on? There is no one policy that best answers these questions; the optimal protocol
depends on the setting at hand. For example, splitting a family estate equally may seem “fair”,
but it may be impossible if the estate is not evenly divisible, and it may not be efficient if one
family member values the estate much more than another.

In this section, we study an infinite, well-studied family of mechanisms, each of which takes as
input a set of agents’ stated values for each possible outcome and returns one of those outcomes.
A mechanism can thus be thought of as an algorithm that the agents use to arrive at a single
outcome. This family is known as the class of neutral affine maximizers (NAMs) [Roberts, 1979,
Mishra and Sen, 2012, Nath and Sandholm, 2019]. There several appealing properties that NAMs
satisfy. First, each mechanism in this infinite class is incentive compatible, which means that each
agent is incentivized to report her values truthfully. In other words, she cannot gain by lying. In
order to satisfy incentive compatibility, each agent may have to make a payment in addition to
the benefit she accrues or loss she suffers from the mechanism’s outcome. Otherwise, the agents
could wildly misreport their valuations and suffer no consequences. This raises the question: who
should receive this payment? Should it be split evenly among the agents? Should it be discarded?
These questions motivate the second property that the class of NAMs satisfies: budget balance.
A mechanism is budget-balanced if the aggregated payments are somehow distributed among the
agents. A line of research [Roberts, 1979, Mishra and Sen, 2012, Nath and Sandholm, 2019] has
shown that under natural assumptions, every incentive-compatible, budget-balanced mechanism is
a NAM, roughly speaking.

We apply our general theorem in the context of social welfare maximization, which is the most
widely-studied objective in mechanism design. The social welfare of an outcome is the sum of the
agents’ values for that outcome. To instantiate our main theorem, we assume that the agents’
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values for the outcomes are drawn from an unknown distribution, which is a prevalent assumption
throughout the mechanism design literature [Myerson, 1981, Nisan et al., 2007]. Our main theorem
allows us to answer the question: how many samples are sufficient to ensure that a NAM with
high average social welfare over the samples also has high expected social welfare over the unknown
distribution? More formally, suppose there are n agents with values normalized to be in

(

− 1
n ,

1
n

)

over m possible outcomes and let ε > 0 be an arbitrary accuracy parameter. Our main theorem
implies that with probability 1 − δ, if M̂ is the NAM with maximum average social welfare over
32
ε2

(

4 (n+ 1) ln
(

4em2 (n+ 1)
)

ln 32
ε2

+ 1
4 ln

1
δ

)

samples andM∗ is the NAM with maximum expected

social welfare, then the expected social welfare of M̂ is ε-close to the expected social welfare of
M∗. We thus obtain strong sample complexity guarantees in a completely different setting from
computational biology, the focus of the previous section.

1.2.3 Applications to previously studied domains

Our main theorem recovers sample complexity guarantees from existing literature on data-driven
algorithm configuration in the following contexts:

1. Clustering (Section 4.3.1), which is used in many application throughout data science.

2. Tree search (Section 4.3.2), which is used to solve combinatorial optimization problems, in-
teger programs, and constraint satisfaction problems.

3. Canonical subset selection problems (Section 4.3.3), such as the knapsack problem.

4. Revenue maximization problems from economics (Section 4.3.4).

In all of these cases, our main theorem implies sample complexity guarantees that match the
existing bounds, but in many cases, our approach provides a more succinct proof. Our results
also imply sample complexity bounds for other algorithms with performance that is known to be a
piecewise-structured function of the parameters, such as SMAC [Hutter et al., 2011].

1.3 General procedure for applying our main theorem

In this section, we provide a guide to applying our main theorem, which we hope practitioners
can use to analyze their own parameterized algorithms in their application domains. In many
algorithm configuration problems, for any fixed problem instance, there is a partition of the pa-
rameter space into regions where the parameterized algorithm’s output is invariant. For example,
in sequence alignment, as we range parameters over any one subset of this partition, the algorithm
will output the same alignment. This typically means that within these regions, the dual algo-
rithm’s performance is a well-structured function. Returning to sequence alignment, if the dual
algorithm’s performance equals the distance between the alignment it returns and some ground-
truth alignment, then the performance function will be constant within each region. As a result,
understanding the piecewise decomposability of the dual algorithm family comes down to analyzing
this partition, as we describe in the following procedure. (A formal version of this high-level guide
appears in Section 4.4.1, together with examples of its application.)

1. Fix an arbitrary problem instance. For example, in the case of pairwise sequence alignment,
the problem instance is a pair of sequences.

2. Bound the number of different solutions the algorithm could possibly produce on that instance
as the algorithm’s parameters are varied. Denote this upper bound by κ. For example, in the
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case of sequence alignment, prior research [Gusfield et al., 1994, Fernández-Baca et al., 2004,
Pachter and Sturmfels, 2004a] guarantees that for some constant c ∈ R, κ ≤ cn3/2, where n
is an upper bound on the length of the sequences the algorithm is asked to align.

3. For any pair of possible solutions that the parameterized algorithm might produce on that
problem instance, identify the set of parameter vectors where the algorithm would choose the
first solution over the second. Introduce a function that maps any parameter vector within
this set to 1 and any parameter outside this set to 0. This class of functions is denoted by G.
Prove an upper bound on the inherent complexity CG∗ of the dual function G∗. In the typical
case that the functions in G are d-dimensional hyperplanes, CG∗ = d+ 1.

4. Focus on an arbitrary region of the parameter space over which the algorithm’s output is
invariant. What form does the algorithm’s performance take in this region as a function
of the algorithm’s parameters? (For example in auctions, even if the allocation of goods is
considered the output and is constant in a parameter region, the performance in that region
in terms of revenue can vary—often linearly—as a function of the auction parameters such as
reserve prices.) Denote this class of functions by F . Prove an upper bound on the inherent
complexity CF∗ of the dual function F∗. In the typical case that the functions in F are
constant, CF∗ = 1, and in the typical case that they are linear functions in d dimensions,
CF∗ = d+ 1.

5. Finally, conclude that this algorithm family is
(

F ,G, κ2
)

-piecewise decomposable, so apply
our main theorem with k = κ2 and the values CF∗ and CG∗ .

2 Notation, problem statement, and tools from learning theory

2.1 Notation

Let A be an infinite set of algorithms parameterized by a set P ⊆ R
d of vectors. Let Π be a set of

problem instances for A. We measure the algorithmic performance of the parameter vector ρ ∈ P
via a utility function uρ : Π → [0, H], where uρ(x) measures the performance of the algorithm with
parameters ρ ∈ P on problem instance x ∈ Π, and H ∈ R is a bound on the utility function’s
range. For a fixed problem instance x, we will often analyze an algorithm’s utility given x as input
as a function of ρ, which we denote as ux(ρ).

2.2 Problem statement

We assume there is an application-specific distribution D over problem instances in Π. Our goal
is to find a parameter vector in P with high performance in expectation over the distribution D.
As one step in this process, we analyze the number of samples necessary for uniform convergence.
Specifically, for any ε, δ ∈ (0, 1) and any distribution D over problem instances, we bound the
number m of samples sufficient to ensure that with probability at least 1 − δ over the draw of m
samples S = {x1, . . . , xm} ∼ Dm, for all parameters ρ ∈ P , the difference between the average
utility of ρ and the expected utility of ρ is at most ε:

∣

∣

1
m

∑m
i=1 uρ(xi)− Ex∼D[uρ(x)]

∣

∣ ≤ ε. Classic
results from learning theory guarantee that if uniform convergence holds and ρ̂ is a parameter
vector that maximizes average utility over the samples

(

ρ̂ ∈ argmax
{

1
m

∑m
i=1 uρ(xi)

})

, then ρ̂ is
nearly optimal in expectation as well. In particular, with probability at least 1 − δ over the draw
S ∼ Dm, maxρ∈P Ex∼D[uρ(x)]− Ex∼D[uρ̂(x)] ≤ 2ε.

13



2.3 Learning theory tools

Sample complexity tools. Pseudo-dimension [Pollard, 1984] is a well-studied learning-theoretic
tool used to measure the complexity of a function class. To formally define pseudo-dimension, we
first introduce the notion of shattering, which is a fundamental concept in machine learning theory.

Definition 2.1 (Shattering). Let H ⊆ [0, H]Y be a set of functions mapping an abstract domain
Y to an interval [0, H]. Let S = {y1, . . . , ym} be a subset of Y and let z1, . . . , zm ∈ R be a set of
targets. We say that z1, . . . , zm witness the shattering of S by H if for all subsets T ⊆ S, there exists
some function h ∈ H such that for all elements yi ∈ T , h (yi) ≤ zi and for all xi 6∈ T , h (yi) > zi.

Definition 2.2 (Pseudo-dimension [Pollard, 1984]). Let H ⊆ [0, H]Y be a set of functions mapping
an abstract domain Y to an interval [0, H]. Let S ⊆ Y be a largest set that can be shattered by
H. Then Pdim(H) = |S|.

When H is a set of binary valued functions mapping Y to {0, 1}, the pseudo-dimension of H
is more commonly referred to as the VC-dimension of H, which we denote as VCdim(H) [Vapnik
and Chervonenkis, 1971].

Theorem 2.1 provides generalization bounds in terms of pseudo-dimension.

Theorem 2.1 (Pollard [1984]). Let H ⊆ [0, H]Y be a set of functions mapping an abstract domain
Y to an interval [0, H] and let dH be the pseudo-dimension of H. For any δ ∈ (0, 1) and any
distribution D over Y, with probability at least 1−δ over the draw of m samples {y1, . . . , ym} ∼ Dm,
for any function h ∈ H, the difference between the average value of h over the samples and the
expected value of h is bounded as follows:

∣

∣

∣

∣

∣

1

m

m
∑

i=1

h(yi)− Ey∼D[h(y)]

∣

∣

∣

∣

∣

≤ H

√

2dH
m

ln
em

dH
+H

√

1

2m
ln

1

δ
.

Said another way, for any ε > 0, m = 8H2

ε2

(

dH ln 8H2

ε2
+ 1

4 ln
1
δ

)

samples are sufficient to ensure

that with probability at least 1 − δ over the draw of m samples S = {y1, . . . , ym} ∼ Dm, for all
functions h ∈ H, the difference between the average value of h over the samples and the expected
value of h is at most ε:

∣

∣

1
m

∑m
i=1 h(yi)− Ey∼D [h(y)]

∣

∣ ≤ ε.

Dual classes. For algorithm configuration problems, there are two closely-related classes of func-
tions. First, for each parameter vector ρ ∈ P , there is a function uρ : Π → [0, H] that maps each
problem instance x to the utility of the algorithm with parameter ρ given x as input. Similarly, for
each problem instance x ∈ Π, there is a function ux : P → [0, H] defined as ux(ρ) = uρ(x) that fixes
the problem instance x and allows the algorithm parameter vector ρ to vary. Our main theorem
revolves around the relationship between these two types of functions. In learning theory, the set
of functions {ux : P → [0, H] | x ∈ Π} is equivalent to what is known as the dual class, which we
define abstractly below.

Definition 2.3 (Dual class [Assouad, 1983]). For any domain Y and set of functions H ⊆ R
Y ,

the dual class of H is defined as H∗ =
{

h∗y : H → R | y ∈ Y
}

where h∗y(h) = h(y). Each function
h∗y ∈ H∗ fixes an input y ∈ Y and maps each function h ∈ H to h(y). We refer to the class H as
the primal class.

The set of functions {ux : P → [0, H] | x ∈ Π} is equivalent to the dual class

U∗ = {u∗x : U → [0, H] | x ∈ Π}

in the sense that for every parameter vector ρ ∈ P and every problem x ∈ Π, ux(ρ) = u∗x (uρ).
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k boundary functions g(1), . . . , g(k) ∈ G and a piece function fb ∈ F for each bit vector b ∈ {0, 1}k

such that for all c ∈ C

h(c) = fbc(c) where bc =
(

g(1)(c), . . . , g(k)(c)
)

∈ {0, 1}k.

Our main theorem shows that whenever a class Q of functions has a (F ,G, k)-piecewise de-
composable dual function class Q∗, we can bound the pseudo-dimension of Q in terms of the
VC-dimension of G∗ and the pseudo-dimension of F∗. In other words, if the boundary and piece
functions both have dual classes with low complexity, then the pseudo-dimension of Q is small. In
Section 3.1, we show that for many common boundary and piece classes F and G, we can easily
bound the complexity of their dual classes.

Throughout the proof, it may be useful to relate the concepts we discuss to the algorithm
configuration setting, in which case Q equals the function class {uρ | ρ ∈ P}. In that setting, every
function in Q is defined by a set of parameters ρ and maps problem instances x to real-valued
utilities uρ(x). Moreover, the dual class Q∗ is equivalent to the function class {ux | x ∈ Π}. Every
function in Q∗ is defined by a problem instance x and maps parameters ρ to utilities ux(ρ) = uρ(x).

Theorem 3.1 (Main sample complexity theorem). Let Q ⊆ R
Y be a class of functions mapping an

abstract domain Y to the real line. Suppose that the dual function class Q∗ is (F ,G, k)-decomposable
with boundary functions G ⊆ {0, 1}Q and piece functions F ⊆ R

Q. Denote the VC-dimension of G∗

as dG∗ and the pseudo-dimension of F∗ as dF∗ . The pseudo-dimension of Q is bounded as follows:

Pdim(Q) ≤ 4 (dF∗ + dG∗) ln (4ek (dF∗ + dG∗)) .

Proof. Fix any set of points y1, . . . , yD ∈ Y and targets z1, . . . , zD ∈ R. We will bound the number
of ways that Q can label the points y1, . . . , yD with respect to the target thresholds z1, . . . , zD by
(ekD)dG∗ (eD)dF∗ . Then solving for the largest D such that 2D ≤ (ekD)dG∗ (eD)dF∗ gives a bound
on the pseudo-dimension of Q. Our bound on the number of ways that Q can label y1, . . . , yD has
two main steps:

1. In Claim 3.2, we show that there areM < (ekD)dG∗ subsets Q1, . . . ,QM partitioning the func-
tion classQ such that within any one subset, the dual functions q∗y1 , . . . , q

∗
yD

are simultaneously
structured2. In particular, for each subset Qj , there exist piece functions f1, . . . , fD ∈ F such
that q∗yi(q) = fi(q) for all q ∈ Qj and i ∈ [D]. This is the partition ofQ induced by aggregating
all of the boundary functions corresponding to the dual functions q∗y1 , . . . , q

∗
yD

.

2. In Claim 3.3, we show that the functions belonging to any single subset Qi in the partition
constructed in Claim 3.2 can label the points y1, . . . , yD in at most (eD)dF∗ ways. It fol-
lows that the total number of ways that Q can label the points y1, . . . , yD is bounded by
(ekD)dG∗ (eD)dF∗ .

Assuming the dual function class Q∗ is (F ,G, k)-decomposable with boundary functions G ⊆
{0, 1}Q and piece functions F ⊆ R

Q, we now prove our first claim.

Claim 3.2. There are M < (ekD)dG∗ subsets Q1, . . . ,QM partitioning the function class Q such
that within any one subset, the dual functions q∗y1 , . . . , q

∗
yD

are simultaneously structured. In partic-
ular, for each subset Qj, there exist piece functions f1, . . . , fD ∈ F such that q∗yi(q) = fi(q) for all
q ∈ Qj and i ∈ [D].

2We can relate this step to the algorithm configuration setting as follows. Since every function in Q is defined
by a parameter vector, partitioning Q is equivalent to partitioning the parameter space. In this step, we show that
we can partition the parameter space into regions where the dual functions are piecewise structured functions of the
parameters.

16



Proof of Claim 3.2. Let q∗y1 , . . . , q
∗
yD

∈ Q∗ be the dual functions corresponding to the points y1, . . . , yD.
Since Q∗ is (F ,G, k)-piecewise decomposable, we know that for each function q∗yi , there are k

boundary functions g
(1)
i , . . . , g

(k)
i ∈ G ⊆ {0, 1}Q that define its piecewise decomposition. Let

Ĝ =
⋃D
i=1

{

g
(1)
i , . . . , g

(k)
i

}

be the union of these boundary functions across all i ∈ [D]. For ease of

notation, we relabel the functions in Ĝ, calling them g1, . . . , gkD. Let M be the total number of
kD-dimensional vectors we can obtain by applying the functions in Ĝ ⊆ {0, 1}Q to elements of Q:

M :=

∣

∣

∣

∣

∣

∣

∣

















g1(q)
...

gkD(q)






: q ∈ Q











∣

∣

∣

∣

∣

∣

∣

. (6)

By definition of the dual class G∗, we know that gi(q) = g∗q (gi) for every function gi ∈ Ĝ and element
q ∈ Q, which means that

M =

∣

∣

∣

∣

∣

∣

∣

















g∗q (g1)
...

g∗q (gkD)






: q ∈ Q











∣

∣

∣

∣

∣

∣

∣

.

Therefore, M equals the number of distinct ways that functions in G∗ can label the functions
g1, . . . , gkD. Sauer’s Lemma3 guarantees that G∗ cannot label kD points in G in too many ways,

leading to a bound on M [Sauer, 1972]. Specifically, M ≤
(

ekD
dG∗

)dG∗

< (ekD)dG∗ .

Finally, let b1, . . . , bM be the binary vectors in the set from Equation (6). For each i ∈ [M ], let
Qi = {q ∈ Q | (g1(q), . . . , gkD(q)) = bi}. For each set Qi, the value of all the boundary functions
g1, . . . , gkD is constant, so there is a fixed set of piece functions f1, . . . , fD ∈ F so that q∗yi(q) = fi(q)
for all elements q ∈ Qi and indices i ∈ [D]. Therefore, the lemma statement holds.

We now show that each subset Qi can label the points y1, . . . , yD in at most (eD)dF∗ ways.

Claim 3.3. For each subset Qi in the partition defined by Claim 3.2, we have

∣

∣

∣

∣

∣

∣

∣

















sign (q (y1)− z1)
...

sign (q (yD)− zD)







∣

∣

∣

∣

∣

∣

∣

q ∈ Qi











∣

∣

∣

∣

∣

∣

∣

≤ (eD)dF∗ .

In other words, functions from Qi can label the points y1, . . . , yD in at most (eD)dF∗ distinct ways
relative to the targets z1, . . . , zD.

Proof of Claim 3.3. Let q∗y1 , . . . , q
∗
yD

∈ Q∗ be the dual functions corresponding to the points y1, . . . , yD.
From Claim 3.2, there exist piece functions f1, . . . , fD ∈ F such that for all q ∈ Qi and j ∈ [D],
we have q∗yj (q) = fj(q). For all q ∈ Qi and j ∈ [D], using the definition of the dual of q and fj , we
have

q(yj) = q∗yj (q) = fj(q) = f∗q (fj).

3Sauer’s lemma applies to the following generic setting: There is a set of n datapoints t1, ..., tn from the domain of
some function class R. For each function r ∈ R, we define a vector (r(t1), · · · , r(tn)). We then define a set of vectors
by unioning over all r ∈ R. Sauer’s lemma says this set cannot be too big. Sauer’s lemma does not immediately
imply M (in Equation (6)) is bounded: Each component is defined by a different function (rather than a different
datapoint), and we obtain the set of vectors by unioning over all datapoints (rather than unioning over all functions).
This is why we need to transition to the dual class G∗ in order to bound M .
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Therefore, we can rewrite the set of labelings of y1, . . . , yD by functions in Qi as follows:

















sign (q (y1)− z1)
...

sign (q (yD)− zD)







∣

∣

∣

∣

∣

∣

∣

q ∈ Qi











=

















sign
(

f∗q (f1)− z1
)

...
sign

(

f∗q (fD)− zD
)







∣

∣

∣

∣

∣

∣

∣

q ∈ Qi











. (7)

The right hand side of Equation (3) is the set of labelings of the functions f1, . . . , fD by the
dual functions {f∗q | q ∈ Qi} ⊂ F∗ with respect to the targets z1, . . . , zD. Finally, from Sauer’s
Lemma, we know that the number of possible labelings of f1, . . . , fD possible by F∗ is at most
(

eD
dF∗

)dF∗

≤ (eD)dF∗ , which proves the claim.

As a consequence of the above claims, we know that Q can label the points y1, . . . , yD in at
most (ekD)dG∗ (eD)dF∗ distinct ways relative to the targets z1, . . . , zD. On the other hand, if Q
shatters the points y1, . . . , yD, then the number of distinct labelings must be 2D. Therefore, the
pseduo-dimension of Q is at most the largest value of D such that 2D ≤ (ekD)dG∗ (eD)dF∗ . Tak-
ing the log of both sides and rearranging gives D < (dF∗ + dG∗) lnD + dF∗ + dG∗ ln(ek). By

Lemma 3.4, this implies that D < 2dF∗ ln
(

4e (dF∗ + dG∗)2
)

+ 2dG∗ ln
(

4ek (dF∗ + dG∗)2
)

. There-

fore, the pseudo-dimension of Q is at most 2dF∗ ln
(

4e (dF∗ + dG∗)2
)

+2dG∗ ln
(

4ek (dF∗ + dG∗)2
)

≤

4 (dF∗ + dG∗) ln (4ek (dF∗ + dG∗)).

Lemma 3.4 (Shalev-Shwartz and Ben-David [2014]). Let a ≥ 1 and b > 0. Then y < a ln y + b
implies that y < 4a ln(2a) + 2b.

3.1 Applications of our main theorem to representative function classes

In this section, we instantiate our main result, Theorem 3.1, in settings inspired by algorithm
configuration problems.

3.1.1 One-dimensional functions with a bounded number of oscillations

Let U = {uρ | ρ ∈ P ⊆ R} be a class of utility functions defined over a single-dimensional parameter
space. We often find that the dual class contains functions that are piecewise constant, linear,
or polynomial in the parameter. More generally, the functions in the dual class are piecewise-
structured, and we can guarantee that the structured functions oscillate a fixed number of times.
In the language of decomposability, this means that the dual function U∗ is (F ,G, k)-decomposable,
where the boundary functions G ⊆ {0, 1}U are thresholds and the piece functions F ⊆ R

U oscillate
a bounded number of times, as we formalize below.

Definition 3.2. We say that a function h : R → R has at most B oscillations if for every z ∈ R,
the function ρ 7→ I{h(ρ)≥z} is piecewise constant with at most B discontinuities.

For example, constant functions have zero oscillations (see Figure 6a), linear functions have one
oscillation (see Figure 6b), and inverse-quadratic functions (of the form h(x) = a

x2
+ bx+ c) have at

most two oscillations (see Figure 6c). Throughout our applications, we analyze piecewise-structured
functions whose the piece functions come from these three families (see Section 4). In the following
lemma, we bound the pseudo-dimension of classes with bounded oscillations.

Lemma 3.5. Let H be a class of functions mapping R to R, each of which has at most B oscilla-
tions. Then Pdim(H∗) < 4 ln(256(B + 1)).
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ga (uρ) = I{a≤ρ} = 0 and g∗uρ (gb) = gb (uρ) = I{b≤ρ} = 1. Therefore, b ≤ ρ < a, which is a
contradiction, so VCdim (G∗) = 1.

Next, we claim that Pdim (F∗) < 4 ln(256(B + 1)). For each function f ∈ F , let hf : R → R

be defined as hf (ρ) = f (uρ). By assumption, each function hf has at most B oscillations. Let
H = {hf | f ∈ F} and let D = Pdim (H∗). By Lemma 3.5, we know that D < 4 ln(256(B + 1)).
We claim that Pdim(H∗) ≥ Pdim(F∗). For a contradiction, suppose the class F∗ can shatter D+1
points f1, . . . , fD+1 using witnesses z1, . . . , zD+1 ∈ R. By definition, this means that
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

I{
f∗uρ (f1)≥z1

}

...
I{
f∗uρ (fD+1)≥zD+1

}











: ρ ∈ P



















∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2D+1.

For any function f ∈ F and any parameter ρ ∈ R, f∗uρ(f) = f (uρ) = hf (ρ) = h∗ρ(hf ). Therefore,

∣

∣

∣

∣

∣

∣

∣

∣























I{h∗ρ(hf1)≥z1}
...

I{
h∗ρ

(

hfD+1

)

≥zD+1

}









: ρ ∈ P















∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣





























I{
f∗uρ (f1)≥z1

}

...
I{
f∗uρ (fD+1)≥zD+1

}











: ρ ∈ P



















∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2D+1,

which contradicts the fact that Pdim(H∗) = D. Therefore, Pdim(F∗) ≤ D < 4 ln(256(B+1)). The
corollary then follows from Theorem 3.1.

3.1.2 Multi-dimensional piecewise linear functions

Generalizing to multi-dimensional parameter spaces, we often find that the boundary functions cor-
respond to halfspace thresholds and the piece functions correspond to constant or linear functions.
We handle this case in the following lemma.

Lemma 3.7. Let U =
{

uρ | ρ ∈ P ⊆ R
d
}

be a class of utility functions defined over a d-dimensional
parameter space. Suppose the dual function U∗ is (F ,G, k)-decomposable, where the boundary func-
tions G =

{

fa,θ : U → {0, 1} | a ∈ R
d, θ ∈ R

}

are halfspace thresholds ga,θ : uρ 7→ I{a·ρ≤θ} and the

piece functions F =
{

fa,θ : U → R | a ∈ R
d, θ ∈ R

}

are linear functions fa,θ : uρ 7→ a ·ρ+ θ. Then
Pdim(U) ≤ 8 (d+ 1) ln (8ek (d+ 1)).

Proof. First, we prove that the VC-dimension of the dual class G∗ is at most d+ 1. The dual class
G∗ consists of functions g∗uρ for all ρ ∈ P where g∗uρ (ga,θ) = I{a·ρ≤θ}. Let Ĝ =

{

ĝρ : Rd+1 → {0, 1}
}

be the class of halfspace thresholds ĝρ : (a, θ) 7→ I{a·ρ≤θ}. It is well-known that VCdim
(

Ĝ
)

≤ d+1,

which we prove means that VCdim (G∗) ≤ d+1. For a contradiction, suppose G∗ can shatter d+2
functions ga1,θ1 , . . . , gad+2,θd+2

∈ G. Then for every subset T ⊆ [d + 2], there exists a parameter

vector ρT such that ai · ρT ≤ θi if and only if i ∈ T . This means that Ĝ can shatter the tuples

(a1, θ1) , . . . , (ad+2, θd+2) as well, which contradicts the fact that VCdim
(

Ĝ
)

≤ d + 1. Therefore,

VCdim (G∗) ≤ d+ 1.
By a similar argument, we prove that the pseudo-dimension of the dual class F∗ is at most

d + 1. The dual class F∗ consists of functions f∗uρ for all ρ ∈ P where f∗uρ (fa,θ) = a · ρ + θ. Let

F̂ =
{

f̂ρ : Rd+1 → R

}

be the class of linear functions f̂ρ : (a, θ) 7→ a · ρ+ θ. It is well-known that

Pdim
(

F̂
)

≤ d + 1, which we prove means that Pdim (F∗) ≤ d + 1. For a contradiction, suppose
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F∗ can shatter d + 2 functions fa1,θ1 , . . . , fad+2,θd+2
∈ F . Then there exist witnesses z1, . . . , zd+2

such that for every subset T ⊆ [d+2], there exists a parameter vector ρT such that ai ·ρT +θi ≤ zi
if and only if i ∈ T . This means that F̂ can shatter the tuples (a1, θ1) , . . . , (ad+2, θd+2) as well,

which contradicts the fact that Pdim
(

F̂
)

≤ d+ 1. Therefore, Pdim (F∗) ≤ d+ 1.

The lemma statement now follows from Theorem 3.1.

4 Applications

In this section, we apply our main sample complexity guarantee to parameterized algorithms ranging
from computational biology to algorithmic economics. In Section 4.4.1, we also present a generic
recipe for applying this theorem that we hope practitioners can use for their own tunable algorithms
(see Remark 4.1).

4.1 Applications in biology

In this section, we instantiate Theorem 3.1 in three diverse applications from computational biology:
sequence alignment, RNA folding, and finding Topologically Associated Domains (TADs).

4.1.1 Global pairwise sequence alignment

Pairwise sequence alignment is a fundamental problem in biological sequence analysis; database
search, where the goal is to find a given query in a larger text [Altschul et al., 1990]; homology
detection, where given two sequences the goal is to find the locations that are analogous [Patthy,
1987]; and many other scientific domains. Pairwise alignment is also a basic operation in many tools
for multiple sequence alignment, where the objective is to find correlation between at least three
strings [Sankoff and Cedergren, 1983], which we analyze in Section 4.1.2. Depending on the appli-
cation, the goal may be to find a complete alignment of the two sequences, called global alignment,
or to find the best alignment of any subsequences of the two input sequences, called local alignment.
In either case, the high level goal is the same: given two sequences, find a two-dimensional grid,
where each row of the grid corresponds to one of the two sequences with inserted gap characters,
that optimizes a given parameterized objective function. While the pairwise sequence alignment
problem in general is well studied, most common problem formulations have the same issue: it is a
challenge to best select the objective function’s parameters. Depending on the application domain,
the best parameter values differ between instances greatly.

More formally, let Σ be an alphabet and let S1 and S2 be two sequences in Σ of length n. A
sequence alignment is a pair of sequences τ1, τ2 ∈ (Σ ∪ {−})∗ such that |τ1| = |τ2|, del (τ1) = S1,
and del (τ2) = S2, where del is a function that deletes every −, or gap character, in the input
sequence. We require that a gap character is never paired with a gap character: for all i ∈ [|τ1|],
if τ1[i] = −, then τ2[i] 6= − and vice versa. There are many features of a sequence alignment that
effect its quality, such as the number of matches (indices i where τ1[i] = τ2[i]), mismatches (indices
i where τ1[i] 6= τ2[i]), indels (indices i where τ1[i] = − or τ2[i] = −), and gaps (ranges [i...j] where
τ [`] = − for all ` ∈ [i, j] and τ [i− 1] 6= − or i = 0 and τ [j + 1] 6= − or j = n− 1 for τ = τ1 or τ2).
We denote these features by functions `1, . . . , `d, where each maps pairs of sequences (S1, S2) and
alignments L to real values `j (S1, S2, L) ∈ R.

The affine-gap scoring model [Gotoh, 1982] for aligning two input sequences S1 and S2 computes
the alignment that maximizes the objective function

α1 · `1 (S1, S2, L) + · · ·+ αd · `d (S1, S2, L) , (8)
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where α ∈ R
d is a parameter vector and the set ` are the numbers of matches, mismatches,

indels and gaps as defined earlier. We use the notation Lα(S1, S2) to denote the set of alignments
maximizing Equation (8). For each parameter vector α, we can run a dynamic programming
algorithm Aα which returns an alignment Aα (S1, S2) in Lα(S1, S2). As we vary the weights, this
gives rise to a family of algorithms. Since there is no consensus about what the best weights
are, our goal is to automatically learn the best weights for a specific application domain. We
assume that the domain expert has a utility function that characterizes an alignment’s quality,
denoted u(S1, S2, L) ∈ [0, 1]. We are agnostic to the specific definition of u. As a concrete example,
u(S1, S2, L) might measure the distance between L and a “ground truth” alignment of S1 and S2,
also known as the developer’s accuracy [Sauder et al., 2000]. In this case, the learning algorithm
would require access to the ground truth alignment for every problem instance (S1, S2) in the
training set. Ground truth is difficult to measure, so these reference alignments are never available
for all sequence pairs (otherwise, we need not compute alignments).

In order to avoid tie-breaking complications, we assume that if any two parameter vectors
lead to the same set of co-optimal solutions to Equation (8), the algorithm outputs the same
alignment (such as the lexicographically first alignment). Formally, we say that the algorithm
family

{

Aα | α ∈ R
d
}

consists of co-optimal-constant algorithms, defined as follows:

Definition 4.1 (Co-optimal-constant sequence alignment algorithms). For each parameter vector
α ∈ R

d, let Aα be an algorithm that takes as input a sequence pair S1, S2 ∈ Σn and returns an
alignment from the set Lα(S1, S2). We say that the set

{

Aα | α ∈ R
d
}

consists of co-optimal-
constant algorithms if for any pair α,α′ ∈ R

d of parameter vectors and any sequence pair S1, S2 ∈
Σn, Lα(S1, S2) = Lα′(S1, S2) implies that Aα(S1, S2) = Aα′(S1, S2).

In the following theorem, we prove that the utility function u, when applied to the output of
the algorithm Aα, has a piecewise-structured dual function. Therefore, we can apply our main
theorem to derive sample complexity guarantees.

Lemma 4.1. Let
{

Aα | α ∈ R
d
}

be a set of co-optimal-constant algorithms and let u be a utility
function mapping tuples (S1, S2, L) of sequence pairs and alignments to the interval [0, 1]. Let U
be the set of functions U =

{

uα : (S1, S2) 7→ u (S1, S2, Aα (S1, S2)) | α ∈ R
d
}

mapping sequence
pairs S1, S2 ∈ Σn to [0, 1]. The dual class U∗ is

(

W,G, 4nn4n+2
)

-piecewise decomposable, where
G =

{

ga : U → {0, 1} | a ∈ R
d
}

consists of halfspace indicator functions ga : uα 7→ I{a·α<0} and
W = {wc : U → R | c ∈ R} consists of constant functions wc : uα 7→ c.

Proof. Fix a sequence pair S1 and S2 and consider the function u∗S1,S2
: U → R from the dual class

U∗, where u∗S1,S2
(uα) = uα(S1, S2). Consider the set of alignments LS1,S2 = {Aα(S1, S2) | α ∈ R

d}.

By Lemma 4.2, we know that there are at most 2nn2n+1 sets of co-optimal solutions as we range
α over R

d. In other words,
∣

∣

{

Lα (S1, S2) | α ∈ R
d
}∣

∣ ≤ 2nn2n+1. Since
{

Aα | α ∈ R
d
}

consists of
co-optimal-constant algorithms, we know that |LS1,S2 | ≤ 2nn2n+1 as well. Consider an arbitrary
alignment L ∈ LS1,S2 . We know that L will be the alignment returned by the algorithm Aα if and
only if

α1 · `1 (S1, S2, L) + · · ·+ αd · `d (S1, S2, L) > α1 · `1
(

S1, S2, L
′
)

+ · · ·+ αd · `d
(

S1, S2, L
′
)

(9)

for all L′ ∈ LS1,S2 \ {L}. Therefore, there is a set H of at most
(

2nn2n+1

2

)

≤ 4nn4n+2 hyperplanes
such that across all parameter vectors α in a single connected component of Rd \H, the output of
the algorithm parameterized by α, Aα(S1, S2), is invariant. This means that for single connected
component R of Rd \ H, there exists a real value cR such that uα(S1, S2) = cR for all α ∈ R. By
definition of the dual, this means that u∗S1,S2

(uα) = cR as well.
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Recall that G =
{

ga : U → {0, 1} | a ∈ R
d
}

consists of halfspace indicator functions ga : uα 7→
I{a·α<0} and W = {wc : U → R | c ∈ R} consists of constant functions wc : uα 7→ c. For each

pair L,L′ ∈ LS1,S2 , let g
(L,L′) ∈ G correspond to the halfspace represented in Equation (9). Order

these k :=
(|LS1,S2 |

2

)

functions arbitrarily as g(1), . . . , g(k). Every connected component R of Rd \H

corresponds to a sign pattern of the k hyperplanes. For a given region R, let bR ∈ {0, 1}k be the
corresponding sign pattern. Define fbR = wcR , and for every vector b not corresponding to a sign
pattern of the k hyperplanes, let fb = w0. In this way, for every α ∈ R

d,

u∗S1,S2
(uα) =

∑

b∈{0,1}k

I{g(i)(uα)=b[i],∀i∈[k]}fb(uα),

as desired.

Lemma 4.2. Fix a pair of sequences S1, S2 ∈ Σn. There are at most 2nn2n+1 alignments of S1
and S2.

Proof. For any alignment (τ1, τ2), we know that |τ1| = |τ2| and for all i ∈ [|τ1|], if τ1[i] = −, then
τ2[i] 6= − and vice versa. This means that τ1 and τ2 have the same number of gaps. To prove the
upper bound, we count the number of alignments (τ1, τ2) where τ1 and τ2 each have exactly i gaps.
There are

(

n+i
i

)

choices for the sequence τ1. Given a sequence τ1, we can only pair a gap in τ2 with
a non-gap in τ1. Since there are i gaps in τ2 and n non-gaps in τ1, there are

(

n
i

)

choices for the

sequence τ2 once τ1 is fixed. This means that there are
(

n+i
i

)(

n
i

)

≤ 2nn2n alignments (τ1, τ2) where
τ1 and τ2 each have exactly i gaps. Summing over i ∈ [n], the total number of alignments is at
most 2nn2n+1.

We now prove that the function classes F and W as defined in Lemma 4.1 have low pseudo-
and VC-dimension.

Lemma 4.3. Let G =
{

ga : U → {0, 1} | a ∈ R
d
}

be the class of halfspace indicator functions
ga : uα 7→ I{a·α<0} and let W = {wc : U → R | c ∈ R} be the class of constant functions
wc : uα 7→ c. Then VCdim(G∗) = d+ 1 and Pdim(W∗) = 0.

Proof. First, consider an arbitrary function g∗uα ∈ G∗. We know that for any ga ∈ G, g∗uα(fa) =
I{a·α<0}. Therefore, G∗ is equivalent to the class of d-dimensional threshold functions, which has
a VC dimension of d + 1. Next, consider an arbitrary function w∗

uα ∈ W∗. We know that for any
wc ∈ W, w∗

uα(wc) = c. Therefore, W∗ consists of a single function, so its pseudo-dimension is 0.

Our main theorem together with Lemmas 4.1 and 4.3 imply the following pseudo-dimension
bound.

Corollary 4.4. Let
{

Aα | α ∈ R
d
}

be a set of co-optimal-constant algorithms and let u be a
utility function mapping tuples (S1, S2, L) to the interval [0, 1]. Let U be the set of functions
U =

{

uα : (S1, S2) 7→ u (S1, S2, Aα (S1, S2)) | α ∈ R
d
}

mapping sequence pairs S1, S2 ∈ Σn to [0, 1].
Then Pdim(U) ≤ 4 (d+ 1) ln

(

e4n+1n4n+2 (d+ 1)
)

.

Corollary 4.4 implies that for any ε > 0, 8
ε2

(

Pdim(U) ln 8
ε2

+ 1
4 ln

1
δ

)

samples are sufficient to
ensure uniform convergence. The proof of Lemma 4.1 follows a general recipe in every applica-
tion throughout this paper. We summarize the recipe in the following remark in the hopes that
practitioners can apply it to their own tunable algorithms.
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Remark 4.1. In general, given a class of algorithms
{

Aρ | ρ ∈ R
d
}

and corresponding utility func-
tions U =

{

uρ : Π → R | ρ ∈ R
d
}

, there is a simple recipe we can typically follow to determine how
the dual class U∗ is piecewise decomposable, and thus apply our main theorem, Theorem 3.1. In
particular, this recipe helps us characterize two function classes F and G and an integer k such
that U∗ is (F ,G, k)-piecewise decomposable. We describe this recipe below.

1. Fix a problem instance x ∈ Π. For example, in the case of sequence alignment, the problem
instance x corresponds to the sequence pair (S1, S2) we fixed at the beginning of the proof.

2. Consider all the possible solutions the algorithm Aρ might produce given x as input as we
range over parameters ρ ∈ R

d, and call this set Ψx. In other words, Ψx ⊇
{

Aρ(x) | ρ ∈ R
d
}

.
In the proof of Lemma 4.1, the set Ψx corresponds to the set of alignments LS1,S2 . We assume
that there is a cap κ on the size of Ψx — that is, maxx′∈Π |Ψx′ | ≤ κ. In the case of sequence
alignment, κ ≤ 4nn4n+2.

3. For any pair of possible solutions ψ and ψ′ from the set Ψx, identify the set of parameters ρ
where the algorithm Aρ would choose ψ over ψ′ given x as input. Let fψ,ψ′,x be the indicator
function corresponding to this set of parameters:

gψ,ψ′,x (uρ) =

{

1 if Aρ would choose ψ over ψ′ given x as input

0 otherwise
.

What form do these functions have? For example, are they hyperplanes? Are they more
complex polynomial hypersurfaces? Let G be the corresponding class of functions: G ⊇
{

gψ,ψ′,x | x ∈ Π, ψ, ψ′ ∈ Ψx

}

. In the case of sequence alignment, the class G consists of halfs-
pace indicator functions.

4. Consider an arbitrary region R ⊆ R
d of the parameter space where the parameterized algo-

rithm’s output is invariant. In other words, Aρ(x) is fixed across all ρ ∈ R. How does the
utility uρ(x) behave as a function of ρ ∈ R? In other words, what is the form of the dual
utility function u∗x (uρ) when ρ is restricted to R? Is it constant or linear, for example, or
is it some other type of function? Let F ⊆ R

U be the corresponding class of functions. In
the case of sequence alignment, the utility function is a constant function of the parameters
(α, β, γ).

5. Finally, we conclude that the dual class U∗ is
(

F ,G, κ2
)

-piecewise decomposable4.

Tighter guarantees for a structured algorithm subclass: the affine-gap model. A line
of prior work [Gusfield et al., 1994, Fernández-Baca et al., 2004, Pachter and Sturmfels, 2004b,a]
analyzed the specific instantiation of the objective function (8) where d = 3. The goal is to find
the alignment L maximizing the objective function

mt(S1, S2, L)− α ·ms(S1, S2, L)− β · id(S1, S2, L)− γ · gp(S1, S2, L),

4To see why, consider a function u∗
x ∈ U∗ and the k =

(

|Ψx|
2

)

≤ κ2 binary functions gψ,ψ′,x ∈ G for all ψ,ψ′ ∈ Ψx.

Order them arbitrarily as g(1), . . . , g(k). Consider any region R ⊆ R
d where for all ψ,ψ′ ∈ Ψx, gψ,ψ′,x (uρ) is invariant

across all ρ ∈ R and let b =
(

g(1) (uρ) , . . . , g
(k) (uρ)

)

for an arbitrary ρ ∈ R
d. In this region, the output Aρ(x) is

fixed. Thus, there exists a function fb ∈ F such that u∗
x (uρ) = fb (uρ) for all ρ ∈ R, so we conclude that the dual

class U∗ is
(

F ,G, κ2
)

-piecewise decomposable.
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where mt(S1, S2, L) is the number of columns in the alignment that have the same character
(matches), ms(S1, S2, L) is the number of columns that do not have the same character (mis-
matches), id(S1, S2, L) is the total number of gap characters (indels, short for insertion/deletion),
and gp(S1, S2, L) is the number of groups of consecutive gap characters in any one row of the grid
(gaps). This is known as the the affine-gap scoring model. Note that while there are four tunable
parameters in this definition, without loss of flexibility we can set one to 1 (say the weight on
the number of matches) and find optimal parameters only on the other three. We exploit specific
structure exhibited by this algorithm family to obtain an exponential improvement in the sample
complexity. This useful structure guarantees that for some constant c0 > 0 and any pair of se-
quences (S1, S2), there are only c0n

3/2 different alignments the algorithm family
{

Aα | α ∈ R
4
}

might produce as we range over parameter vectors [Gusfield et al., 1994, Fernández-Baca et al.,
2004, Pachter and Sturmfels, 2004a]. This bound is exponentially smaller than our generic bound
of 4nn4n+2 from Lemma 4.2. We thereby tighten our bound in Step 2 of the generic recipe, implying
a stronger sample complexity bound.

Lemma 4.5. Let {Aα,β,γ | α, β, γ ∈ R≥0} be a set of co-optimal-constant algorithms and let u be a
utility function mapping tuples (S1, S2, L) of sequence pairs and alignments to the interval [0, 1]. Let
U be the set of functions U = {uα,β,γ : (S1, S2) 7→ u (S1, S2, Aα,β,γ (S1, S2)) | α, β, γ ∈ R≥0} mapping
sequence pairs S1, S2 ∈ Σn to [0, 1]. For some constant c0 > 0, the dual class U∗ is

(

W,G, c20n
3
)

-
piecewise decomposable, where G = {ga1,a2,a3,a4 : U → {0, 1} | a1, a2, a3, a4 ∈ R} consists of halfspace
indicator functions ga1,a2,a3,a4 : uα,β,γ 7→ I{a1α+a2β+a3γ<a4} and W = {wc : U → R | c ∈ R} consists
of constant functions wc : uα,β,γ 7→ c.

Proof. Fix a sequence pair S1 and S2 and consider the function u∗S1,S2
: U → R from the dual class

U∗, where u∗S1,S2
(uα,β,γ) = uα,β,γ(S1, S2). Consider the set of alignments LS1,S2 = {Aα,β,γ(S1, S2) |

α, β, γ ∈ R≥0}. From work by Pachter and Sturmfels [2004a], we know that for some constant
c0 > 0 there are at most c0n

3/2 sets of co-optimal solutions as we range α, β, and γ over R3
≥0. In

other words,
|{Lα,β,γ (S1, S2) | α, β, γ ∈ R≥0}| ≤ c0n

3/2.

Since {Aα,β,γ | α, β, γ ∈ R≥0} consists of co-optimal-constant algorithms, we know that |LS1,S2 | ≤
c0n

3/2 as well. Consider an arbitrary alignment L ∈ LS1,S2 . We know that L will be the alignment
returned by the algorithm Aα,β,γ if and only if

mt(S1, S2, L)− α ·ms(S1, S2, L)− β · id(S1, S2, L)− γ · gp(S1, S2, L)

≥ mt(S1, S2, L
′)− α ·ms(S1, S2, L

′)− β · id(S1, S2, L
′)− γ · gp(S1, S2, L

′)
(10)

for all L′ ∈ LS1,S2 \ {L}. Therefore, there is a set H of

(

c0n
3/2

2

)

≤ c20n
3

hyperplanes such that across all (α, β, γ) in a single connected component of R3
≥0 \ H, the output

of the algorithm parameterized by α, β, γ, Aα,β,γ(S1, S2), is invariant. This means that for single
connected component R of R3 \H, there exists a real value cR such that uα,β,γ(S1, S2) = cR for all
(α, β, γ) ∈ R. By definition of the dual, this means that u∗S1,S2

(uα,β,γ) = cR as well.
Recall that G = {ga1,a2,a3,a4 : U → {0, 1} | a1, a2, a3, a4 ∈ R} consists of halfspace indicator

functions ga1,a2,a3,a4 : uα,β,γ 7→ I{a1α+a2β+a3γ<a4} and W = {wc : U → R | c ∈ R} consists of

constant functions wc : uα,β,γ 7→ c. For each pair L,L′ ∈ LS1,S2 , let g
(L,L′) ∈ G correspond to

the halfspace represented in Equation (10). Order these k :=
(|LS1,S2 |

2

)

functions arbitrarily as
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g(1), . . . , g(k). Every connected component R of R3
≥0 \ H corresponds to a sign pattern of the k

hyperplanes. For a given region R, let bR ∈ {0, 1}k be the corresponding sign pattern. Define
fbR = wcR , and for every vector b not corresponding to a sign pattern of the k hyperplanes, let
fb = w0. In this way, for every α, β, γ ∈ R≥0,

u∗S1,S2
(uα,β,γ) =

∑

b∈{0,1}k

I{g(i)(uα,β,γ)=b[i],∀i∈[k]}fb(uα,β,γ),

as desired.

Our main theorem together with Lemmas 4.5 and 4.3 imply the following pseudo-dimension
bound.

Corollary 4.6. Let {Aα,β,γ | α, β, γ ∈ R≥0} be a set of co-optimal-constant algorithms and let u
be a utility function mapping tuples (S1, S2, L) to the interval [0, 1]. Let U be the set of functions
U = {uα,β,γ : (S1, S2) 7→ u (S1, S2, Aα,β,γ (S1, S2)) | α, β, γ ∈ R≥0} mapping sequence pairs S1, S2 ∈
Σn to [0, 1]. For some constant c0 > 0, Pdim(U) ≤ 20 ln

(

20c20en
3
)

.

Corollary 4.6 implies that for any ε > 0, 8
ε2

(

20 ln
(

20ec20n
3
)

ln 8
ε2

+ 1
4 ln

1
δ

)

samples are suffi-
cient to ensure uniform convergence. By taking advantage of structure uncovered by prior re-
search [Pachter and Sturmfels, 2004a], we thus obtain an exponentially-better dependence on the
sequence length n than the sample complexity guarantee from Corollary 4.4 for one of the most
common pairwise sequence alignment formulations.

Tighter guarantees for a structured algorithm subclass: sequence alignment using
hidden Markov models. While we focused on the affine gap model in the previous section,
which was inspired by the results by Gusfield et al. [1994], the result by Pachter and Sturmfels
[2004a] helps to provide uniform convergence guarantees for any alignment scoring function that
can be modeled as a hidden Markov model (HMM). A bound on the number of parameter choices
that emit distinct sets of co-optimal alignments in that work is found by taking an algebraic view
of the alignment HMM with d tunable parameters. In fact, the bounds provided can be used to
provide guarantees for many types of HMMs.

Lemma 4.7. Let {Aα1,...,αd | α1, ..., αd ∈ R} be a set of co-optimal-constant algorithms and let u be
a utility function mapping tuples (S1, S2, L) of sequence pairs and alignments to the interval [0, 1].
Let U be the set of functions U = {uα1,...,αd : (S1, S2) 7→ u (S1, S2, Aα1,...,αd (S1, S2)) | α1, ..., αd ∈ R}
mapping sequence pairs S1, S2 ∈ Σn to [0, 1]. For some constant c1 > 0, the dual class U∗ is
(

W,G, c21n
2d(d−1)/(d+1)

)

-piecewise decomposable, where G = {ga1,,...,ad+1
: U → {0, 1} | a1, ..., ad+1 ∈

R} consists of halfspace indicator functions ga1,...,ad+1
: uα1,...,αd 7→ I{a1α1+...+adαd<ad+1} and W =

{wc : U → R | c ∈ R} consist of constant functions wc : uα1,...,αd 7→ c.

Proof. Fix a sequence pair S1 and S2 and consider the function u∗S1,S2
: U → R from the dual

class U∗, where u∗S1,S2
(uα1,...,αd) = uα1,...,αd(S1, S2). Consider the set of alignments LS1,S2 =

{Aα1,...,αd(S1, S2) | α1, ..., αd ∈ R}. There are at most c1n
d(d−1)/(d+1) sets of co-optimal solu-

tions as we range α1, ..., αd over Rd [Pachter and Sturmfels, 2004a]. The remainder of the proof is
analogous to that for Lemma 4.5.

Finally the results of Lemma 4.7 imply the following pseudo-dimension bound.
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Corollary 4.8. Let {Aα1,...,αd | α1, ..., αd ∈ R} be a set of co-optimal-constant algorithms and let u
be a utility function mapping tuples (S1, S2, L) to the interval [0, 1]. Let U be the set of functions U =
{uα1,...,αd : (S1, S2) 7→ u (S1, S2, Aα1,...,αd (S1, S2)) | α1, ..., αd ∈ R} mapping sequence pairs S1, S2 ∈
Σn to [0, 1]. For some c1 > 0, Pdim(U) ≤ 4 (d+ 1) ln

(

4ec21n
2d(d−1)/(d+1) (d+ 1)

)

.

Corollary 4.8 implies that for any ε > 0, 8
ε2

(

Pdim(U) ln 8
ε2

+ 1
4 ln

1
δ

)

samples are sufficient to
ensure uniform convergence even with more complicated optimization functions than considered in
by the initial work on inverse parametric alignment.

4.1.2 Progressive multiple sequence alignment

The multiple sequence alignment problem is a generalization of the pairwise alignment problem
introduced in Section 4.4.1. Let Σ be an abstract alphabet and let S1, . . . , Sκ ∈ Σn be a collection
of sequences in Σ of length n. A multiple sequence alignment is a collection of sequences τ1, . . . , τκ ∈
(Σ ∪ {−})∗ such that the following hold:

1. The aligned sequences are the same length: ∀i, j we have |τi| = |τj |.

2. Removing the gap characters from τi gives Si: ∀i we have del(τi) = Si.

3. For every position i in the final alignment, at least one of the aligned sequences has a non-gap
character: ∀i ∈ [|τ1|], ∃j ∈ [κ] such that τj [i] 6= −.

The extension from pairwise to multiple sequence alignment, however, is computationally chal-
lenging: all common formulations of the problem are NP-complete [Wang and Jiang, 1994, Kece-
cioglu and Starrett, 2004]. Therefore, every algorithm that solves the multiple sequence alignment
problem likely takes an inordinate amount of time to find a solution. As a result, scientists have de-
veloped heuristics to find good, but possibly sub-optimal, alignments. The most common heuristic
approach is called progressive multiple sequence alignment. It leverages efficient pairwise alignment
algorithms to heuristically align multiple sequences [Feng and Doolittle, 1987]. Progressive align-
ment algorithms have two phases. First, they construct a binary guide tree that decomposes the the
original alignment problem into a hierarchy of subproblems, each of which can be approximately
solved using pairwise alignment. The leaves of the guide tree correspond to the input sequences
S1, . . . , Sκ. Each internal node represents the subproblem of aligning the sequences at the leaves of
its subtree. We assume this guide tree is provided to the algorithm as input.

At a high level, the second phase recursively constructs an alignment and a consensus sequence
for each node of the guide tree. That is, for each node v in the tree, we construct an alignment Lv
of the leaves in the subtree rooted at v, as well as a consensus sequence ρv ∈ Σ∗. Since the leaves
correspond to single input sequences, they have a trivial alignment and the consensus sequence is
just the corresponding input sequence. For an internal node v with children c1 and c2, we use a
pairwise alignment algorithm to construct an alignment of the consensus strings ρc1 and ρc2 . The
consensus sequences are defined so that when we combine this alignment with the alignments for
the children Lc1 and Lc2 , we obtain an alignment Lv for the subproblem at node v. Finally, we
define the consensus sequence of the node v to be the string ρv ∈ Σ∗ such that ρv[i] is the most-
frequent non-gap character in the ith position in the alignment Lv. This is an adaptation of the
“partial consensus” generalization described by Higgins and Sharp [1988]. We obtain a full multiple
sequence alignment by iteratively replacing each consensus sequence by the pairwise alignment it
represents, adding gap columns to the sub-alignments when necessary. Once we add a gap to a
sequence, we never remove it: “once a gap, always a gap.” Figure 7 illustrates an example of this
algorithm in action.
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Claim 4.10. For each node v in the guide tree, there is a set Hv of hyperplanes where for any
connected component C of R

d \ Hv, the alignment and consensus sequence computed by Mα is
invariant across α ∈ C. Moreover, the size of Hv is bounded as follows:

|Hv| ≤ `d
height(v)

(

`4d
)(dheight(v)−1)/(d−1)

,

where ñ := nκ and ` := 4ññ4ñ+2.

Before we prove Claim 4.10, we remark that the longest consensus sequence computed for any
node v of the guide tree has length at most ñ = nκ, which is a bound on the sum of the lengths of
the input sequences.

Proof of Claim 4.10. We prove this claim by induction on the guide tree G. The base case corre-
sponds to the leaves of G. On each leaf, the alignment and consensus sequence constructed by Mα

is constant for all α ∈ R
d, since there is only one string to align (i.e., the input string placed at

that leaf). Therefore, the claim holds for the leaves of G. Moving to an internal node v, suppose
that the inductive hypothesis holds for its children c1 and c2. Assume without loss of generality
that height (c1) ≥ height (c2), so that height (v) = height (c1) + 1. Let Hc1 and Hc2 be the sets of
hyperplanes corresponding to the children c1 and c2. By the inductive hypothesis, these sets are
each of size at most

s := `d
height(c1)

(

`4d
)(dheight(c1)−1)/(d−1)

Letting H = Hc1 ∪ Hc2 , we are guaranteed that for every connected component of Rd \ H, the
alignment and consensus string computed by Mα for both children c1 and c2 is constant. Based on
work by Buck [1943], we know that there are at most (2s + 1)d ≤ (3s)d connected components of
R
d\H. For each region, by the same argument as in the proof of Lemma 4.1, there are an additional

` hyperplanes that partition the region into subregions where the outcome of the pairwise merge
at node v is constant. Therefore, there is a set Hv of at most

`(3s)d + 2s ≤ `(4s)d

= `

(

4`d
height(c1)

(

`4d
)(dheight(c1)−1)/(d−1)

)d

= `d
height(c1)+1

(

`4d
)(dheight(c1)+1−d)/(d−1)+1

= `d
height(c1)+1

(

`4d
)(dheight(c1)+1−1)/(d−1)

= `d
height(v)

(

`4d
)(dheight(v)−1)/(d−1)

hyperplanes where for every connected component of Rd \ H, the alignment and consensus string
computed by Mα at v is invariant.

Applying Claim 4.10 to the root of the guide tree, the function α 7→ Mα(S1, . . . , Sκ, G) is
piecewise constant with

`d
height(G)

(

`4d
)(dheight(G)−1)/(d−1)

linear boundary functions. The lemma then follows from the following chain of inequalities:

`d
height(G)

(

`4d
)(dheight(G)−1)/(d−1)

≤ `d
height(G)

(

`4d
)dheight(G)
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= `2d
height(G)

4d
height(G)+1

=
(

4ññ4ñ+2
)2dheight(G)

4d
height(G)+1

=
(

4nκ (nκ)4nκ+2
)2dheight(G)

4d
height(G)+1

≤
(

4nκ (nκ)4nκ+2
)2dη

4d
η+1

.

Our main theorem together with Lemma 4.9 implies the following pseudo-dimension bound.

Corollary 4.11. Let
{

Mα | α ∈ R
d
}

be the family of progressive multiple sequence alignment algo-
rithms derived from a family

{

Aα | α ∈ R
d
}

of co-optimal-constant pairwise alignment algorithms.
Let u be a utility function mapping tuples (S1, . . . , Sκ, G, L) of sequences, a guide graph G with
height at most η, and an alignment L to the interval [0, 1]. Let U be the set of functions

U =
{

uα : (S1, . . . , Sκ, G) 7→ u
(

S1, . . . , Sκ, G,Mα(S1, . . . , Sκ, G)
)

| α ∈ R
d
}

mapping problem instances to utilities. Then

Pdim(U) ≤ 4 (d+ 1) ln

(

4e
(

4nκ (nκ)4nκ+2
)2dη

4d
η+1

(d+ 1)

)

.

This pseudo-dimension bound is small in the affine-gap model when the guide tree G is balanced
because η ≤ log κ. In that case, the pseudo-dimension grows only linearly in n and quadratically
in κ.

4.1.3 RNA folding

To perform functions within the cell, some RNA form 3-dimensional structures by folding the single
length of RNA, binding non-adjacent pairs of bases together physically. Formally, given a sequence
S ∈ Σn from an alphabet Σ, a folding is a set of a pairs (i, j) such that 0 ≤ i < j ≤ n, each
base is involved in only one pair, and the folding does not contain any pseudoknots (a pair of
pairs (i, j), (i′, j′) such that i < i′ < j < j′). A commonly-used procedure for finding a folding
φ ⊂ {(i, j) | 0 ≤ i < j < n} of an input sequence S ⊆ Σn computes the folding that maximizes the
objective function

α |φ|+ (1− α)
∑

(i,j)∈φ

M(

S[i],S[j]
S[i−1],S[j+1]

)I{(i,j),(i−1,j+1)∈φ} (11)

where α ∈ [0, 1] is a tunable parameter andM is a fixed, arbitrary, non-negative weight matrix. The
model described here is subset of that described in Nussinov and Jacobson [1980]. We only consider
the energies of single and adjacent base-pairs whereas Nussinov and Jacobson [1980] consider many
more possible patterns. We use the notation φα(S) to denote the set of foldings maximizing
Equation (11). For each parameter α, we can run a dynamic programming algorithm Aα which
returns a folding Aα(S) in φα(S). As we vary the weight, this gives rise to a family of algorithms.
Since there is no consensus about what the best weight is, our goal is to automatically learn the
best weight for a specific application domain. As in Section 4.4.1, we assume that the domain
expert has a utility function that characterizes a folding’s quality, denoted u(S, φ) ∈ [0, 1]. We are
again agnostic to the specific definition of u, but as a concrete example, u(S, φ) might measure
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the fraction of pairs shared between φ and a “ground truth” folding φ∗. In this case, the learning
algorithm would require access to the ground truth folding for every sequence S in the training set.

As in Section 4.4.1, we assume the algorithm family
{

Aα | α ∈ R
d
}

consists of co-optimal-
constant algorithms in order to avoid tie-breaking complications. Namely, we assume that if any
two parameters lead to the same set of co-optimal solutions to Equation (11), the algorithm outputs
the same folding (such as the lexicographically first folding).

Definition 4.2 (Co-optimal-constant folding algorithms). For each parameter α ∈ [0, 1], let Aα be
an algorithm that takes as input a sequence S and returns a folding from the set φα(S). We say
that the set {Aα | α ∈ [0, 1]} consists of co-optimal-constant algorithms if for any pair α, α′ ∈ [0, 1]
of parameters and any matrix M , φα(S) = φα′(S) implies that Aα(S) = Aα′(S).

In the following theorem, we prove that the utility function u, when applied to the output of the
algorithm Aα, has a piecewise-structured dual function. Therefore, we can apply our main theorem
to derive sample complexity guarantees.

Lemma 4.12. Let {Aα | α ∈ [0, 1]} be a set of co-optimal-constant algorithms and let u be a utility
function mapping pairs (S, φ) of sequences and foldings to the interval [0, 1]. Let U be the set of
functions U = {uα : S 7→ u (S,Aα (S)) | α ∈ [0, 1]} mapping sequences S to [0, 1]. The dual class U∗

is
(

W,G, n2n
)

-piecewise decomposable, where G = {ga : U → {0, 1} | a ∈ R} consists of threshold
functions ga : uα 7→ I{α<a} and W = {wc : U → R | c ∈ R} consists of constant functions
wc : uα 7→ c.

Proof. Fix a sequence S and consider the function u∗S : U → R from the dual class U∗, where
u∗S(uα) = uα(S). Consider the set of foldings Φ∗ = {Aα(S) | α ∈ [0, 1]}. We know that for any

folding φ, φ ⊂ [n] × [n] and |φ| ∈ {0, . . . , n/2}, which means that |Φ∗| ≤
(

n2

n/2

)

≤ nn. Consider an

arbitrary folding φ ∈ Φ∗. We know that φ will be the folding returned by the algorithm Aα(S) if
and only if

α |φ|+ (1− α)
∑

(i,j)∈φ

M(

S[i],S[j]
S[i−1],S[j+1]

)I{(i,j),(i−1,j+1)∈φ}

≥ α
∣

∣φ′
∣

∣+ (1− α)
∑

(i,j)∈φ′

M(

S[i],S[j]
S[i−1],S[j+1]

)I{(i,j),(i−1,j+1)∈φ′}

(12)

for all φ′ ∈ Φ∗\{φ}. Since these functions are linear in α, this means there is a set of T ≤
(

nn

2

)

≤ n2n

intervals [α0, α1), [α1, α2), . . . , [αT−1, αT ] with 0 := α0 < α1 < · · · < αT−1 < 1 := αT such that
for any one interval I, across all α ∈ I, Aα(S) is invariant. This means that for any one interval
[αi, αi+1), there exists a real value ci such that uα(S) = ci for all α ∈ [αi, αi+1). By definition of
the dual, this means that u∗S(uα) = ci as well.

Recall that G = {ga : U → {0, 1} | a ∈ R} consists of threshold functions ga : uα 7→ I{α<a} and
W = {wc : U → R | c ∈ R} consists of constant functions wc : uα 7→ c. Consider the functions
g(1) := gα0 , . . . , g

(T+1) := gαT ∈ G. We claim that there exists a function fb for every vector
b ∈ {0, 1}T+1 such that for every α ∈ [0, 1],

u∗S(uα) =
∑

b∈{0,1}T+1

I{g(i)(uα)=b[i],∀i∈[T+1]}fb(uα). (13)

To see why, suppose α ∈ [αi, αi+1) for some i ≤ T . Then gαj (uα) = g(j+1)(uα) = I{α≤αj} = 1 for

all j ≥ i+ 1 and gαj (uα) = g(j+1)(uα) = I{α≤αj} = 0 for all j ≤ i. Let b ∈ {0, 1}T+1 be the vector
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that has only 0’s in its first i coordinates and all 1’s in its remaining n− i coordinates. We define
fb = wci . For any other b, we set fb = w0 (note that it will never be the case that g(i)(uα) = b[i]
for all i ∈ [T + 1]). Therefore, Equation (13) holds.

We now prove that the function classes G and W as defined in Lemma 4.12 have low pseudo-
and VC-dimension.

Lemma 4.13. Let G = {ga : U → {0, 1} | a ∈ R} be the class of threshold functions ga : uγ 7→
I{γ<a} and W = {wc : U → R | c ∈ R} be the class of constant functions wc : uα 7→ c. Then
VCdim(G∗) = 1 and Pdim(W∗) = 0.

Proof. First, consider an arbitrary function g∗uα ∈ G∗. We know that for any ga ∈ G, g∗uα(ga) =
I{α<a}. Therefore, G∗ is equivalent to the class of threshold functions, which has a VC dimension
of 1. Next, consider an arbitrary function w∗

uα ∈ W∗. We know that for any wc ∈ W, w∗
uα(wc) = c.

Therefore, W∗ consists of a single function, so its pseudo-dimension is 0.

Our main theorem together with Lemmas 4.12 and 4.13 imply the following pseudo-dimension
bound.

Corollary 4.14. Let {Aα | α ∈ [0, 1]} be a set of co-optimal-constant algorithms and let u be a
utility function mapping pairs (S, φ) of sequences and foldings to the interval [0, 1]. Let U be
the set of functions U = {uα : S 7→ u (S,Aα (S)) | α ∈ [0, 1]} mapping sequences S to [0, 1]. Then
Pdim(U) ≤ 4 ln

(

4en2n
)

.

Corollary 4.14 implies that for any ε > 0, 8
ε2

(

4 (ln (4e) + 2n lnn) ln 8
ε2

+ 1
4 ln

1
δ

)

samples are
sufficient to ensure uniform convergence.

4.1.4 Topologically Associated Domain (TAD) finding

Inside a cell, the linear DNA of the genome takes on a 3-dimensional shape that has been shown
to be important for various cellular functions. Because of this, certain regions of the genome are
closer to each other more often, and are thought to interact more. We call these regions topologically
associating domains (TADs). Measuring TADs directly is not currently possible. However, the Hi-
C [Lieberman-Aiden et al., 2009] protocol permits the measurement of the contact frequency for
all pairs of locations in the genome. Using this contact frequency, the TAD-prediction problem is
to identify the regions along the genome that are frequently in contact in certain conditions and
label them as TADs.

More formally, given the sequence or genome length n ∈ N, let
(

[n]
2

)

be the set of all ordered

pairs
(

[n]
2

)

= {(i, j) : 1 ≤ i < j ≤ n}. We use the objective function from Filippova et al. [2014].
Given a weighted adjacency matrix M ∈ R

n×n and a parameter γ ≥ 0, the goal of TAD-finding is
to compute the TAD set T ⊆

(

[n]
2

)

that maximizes the objective function

∑

(i,j)∈T

SMγ(i, j)− µγ(j − i), (14)

where

SMγ(i, j) =
1

(j − i)γ

∑

i≤p<q≤j

Mpq and µγ(d) =
1

n− d

n−d
∑

t=0

SMγ(t, t+ d).

We use the notation Tγ(M) to denote the set of TAD sets maximizing Equation (14). For each
parameter γ, we can run a dynamic programming algorithm Aγ which returns a labeling Aγ(M) in
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Tγ(M). As we vary the weight, this gives rise to a family of algorithms. Since there is no consensus
about what the best parameter is, our goal is to automatically learn the best parameter. As before,
we assume that the domain expert has a utility function that characterizes the quality of a TAD set
T , denoted u(M,T ) ∈ [0, 1]. We are again agnostic to the specific definition of u, but as a concrete
example, u(M,T ) might measure the fraction of TADs in T that are in the correct location given
a “ground truth” TAD set T ∗. In this case, the learning algorithm would require access to the
ground truth TAD set—which may be hand curated—for every matrix M in the training set.

Definition 4.3 (Co-optimal-constant TAD-finding algorithms). For each parameter γ ∈ R≥0, let
Aγ be an algorithm that takes as input a matrix M ∈ R

n×n and returns an alignment from the
set Tγ(M). We say that the set {Aγ | γ ∈ R≥0} consists of co-optimal-constant algorithms if for
any pair γ, γ′ ∈ R≥0 of parameters and any matrix M ∈ R

n×n, Tγ(M) = Tγ′(M) implies that
Aγ(M) = Aγ′(M).

Lemma 4.15. Let {Aγ | γ ∈ R≥0} be a set of co-optimal-constant algorithms and let u be a utility
function mapping pairs (M,T ) of matrices and TAD sets to the interval [0, 1]. Let U be the set
of functions U = {uγ :M 7→ u (M,Aγ (M)) | γ ∈ R≥0} mapping matrices M ∈ R

n×n to [0, 1]. The

dual class U∗ is
(

W,G, 2n24n
2
)

-piecewise decomposable, where G = {ga : U → {0, 1} | a ∈ R}

consists of threshold functions ga : uγ 7→ I{γ<a} and W = {wc : U → R | c ∈ R} consists of constant
functions wc : uγ 7→ c.

Proof. We begin by rewriting Equation (14) as follows:

Tγ = argmax
T⊆([n]2 )

∑

(i,j)∈T





1

(j − i)γ





∑

i≤u<v≤j

Muv



−
1

n− j + i

n−j+i
∑

t=0

1

(j − i)γ

∑

t≤p<q≤t+j−i

Mpq





= argmax
T⊆([n]2 )

∑

(i,j)∈T

1

(j − i)γ









∑

i≤u<v≤j

Muv



−
1

n− j + i

n−j+i
∑

t=0

∑

t≤p<q≤t+j−i

Mpq





= argmax
T⊆([n]2 )

∑

(i,j)∈T

cij
(j − i)γ

,

where

cij =





∑

i≤u<v≤j

Muv



−
1

n− j + i

n−j+i
∑

t=0

∑

t≤p<q≤t+j−i

Mpq.

Note that cij is a constant that does not depend on γ.
Fix a matrix M and consider the function u∗M : U → R from the dual class U∗, where u∗M (uγ) =

uγ(M). Consider the set of TAD sets T ∗ = {Aγ(M) | γ ∈ R≥0}. Since each TAD set is a subset

of
(

[n]
2

)

, |T ∗| ≤ 2n
2
. Moreover, since {Aγ | γ ∈ R≥0} consists of co-optimal-constant algorithms, we

know that |T ∗| ≤ 2n
2
as well. Consider an arbitrary TAD set T ∈ T ∗. We know that T will be the

set returned by the algorithm Aγ if and only if
∑

(i,j)∈T

cij
(j − i)γ

>
∑

(i′,j′)∈T ′

ci′j′

(j′ − i′)γ

for all T ′ ∈ T ∗ \ {T}. This means that as we range γ over the positive reals, the TAD set returned
by algorithm Aγ(M) will only change when

∑

(i,j)∈T

cij
(j − i)γ

−
∑

(i′,j′)∈T ′

ci′j′

(j′ − i′)γ
= 0 (15)
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for some T, T ′ ∈ T ∗. By Rolle’s Theorem (see Corollary 4.17), we know that Equation (15)
has at most |T | + |T ′| ≤ 2n2 solutions, this means there are at most 2n2

(

|T ∗|
2

)

≤ 2n24n
2
intervals

partitioning R≥0 such that across all γ within any one interval I, the TAD set returned by algorithm
Aγ(M) is invariant. This means that there exists a real value cI such that uγ(M) = cI for all γ ∈ I.
By definition of the dual, this means that u∗M (uγ) = cI as well.

Recall that G = {ga : U → {0, 1} | a ∈ R} consists of thresholds ga : uγ 7→ I{γ<a} and
W = {wc : U → R | c ∈ R} consists of constant functions wc : uγ 7→ c. Let a1, . . . , at ∈ R be

the t boundaries of the t − 1 = O
(

n24n
2
)

intervals partitioning R≥0 and let g(1), . . . , g(t) be the

corresponding threshold functions. For a given interval I, let bI ∈ {0, 1}t be the corresponding sign
pattern of the t threshold functions. Define fbI = wcI , and for every vector b not corresponding to
a sign pattern of the t thresholds, let fb = w0. In this way, for every γ ∈ R≥0,

u∗M (uγ) =
∑

b∈{0,1}t

I{g(i)(uγ)=b[i],∀i∈[t]}fb(uγ),

as desired.

The following is a corollary of Rolle’s theorem that we use in the proof of Lemma 4.15.

Lemma 4.16 (Tossavainen [2006]). Let h be a polynomial-exponential sum of the form h(x) =
∑t

i=1 aib
x
i , where bi > 0 and ai ∈ R. The number of roots of h is upper bounded by t.

Corollary 4.17. Let h be a polynomial-exponential sum of the form

h(x) =
t

∑

i=1

ai
bxi
,

where bi > 0 and ai ∈ R. The number of roots of h is upper bounded by t.

Proof. Note that
∑t

i=1
ai
bxi

= 0 if and only if





n
∏

j=1

bxi





t
∑

i=1

ai
bxi

=
n
∑

i=1

ai





∏

j 6=i

bi





x

= 0.

Therefore, the corollary follows from Lemma 4.16.

The following is a corollary of Lemma 4.15.

Corollary 4.18. Let {Aγ | γ ∈ R≥0} be a set of co-optimal-constant algorithms and let u be a
utility function mapping pairs (M,T ) of matrices and TAD sets to the interval [0, 1]. Let U be the
set of functions U = {uγ :M 7→ u (M,Aγ (M)) | γ ∈ R≥0} mapping matrices M ∈ R

n×n to [0, 1].

Then Pdim(U) ≤ 4 ln
(

8en24n
2
)

.

4.2 Applications in economics and political science

We study a setting where there is a set {1, . . . ,m} of m alternatives and a set of n agents. Each
agent i has a value vi(j) ∈

(

− 1
n ,

1
n

)

for each alternative j ∈ [m]. We denote all m of his values as
vi ∈

(

− 1
n ,

1
n

)m
and all n agents’ values as v = (v1, . . . ,vn) ∈

(

− 1
n ,

1
n

)nm
.

A mechanism takes as input a set of bids bi ∈
(

− 1
n ,

1
n

)m
from each agent i. We denote all

n agents’ bids as b = (b1, . . . , bn) ∈
(

− 1
n ,

1
n

)nm
. Every mechanism is defined by a social choice

34



function and a set of payment functions. A social choice function f :
(

− 1
n ,

1
n

)nm
→ [m] uses the

bids b ∈
(

− 1
n ,

1
n

)nm
to choose an alternative f(b) ∈ [m]. Moreover, for each agent i ∈ [n], there

is a payment function pi :
(

− 1
n ,

1
n

)nm
→ R which maps the bids b to a value pi(b) ∈ R that agent

i either pays or receives (if pi(b) > 0, then the agent pays that value, and if pi(b) < 0, then the
agent receives that value).

We focus on mechanisms that are incentive compatible and budget balanced. A mechanism is
incentive compatible if each agent is incentivized to report her values truthfully. In other words,
she cannot gain by reporting strategically. We formally define incentive compatibility below.

Definition 4.4 (Incentive compatibility). Fix an arbitrary agent i ∈ [n] with values vi ∈
(

− 1
n ,

1
n

)m
.

Let b−i ∈
(

− 1
n ,

1
n

)m(n−1)
denote an arbitrary set of bids for all agents except agent i. Given a social

choice function f , let f (bi, b−i) be the outcome when agent i bids bi ∈
(

− 1
n ,

1
n

)m
and the other

agents bid b−i. Similarly, given a payment function pi, let pi (bi, b−i) be the value agent i either
pays or receives when agent i bids bi ∈

(

− 1
n ,

1
n

)m
and the other agents bid b−i. We say the

mechanism defined by f and pi is incentive compatible if agent i cannot gain by bidding anything
other than her true value. In other words, for all bi ∈

(

− 1
n ,

1
n

)n
, vi (f (vi, b−i)) − pi (vi, b−i) ≥

vi (f (bi, b−i))− pi (bi, b−i).

Moreover, a mechanism defined by payment functions p1, . . . , pn is budget balanced if the sum
of the agents’ payments equals zero:

∑n
i=1 pi(v) = 0.

A neutral affine maximizer mechanism [Roberts, 1979, Mishra and Sen, 2012, Nath and Sand-
holm, 2019], defined as follows, is incentive compatible and budget balanced.

Definition 4.5 (Neutral affine maximizer with sink agents). A neutral affine maximizer (NAM)
mechanism is defined by n parameters (one per agent) µ = (µ1, . . . , µn) ∈ R

n
≥0 such that at least one

agent is assigned a weight of zero ({i : µi = 0} 6= ∅). The social choice function is defined as fµ(v) =
argmaxj∈[m]

∑n
i=1 µivi(j). Let j

∗ = fµ(v) and for each agent i, let j−i = argmaxj∈[m]

∑

i′ 6=i µi′vi′(j).
The payment function is defined as

pi(v) =















1
µi

(

∑

i′ 6=i µi′vi′ (j
∗)−

∑n
i′ 6=i µi′vi′ (j−i)

)

if µi 6= 0

−
∑

i′ 6=i pi′(v) if i = min {i′ : µi′ = 0}

0 otherwise.

Each agent i such that µi = 0 is known as sink agents because his values do not influence the
outcome.

Instantiating our general theorem. Our high-level goal is to find a NAM that nearly maxi-
mizes the expected social welfare (

∑n
i=1 vi (j

∗)). The expectation is over the draw of a valuation
vector v ∼ D. Thus we define

uµ(v) =
n
∑

i=1

vi (j
∗) (16)

where j∗ = argmaxj∈[m]

∑n
i=1 µivi(j). We now prove that the set of utility functions uµ is piecewise

decomposable, and thus we can apply our main theorem. This theorem allows us to prove that with
high probability, if M̂ is the NAM with maximum average social welfare over Õ

(

n3 log(nm)/ε2
)

samples5 and M∗ is the NAM with maximum expected social welfare, then the expected social
welfare of M̂ is ε-close to the expected social welfare of M∗.

5This is assuming that the agents’ values are scaled such that the social welfare of any alternative is between zero
and one

(

∀j ∈ [m],
∑n

i=1 vi(j) ∈
(

− 1
n
, 1
n

))

.
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Theorem 4.19. Let U be the set of functions U = {uµ | µ ∈ R≥0, {µi | i = 0} 6= ∅} where uµ is
defined by Equation (16). The dual class U∗ is

(

W,G,m2
)

-piecewise decomposable, where G =
{ga : U → {0, 1} | a ∈ R

n} consists of halfspace indicator functions ga : uµ 7→ I{µ·a≤0} and
W = {wc : U → R | c ∈ R} consists of constant functions wc : uµ 7→ c.

Proof. Fix a valuation vector v ∈
(

− 1
n ,

1
n

)nm
. We know that for any two alternatives j, j′ ∈ [m],

the alternative j would be selected over j′ so long as

n
∑

i=1

µivi(j) >

n
∑

i=1

µivi
(

j′
)

. (17)

Therefore, there is a set H of
(

m
2

)

hyperplanes such that across all parameter vectors µ in a single
connected component of Rn \ H, the outcome of the NAM defined by µ is invariant. When the
outcome of the NAM is invariant, the social welfare is invariant as well. This means that for a
single connected component R of Rn \ H, there exists a real value cR such that uµ(v) = cR for all
µ ∈ R. By definition of the dual, this means that u∗v (uµ) = cR as well.

For each pair j, j′ ∈ [m], let g(j,j
′) ∈ G correspond to the halfspace represented in Equation (17).

Order these k :=
(

m
2

)

functions arbitrarily as g(1), . . . , g(k). Every connected component R of
R
n \ H corresponds to a sign pattern of the k hyperplanes. For a given region R, let bR ∈ {0, 1}k

be the corresonding sign pattern. Define fbR = wcR and for every vector b not corresponding
to a sign pattern of the k hyperplanes, let fb = w0. In this way, for every µ ∈ R

n, u∗v (uµ) =
∑

b∈{0,1}k I{g(i)(uµ)=b[i],∀i∈[k]}fb (uµ).

Theorems 3.1 and 4.19 immediately imply the following corollary.

Corollary 4.20. Let U be the set of functions U = {uµ | µ ∈ R≥0, {µi | i = 0} 6= ∅} where uµ is
defined by Equation (16). The pseudo-dimension of U is bounded by 4 (n+ 1) ln

(

4em2 (n+ 1)
)

.

Next, we prove that the pseudo-dimension of U is n−1
2 , which means that the pseudo-dimension

upper bound implied by Theorem 3.1 is tight up to log factors.

Theorem 4.21. Let U be the set of functions U = {uµ | µ ∈ R≥0, {µi | i = 0} 6= ∅} where uµ is
defined by Equation (16). The pseudo-dimension of U is at least n−1

2 .

Proof. To prove this theorem, we present a set of n−1
2 valuation vectors over m = 2 alternatives

{1, 2} that are shattered by the set U . Without loss of generality, suppose n is odd. We define a
set of (n− 1)/2 valuation vectors v(1), . . . ,v((n−1)/2) as follows:

v
(j)
i (1) =

{

1
n if i ∈ {2j − 1, n}

0 otherwise
and v

(j)
i (2) =

{

1
n if i = 2j

0 otherwise.

Next, fix an arbitrary vector b ∈ {0, 1}(n−1)/2. We claim that there exists a set of buyer weights

µ = (µ1, . . . , µn) such that for all ` ∈ [(n− 1)/2], if b[`] = 0, then argmaxj∈{1,2}
∑n

i=1 µiv
(`)
i (j) = 1

n

and if b[`] = 1, then argmaxj∈{1,2}
∑n

i=1 µiv
(`)
i (j) = 2

n . Therefore, if b[`] = 0, the social welfare

of the outcome given bids v(`) is 2
n , which means that uµ

(

v(`)
)

= 2
n . Meanwhile, if b[`] = 1, the

social welfare of the outcome given bids v(`) is 1
n , which means that uµ

(

v(`)
)

= 1
n . Thus, the set

v(1), . . . ,v((n−1)/2) is shatterable with witnesses
(

3n
2 , . . . ,

3n
2

)

.

Claim 4.22. For an arbitrary vector b ∈ {0, 1}(n−1)/2, there exists a set of buyer weights µ1, . . . , µn

such that for all ` ∈ [(n− 1)/2], if b[`] = 0, then argmaxj∈{1,2}
∑n

i=1 µiv
(`)
i (j) = 1

n and if b[`] = 1,

then argmaxj∈{1,2}
∑n

i=1 µiv
(`)
i (j) = 2

n .
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Proof. Let µ1, . . . , µn be defined as follows:

µi =























1 if i is odd and i < n

0 if i is even and b[i/2] = 0

2 if i is even and b[i/2] = 1

0 if i = n.

Suppose b[`] = 0. By definition of v(`),
∑n

i=1 µiv
(`)
i (1) = µ2`−1v

(`)
2`−1(1)+µnv

(`)
n (1) = v

(`)
2`−1(1) =

1
n and

∑n
i=1 µiv

(`)
i (2) = µ2`v

(`)
2` (2) = 0. Therefore, argmaxj∈{1,2}

∑n
i=1 µiv

(`)
i (j) = 1

n . Meanwhile,

suppose b[`] = 1. Then
∑n

i=1 µiv
(`)
i (1) = µ2`−1v

(`)
2`−1(1) + µnv

(`)
n (1) = v

(`)
2`−1(1) =

1
n and

n
∑

i=1

µiv
(`)
i (2) = µ2`v

(`)
2` (2) =

2

n
.

Therefore, argmaxj∈{1,2}
∑n

i=1 µiv
(`)
i (j) = 2

n .

4.3 Connections to prior research on generalization guarantees

In this section, we connect the piecewise decomposability of dual functions to prior research on
generalization guarantees for algorithm configuration. The majority of these papers employed a
case-by-case analysis, without developing the type of high-level structural insights we present. Using
our main theorem, we match these existing generalization guarantees.

4.3.1 Clustering algorithms

A clustering instance (V, d) is made up of a set points and a distance metric V and d : V ×V → R≥0.
The goal is to split up the points into groups, or “clusters,” so that within each group, distances
are minimized and between each group, distances are maximized. Typically, a clustering’s quality
is quantified by some objective function. Classic choices include the k-means, k-median, or k-center
objective functions. Unfortunately, finding the clustering that minimizes any one of these objectives
is NP-hard. Clustering algorithms have uses in data science, computational biology [Navlakha et al.,
2009], and many other fields.

Balcan et al. [2017] analyze agglomerative clustering algorithms. This type of algorithm requires
a merge function c(A,B) → R≥0, defining the distances between point sets A,B ⊆ V . The algo-
rithm constructs a cluster tree T . This tree starts with n leaf nodes, each containing a point from
V . Over a series of rounds, the algorithm merges the sets with minimum distance according to c.
The tree is complete when there is one node remaining, which consists of the set V . The children of
each internal node T consist of the two sets merged to create the node. There are several common
merge function c: mina∈A,b∈B d(a, b) (single-linkage),

1
|A|·|B|

∑

a∈A,b∈B d(a, b) (average-linkage), and

maxa∈A,b∈B d(a, b) (complete-linkage). Following the linkage procedure, there is a dynamic pro-
gramming step. This steps finds the tree pruning that minimizes an objective function, such as the
k-means, -median, or -center objectives.

Balcan et al. [2017] study several families of merge functions:

C1 =

{

c1,ρ : (A,B) 7→

(

min
u∈A,v∈B

(d(u, v))ρ + max
u∈A,v∈B

(d(u, v))ρ
)1/ρ

∣

∣

∣

∣

∣

ρ ∈ R ∪ {∞,−∞}

}

,
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C2 =

{

c2,ρ : (A,B) 7→ ρ min
u∈A,v∈B

d(u, v) + (1− ρ) max
u∈A,v∈B

d(u, v)

∣

∣

∣

∣

ρ ∈ [0, 1]

}

,

C3 =











c3,ρ : (A,B) 7→







1

|A||B|

∑

u∈A,v∈B

(d(u, v))ρ





1/ρ
∣

∣

∣

∣

∣

∣

∣

ρ ∈ R ∪ {∞,−∞}











.

The classes C1 and C2 interpolate between single- (c1,−∞ and c2,1) and complete-linkage (c1,∞
and c2,0). The class C3 includes as special cases average-, complete-, and single-linkage.

For each class i ∈ {1, 2, 3} and each parameter ρ, let Ai,ρ be the algorithm that takes as input a
clustering instance (V, d) and returns the sequence ψ of merges the linkage algorithm makes using
the merge function ci,ρ. Let Ψ be the set of all possible merge sequences (Ai,ρ(V, d) ∈ Ψ). To
evaluate the quality of a clustering, we assume access to a utility function u : Ψ → [−1, 1]. For
example, u (Ai,ρ(V, d)) might measure the distance between the ground truth clustering and the
optimal k-means pruning of the cluster tree corresponding to Ai,ρ(V, d).

Balcan et al. [2017] prove the following useful structure about the classes C1 and C2:

Lemma 4.23 (Balcan et al. [2017]). Let (V, d) be an arbitrary clustering instance over n points.
There is a partition of R into k ≤ n8 intervals I1, . . . , Ik such that for any interval Ij and any two
parameters ρ, ρ′ ∈ Ij, the sequences of merges the agglomerative clustering algorithm makes using
the merge functions c1,ρ and c1,ρ′ are identical. The same holds for the set of merge functions C2.

This structure immediately implies that the corresponding class of utility functions has a
piecewise-structured dual class.

Corollary 4.24. Let u be a utility function mapping tuples (V, d, ψ) of clustering instances and
merge sequences to the interval [−1, 1]. Let U be the set of functions

U = {uρ : (V, d) 7→ u (V, d,A1,ρ(V, d)) | ρ ∈ R ∪ {−∞,∞}}

mapping clustering instances (V, d) to [−1, 1]. The dual class U∗ is (W,G, n8)-piecewise decompos-
able, where G = {ga : U → {0, 1} | a ∈ R} consists of threshold functions ga : uγ 7→ I{γ<a} and
W = {wc : U → R | c ∈ R} consists of constant functions wc : uγ 7→ c. The same holds when U is
defined according to merge functions in C2 as U = {uρ : (V, d) 7→ u (V, d,A2,ρ(V, d)) | ρ ∈ [0, 1]} .

Corollaries 3.6 and 4.24 imply the following pseudo-dimension bound.

Corollary 4.25. Let u be a utility function mapping tuples (V, d, ψ) of clustering instances and
merge sequences to the interval [−1, 1]. Let U be the set of functions

U = {uρ : (V, d) 7→ u (V, d,A1,ρ(V, d)) | ρ ∈ R ∪ {−∞,∞}}

mapping clustering instances (V, d) to [−1, 1]. The pseudo-dimension of U is at most 4 ln
(

4en8
)

.
The same holds when U is defined according to merge functions in C2 as

U = {uρ : (V, d) 7→ u (V, d,A2,ρ(V, d)) | ρ ∈ [0, 1]} .

Balcan et al. [2017] prove a similar guarantee for the more complicated class C3.

Lemma 4.26 (Balcan et al. [2017]). Let (V, d) be an arbitrary clustering instance over n points.
There is a partition of R into k ≤ n232n intervals I1, . . . , Ik such that for any interval Ij and any
two parameters ρ, ρ′ ∈ Ij, the sequences of merges the agglomerative clustering algorithm makes
using the merge functions c3,ρ and c3,ρ′ are identical.
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Again, this structure immediately implies that the corresponding class of utility functions has
a piecewise-structured dual class.

Corollary 4.27. Let u be a utility function mapping tuples (V, d, ψ) of clustering instances and
merge sequences to the interval [−1, 1]. Let U be the set of functions

U = {uρ : (V, d) 7→ u (V, d,A1,ρ(V, d)) | ρ ∈ R ∪ {−∞,∞}}

mapping clustering instances (V, d) to [−1, 1]. The dual class U∗ is
(

W,G, n232n
)

-piecewise decom-
posable, where G = {ga : U → {0, 1} | a ∈ R} consists of threshold functions ga : uγ 7→ I{γ<a} and
W = {wc : U → R | c ∈ R} consists of constant functions wc : uγ 7→ c.

Corollaries 3.6 and 4.27 imply the following pseudo-dimension bound.

Corollary 4.28. Let u be a utility function mapping tuples (V, d, ψ) of clustering instances and
merge sequences to the interval [−1, 1]. Let U be the set of functions

U = {uρ : (V, d) 7→ u (V, d,A3,ρ(V, d)) | ρ ∈ R ∪ {−∞,∞}}

mapping clustering instances (V, d) to [−1, 1]. The pseudo-dimension of U is 4 ln
(

4en232n
)

.

Corollaries 4.25 and 4.28 match the pseudo-dimension guarantees that Balcan et al. [2017] prove.

4.3.2 Integer programming

Balcan et al. [2017, 2018a] study algorithm configuration for both integer linear and integer quadratic
programming, as we describe below.

Integer linear programming. In the context of integer linear programming, Balcan et al.
[2018a] focus on branch-and-bound (B&B) [Land and Doig, 1960], an algorithm for solving mixed
integer linear programs (MILPs). A MILP is defined by a matrix A ∈ R

m×n, a vector b ∈ R
m, a

vector c ∈ R
n, and a set of indices I ⊆ [n]. The goal is to find a vector x ∈ R

n such that c · x is
maximized, Ax ≤ b, and for every index i ∈ I, xi is constrained to be binary: xi ∈ {0, 1}.

Branch-and-bound builds a search tree to solve an input MILP Q. At the root of the search
tree is the original MILP Q. At each round, the algorithm chooses a leaf of the search tree, which
represents an MILP Q′. It does so using a node selection policy ; common choices include depth-
and best-first search. Then, it chooses an index i ∈ I using a variable selection policy. It next
branches on xi: it sets the left child of Q′ to be that same integer program, but with the additional
constraint that xi = 0, and it sets the right child of Q′ to be that same integer program, but with
the additional constraint that xi = 1. The algorithm fathoms a leaf, which means that it never will
branch on that leaf, if it can guarantee that the optimal solution does not lie along that path. The
algorithm terminates when it has fathomed every leaf. At that point, we can guarantee that the
best solution to Q found so far is optimal. See the paper by Balcan et al. [2018a] for more details.

Balcan et al. [2018a] study mixed integer linear programs (MILPs) where the goal is to maximize
an objective function c>x subject to the constraints that Ax ≤ b and that some of the components
of x are contained in {0, 1}. Given a MILP Q, we use the notation x̆Q = (x̆Q[1], . . . x̆Q[n]) to
denote an optimal solution to the MILP’s LP relaxation. We denote the optimal objective value
to the MILP’s LP relaxation as c̆Q, which means that c̆Q = c>x̆Q.

Branch-and-bound systematically partitions the feasible set in order to find an optimal solution,
organizing the partition as a tree. At the root of this tree is the original integer program. Each child
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represents the simplified integer program obtained by partitioning the feasible set of the problem
contained in the parent node. The algorithm prunes a branch if the corresponding subproblem is
infeasible or its optimal solution cannot be better than the best one discovered so far. Oftentimes,
branch-and-bound partitions the feasible set by adding a constraint. For example, if the feasible
set is characterized by the constraints Ax ≤ b and x ∈ {0, 1}n, the algorithm partition the feasible
set into one subset where Ax ≤ b, x1 = 0, and x2, . . . , xn ∈ {0, 1}, and another where Ax ≤ b,
x1 = 1, and x2, . . . , xn ∈ {0, 1}. In this case, we say that the algorithm branches on x1.

Balcan et al. [2018a] show how to learn variable selection policies. Specifically, they study
score-based variable selection policies, defined below.

Definition 4.6 (Score-based variable selection policy [Balcan et al., 2018a]). Let score be a
deterministic function that takes as input a partial search tree T , a leaf Q of that tree, and an
index i, and returns a real value score(T , Q, i) ∈ R. For a leaf Q of a tree T , let NT ,Q be the
set of variables that have not yet been branched on along the path from the root of T to Q. A
score-based variable selection policy selects the variable argmaxxi∈NT ,Q

{score(T , Q, i)} to branch
on at the node Q.

This type of variable selection policy is widely used [Linderoth and Savelsbergh, 1999, Achter-
berg, 2009, Gilpin and Sandholm, 2011]. See the paper by Balcan et al. [2018a] for examples.

Given d arbitrary scoring rules score1, . . . , scored, Balcan et al. [2018a] provide guidance for
learning a linear combination ρ1score1 + · · · + ρdscored that leads to small expected tree sizes.
They assume that all aspects of the tree search algorithm except the variable selection policy, such
as the node selection policy, are fixed. In their analysis, they prove the following lemma.

Lemma 4.29 (Balcan et al. [2018a]). Let score1, . . . , scored be d arbitrary scoring rules and let
Q be an arbitrary MILP over n binary variables. Suppose we limit B&B to producing search trees
of size τ . There is a set H of at most n2(τ+1) hyperplanes such that for any connected component
R of [0, 1]d \ H, the search tree B&B builds using the scoring rule ρ1score1 + · · · + ρdscored is
invariant across all (ρ1, . . . , ρd) ∈ R.

This piecewise structure immediately implies the following guarantee.

Corollary 4.30. Let score1, . . . , scored be d arbitrary scoring rules and let Q be an arbitrary
MILP over n binary variables. Suppose we limit B&B to producing search trees of size τ . For
each parameter vector ρ = (ρ1, . . . , ρd) ∈ [0, 1]d, let uρ(Q) be the size of the tree, divided by τ , that
B&B builds using the scoring rule ρ1score1 + · · · + ρdscored given Q as input. Let U be the set
of functions U =

{

uρ | ρ ∈ [0, 1]d
}

mapping MILPs to [0, 1]. The dual class U∗ is
(

W,G, n2(τ+1)
)

-
piecewise decomposable, where G = {ga,θ : U → {0, 1} | a ∈ R

d, θ ∈ R} consists of halfspace
indicator functions ga,θ : uρ 7→ I{ρ·a≤θ} and W = {wc : U → R | c ∈ R} consists of constant
functions wc : uγ 7→ c.

Corollaries 3.6 and 4.30 imply the following pseudo-dimension bound.

Corollary 4.31. Let score1, . . . , scored be d arbitrary scoring rules and let Q be an arbitrary
MILP over n binary variables. Suppose we limit B&B to producing search trees of size τ . For
each parameter vector ρ = (ρ1, . . . , ρd) ∈ [0, 1]d, let uρ(Q) be the size of the tree, divided by τ , that
B&B builds using the scoring rule ρ1score1 + · · ·+ ρdscored given Q as input. Let U be the set of
functions U =

{

uρ | ρ ∈ [0, 1]d
}

mapping MILPs to [0, 1]. The pseudo-dimension of U is at most

4 (d+ 1) ln
(

4en2(τ+1) (d+ 1)
)

.

Corollary 4.31 matches the pseudo-dimension guarantee that Balcan et al. [2018a] prove.
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Algorithm 1 SDP rounding algorithm with rounding function r

Input: Matrix A ∈ R
n×n.

1: Draw a random vector Z from Z, the n-dimensional Gaussian distribution.
2: Solve the SDP (18) for the optimal embedding U = {u1, . . . ,un}.
3: Compute set of fractional assignments r(〈Z,u1〉), . . . , r(〈Z,un〉).
4: For all i ∈ [n], set xi to 1 with probability 1

2 + 1
2 · r (〈Z,ui〉) and −1 with probability 1

2 − 1
2 ·

r (〈Z,ui〉).
Output: x1, . . . , xn.

Integer quadratic programming. A diverse array of NP-hard problems, including max-2SAT,
max-cut, and correlation clustering, can be characterized as integer quadratic programs (IQPs). An
IQP is represented by a matrix A ∈ R

n×n. The goal is to find a set X = {x1, . . . , xn} ∈ {−1, 1}n

maximizing
∑

i,j∈[n] aijxixj . The most-studied IQP approximation algorithms operate via an SDP
relaxation:

maximize
∑

i,j∈[n]

aij〈ui,uj〉 subject to ui ∈ Sn−1. (18)

The approximation algorithm must transform, or “round,” the unit vectors into a binary assignment
of the variables x1, . . . , xn. In the seminal GW algorithm [Goemans and Williamson, 1995], the
algorithm projects the unit vectors onto a random vector Z, which it draws from the n-dimensional
Gaussian distribution, which we denote using Z. If 〈ui,Z〉 > 0, it sets xi = 1. Otherwise, it sets
xi = −1.

The GW algorithm’s approximation ratio can sometimes be improved if the algorithm prob-
abilistically assigns the binary variables. In the final step, the algorithm can use any rounding
function r : R → [−1, 1] to set xi = 1 with probability 1

2 + 1
2 · r (〈Z,ui〉) and xi = −1 with proba-

bility 1
2 − 1

2 · r (〈Z,ui〉). See Algorithm 1 for the pseudocode. Algorithm 1 is known as a Random
Projection, Randomized Rounding (RPR2) algorithm, so named by the seminal work of Feige and
Langberg [2006].

Balcan et al. [2017] analyze s-linear rounding functions [Feige and Langberg, 2006] φs : R →
[−1, 1], parameterized by s > 0, defined as follows:

φs(y) =











−1 if y < −s

y/s if − s ≤ y ≤ s

1 if y > s.

The goal is to learn a parameter s such that in expectation,
∑

i,j∈[n] aijxixj is maximized.
The expectation is over several sources of randomness: first, the distribution D over matrices A;
second, the vector Z; and third, the assignment of x1, . . . , xn. This final assignment depends on
the parameter s, the matrix A, and the vector Z. Balcan et al. [2017] refer to this value as the true
utility of the parameter s. Note that the distribution over matrices, which defines the algorithm’s
input, is unknown and external to the algorithm, whereas the Gaussian distribution over vectors
as well as the distribution defining the variable assignment are internal to the algorithm.

The distribution over matrices is unknown, so we cannot know any parameter’s true utility.
Therefore, to learn a good parameter s, we must use samples. Balcan et al. [2017] suggest drawing
samples from two sources of randomness: the distributions over vectors and matrices. In other
words, they suggest drawing a set of samples S =

{(

A(1),Z(1)
)

, . . . ,
(

A(m),Z(m)
)}

∼ (D ×Z)m .
Given these samples, Balcan et al. [2017] define a parameter’s empirical utility to be the expected
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objective value of the solution Algorithm 1 returns given input A, using the vector Z and φs in
Step 3, on average over all (A,Z) ∈ S. Generally speaking, Balcan et al. [2017] suggest sampling the
first two randomness sources in order to isolate the third randomness source. They argue that this
third source of randomness has an expectation that is simple to analyze. Using pseudo-dimension,
they prove that every parameter s, its empirical and true utilities converge.

A bit more formally, Balcan et al. [2017] use the notation p(i,Z,A,s) to denote the distribution
that the binary value xi is drawn from when Algorithm 1 is given A as input and uses the rounding
function r = φs and the hyperplane Z in Step 3. Using this notation, the parameter s has

a true utility of EA,Z∼D×Z

[

Exi∼p(i,Z,A,s)

[

∑

i,j aijxixj

]]

.6 We also use the notation us(A,Z) to

denote the expected objective value of the solution Algorithm 1 returns given input A, using the
vector Z and φs in Step 3. The expectation is over the final assignment of each variable xi.

Specifically, us(A,Z) = Exi∼p(i,Z,A,s)

[

∑

i,j aijxixj

]

. By definition, a parameter’s true utility equals

EA,Z∼D×Z [us(A,Z)]. Given a set
(

A(1),Z(1)
)

, . . . ,
(

A(m),Z(m)
)

∼ D×Z, a parameter’s empirical

utility is 1
m

∑m
i=1 us

(

A(i),Z(i)
)

.
Both we and Balcan et al. [2017] bound the pseudo-dimension of the function class U =

{us : s > 0}. Balcan et al. [2017] prove that the functions in U are piecewise structured: roughly
speaking, for a fixed matrix A and vector Z, each function in U is a piecewise, inverse-quadratic
function of the parameter s. To present this lemma, we use the following notation: given a tuple
(A,Z), let uA,Z : R → R be defined such that uA,Z(s) = us (A,Z).

Lemma 4.32 (Balcan et al. [2017]). For any matrix A and vector Z, the function uA,Z : R>0 → R

is made up of n + 1 piecewise components of the form a
s2

+ b
s + c for some a, b, c ∈ R. Moreover,

if the border between two components falls at some s ∈ R>0, then it must be that s = |〈ui,Z〉| for
some ui in the optimal SDP embedding of A.

This piecewise structure immediately implies the following corollary about the dual class U∗.

Corollary 4.33. Let U be the set of functions U = {us : s > 0}. The dual class U∗ is (W,G, n)-
piecewise decomposable, where G = {ga : U → {0, 1} | a ∈ R} consists of threshold functions
ga : us 7→ I{s≤a} and W = {wa,b,c : U → R | a, b, c ∈ R} consists of inverse-quadratic functions

wa,b,c : us 7→
a
s2

+ b
s + c.

Corollaries 3.6 and 4.33 imply the following pseudo-dimension bound.

Corollary 4.34. Let U be the set of functions U = {us : s > 0}. The pseudo-dimension of U is at
most 4 (4 ln 768 + 1) ln (4en (4 ln 768 + 1)).

Corollary 4.34 matches the pseudo-dimension bound that Balcan et al. [2017] prove.

4.3.3 Greedy algorithms

Gupta and Roughgarden [2017] provide pseudo-dimension bounds for greedy algorithm configu-
ration, analyzing two canonical combinatorial problems: the maximum weight independent set
problem and the knapsack problem. We recover their bounds in both cases.

6We, like Balcan et al. [2017], use the abbreviated notation

EA,Z∼D×Z

[

Exi∼p(i,Z,A,s)

[

∑

i,j

aijxixj

]]

= EA,Z∼D×Z

[

Ex1∼p(1,Z,A,s),...,xn∼p(n,Z,A,s)

[

∑

i,j

aijxixj

]]

.
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Maximum weight independent set (MWIS). In the MWIS problem, there is a graph and
a weight w (v) ∈ R≥0 for each vertex v. The goal is to find a set of non-adjacent vertices with
maximum weight. The classic greedy algorithm proceeds over a series of rounds: on each round,
it adds the vertex v that maximizes w (v) / (1 + deg (v)) to the independent set and deletes v
and its neighbors from the graph. Gupta and Roughgarden [2017] propose the greedy heuris-
tic w (v) / (1 + deg (v))ρ where ρ ≥ 0 is a tunable parameter. We represent a graph as a tuple

(w, e) ∈ R
n × {0, 1}(

n
2), ordering the vertices v1, . . . , vn in a fixed but arbitrary way. In this con-

text, the function uρ maps each graph (w, e) to the weight of the vertices in the set returned by
the algorithm parameterized by ρ, denoted uρ (w, e). Gupta and Roughgarden [2017] implicitly
prove the following lemma about each function uρ (made explicit in work by Balcan et al. [2018b]).
To present this lemma, we use the following notation: given a tuple (w, e), let uw,e : R → R be
defined such that uw,e(ρ) = uρ (w, e).

Lemma 4.35 (Gupta and Roughgarden [2017]). For any tuple (w, e), the function uw,e : R → R

is piecewise constant with at most n4 discontinuities.

This structure immediately implies that the function class U = {uρ : ρ > 0} has a piecewise-
structured dual class.

Corollary 4.36. Let U be the set of functions U = {uρ : ρ > 0}. The dual class U∗ is (W,G, n4)-
piecewise decomposable, where G = {ga : U → {0, 1} | a ∈ R} consists of threshold functions
ga : uγ 7→ I{γ<a} and W = {wc : U → R | c ∈ R} consists of constant functions wc : uγ 7→ c.

Corollaries 3.6 and 4.36 imply the following pseudo-dimension bound.

Corollary 4.37. Let U be the set of functions U = {uρ : ρ > 0}. The pseudo-dimension of U is at
most 4 ln

(

4en4
)

.

This matches the pseudo-dimension bound by Gupta and Roughgarden [2017].

Knapsack. Moving to the classic knapsack problem, the input is a knapsack capacity C and a
set of n items i each with a value νi and a size si. The goal is to determine a set I ⊆ {1, . . . , n}
with maximium total value

∑

i∈I νi such that
∑

i∈I si ≤ C. Gupta and Roughgarden [2017] suggest
the family of algorithms parameterized by ρ > 0 where each algorithm returns the better of the
following two solutions:

• Greedily pack items in order of nonincreasing value νi subject to feasibility.

• Greedily pack items in order of νi/s
ρ
i subject to feasibility.

It is well-known that the algorithm with ρ = 1 achieves a 2-approximation. We use the notation
uρ (ν, s, C) to denote the total value of the items returned by the algorithm parameterized by ρ
given input (ν, s, C).

Gupta and Roughgarden [2017] prove the following fact about the functions uρ (made explicit
in work by Balcan et al. [2018b]). To present this lemma, we use the following notation: given a
tuple (ν, s, C), let uν,s,C : R → R be defined such that uν,s,C(ρ) = uρ (ν, s, C).

Lemma 4.38 (Gupta and Roughgarden [2017]). For any tuple (ν, s, C), the function uν,s,C : R →
R is piecewise constant with at most n2 discontinuities.

This structure immediately implies that the function class U = {uρ : ρ > 0} has a piecewise-
structured dual class.
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Corollary 4.39. Let U be the set of functions U = {uρ : ρ > 0}. The dual class U∗ is (W,G, n2)-
piecewise decomposable, where G = {ga : U → {0, 1} | a ∈ R} consists of threshold functions
ga : uγ 7→ I{γ<a} and W = {wc : U → R | c ∈ R} consists of constant functions wc : uγ 7→ c.

Corollaries 3.6 and 4.39 imply the following pseudo-dimension bound.

Corollary 4.40. Let U be the set of functions U = {uρ : ρ > 0}. The pseudo-dimension of U is at
most 4 ln

(

4en2
)

.

This matches the pseudo-dimension bound by Gupta and Roughgarden [2017].

4.3.4 Revenue maximization

The design of revenue-maximizing multi-item mechanisms is a notoriously challenging problem.
Remarkably, the revenue-maximizing mechanism is not known even when there are just two items
for sale. In this setting, the mechanism designer’s goal is to field a mechanism with high expected
revenue on the distribution over agents’ values. Balcan et al. [2018c] study generalization guarantees
for mechanism design in the context of revenue maximization. They focus on sales settings: there is
a seller, not included among the agents, who will use a mechanism to allocate a set of goods among
the agents. The agents submit bids describing their values for the goods for sale. The mechanism
determines which agents receive which items and how much the agents pay. The seller’s revenue
is the sum of the agents’ payments. The mechanism designer’s goal is to select a mechanism
that maximizes the revenue. In contrast to the mechanisms we analyze in Section 4.2, Balcan
et al. [2018c] study mechanisms that are not necessarily budget-balanced. Specifically, under every
mechanism they study, the sum of the agents’ payments—the revenue—is at least zero. As in
Section 4.2, all of the mechanisms they analyze are incentive compatible.

Balcan et al. [2018c] provide generalization guarantees for a variety of widely-studied, parameter-
ized mechanism classes, including posted-price mechanisms, multi-part tariffs, second-price auctions
with reserves, affine maximizer auctions, virtual valuations combinatorial auctions mixed-bundling
auctions, and randomized mechanisms. They do so by uncovering structure shared by all of these
mechanisms: for any set of buyers’ values, revenue is a piecewise linear function of the mechanism’s
parameters. This structure is captured by our definition of piecewise decomposability. Moreover,
we recover their generalization guarantees.

Balcan et al. [2018c] study the problem of selling m heterogeneous goods to n buyers. They
denote a bundle of goods as a subset b ⊆ [m]. Each buyer j ∈ [n] has a valuation function vj :
2[m] → R over bundles of goods. The set Π of problem instances consists of n-tuples of buyer values
v = (v1, . . . , vn). As in Section 4.2, every mechanism that Balcan et al. [2018c] study is defined
by an allocation function and a set of payment functions. Every auction in the classes they study
is incentive compatible, so they assume that the bids equal the bidders’ valuations. An allocation
function f : Π →

(

2[m]
)n

maps the values v ∈ Π to a division of the goods (b1, . . . , bn) ∈
(

2[m]
)n
,

where bi ⊆ [m] is the set of goods buyer i receives. For each agent i ∈ [n], there is a payment
function pi : Π → R which maps values v ∈ Π to a payment pi(v) ∈ R≥0 that agent i must make.

Balcan et al. [2018c] study a variety of mechanism classes, each of which is parameterized by a
d-dimensional vector ρ ∈ P ⊆ R

d for some d ≥ 1. For example, when d = m, ρ might be a vector
of prices for each of the items. The revenue of a mechanism is the sum of the agents’ payments.
Given a mechanism parameterized by a vector ρ ∈ R

d, we denote the revenue as uρ : Π → R, where
uρ(v) =

∑n
i=1 pi(v).

Balcan et al. [2018c] provide psuedo-dimension bounds for any mechanism class that is delin-
eable. To define this notion, for any fixed valuation vector v ∈ Π, we use the notation uv(ρ) to
denote revenue as a function of the mechanism’s parameters.
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Definition 4.7 ((d, t)-delineable [Balcan et al., 2018c]). A mechanism class is (d, t)-delineable if:

1. The class consists of mechanisms parameterized by vectors p from a set P ⊆ R
d; and

2. For any v ∈ Π, there is a set H of t hyperplanes such that for any connected component P ′

of P \ H, the function uv (p) is linear over P
′.

Delineability naturally translates to decomposability, as we formalize below.

Lemma 4.41. Let U be a set of revenue functions corresponding to a (d, t)-delineable mechanism
class. The dual class U∗ is (W,G, t)-piecewise decomposable, where G = {ga,θ : U → {0, 1} | a ∈
R
d, θ ∈ R} consists of halfspace indicator functions ga,θ : uρ 7→ I{ρ·a≤θ} and W = {wa,θ : U → R |

a ∈ R
d, θ ∈ R} consists of linear functions wa,θ : uρ 7→ ρ · a+ θ.

Lemmas 3.7 and 4.41 imply the following bound.

Corollary 4.42. Let U be a set of revenue functions corresponding to a (d, t)-delineable mechanism
class. The pseudo-dimension of U is at most 8 (d+ 1) ln (8et (d+ 1)).

Corollary 4.42 matches the pseudo-dimension bound that Balcan et al. [2017] prove.

4.4 Experiments

In this section, we provide experiments demonstrating that parameter tuning can have a significant
impact on an algorithm’s solution quality. Moreover, we show that the more samples we use to
tune parameters, the better the resulting algorithm.

4.4.1 Sequence alignment experiments

Changing the alignment parameter can alter the accuracy of the produced alignments. Figure 8
shows the regions of the gap-open/gap-extension penalty plane divided into regions such that each
region corresponds to a different computed alignment. The regions in the figure are produced
using the XPARAL software of Gusfield and Stelling [1996], with using the BLOSUM62 amino acid
replacement matrix, the scores in each region were computed using Robert Edgar’s qscore package7.
The alignment sequences are a single pairwise alignment from the data set described below.

To test the influence of the training set size on the parameters chosen for pairwise sequence
alignment we use the IPA tool [Kim and Kececioglu, 2007] to learn optimal parameter choices
for a given set of example pairwise sequence alignments. We used 861 protein multiple sequence
alignment benchmarks that had been previously been used in DeBlasio and Kececioglu [2018],
which split these benchmarks into 12 cross-validation folds that evenly distributed the “difficulty”
of an alignment (the accuracy of the alignment produced using aligner defaults parameter choice).
All pairwise alignments were extracted from each multiple sequence alignment. We then took
randomized increasing sized subsets of the pairwise sequence alignments from each training set and
found the optimal parameter choices for affine gap costs and alphabet-dependent substitution costs.
These parameters were then given to the Opal aligner [v3.1b, Wheeler and Kececioglu, 2007] to
realign the pairwise alignments in the associated test sets.

Figure 9 shows the impact of increasing the number of training examples used to optimize
parameter choices. As the number of training examples increases, the optimized parameter choice
is less able to fit the training data exactly and thus the training accuracy decreases, for the same

7http://drive5.com/qscore/
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reason the parameter choices are more general and the test accuracy increases. The test and
training accuracies are roughly equal when the training set size is close to 1000 examples and
remains equal for larger training sets. This number is much lower than the predicted number of
samples needed for generalization. The test accuracy is actually slightly higher and this is likely
due to the training subset not representing the distribution of inputs as well as the full test set due
to the randomization being on all of the alignments rather than across difficulty as was done to
create the cross-validation separations.

4.4.2 Mechanism design experiments

We now demonstrate that tuning neutral affine maximizer (NAM) (Definition 4.5 in Section 4.2)
parameters can have a substantial effect on the resulting social welfare.

Experimental setup. Following work by Nath and Sandholm [2019] on NAMs, we use the Jester
Collaborative Filtering Dataset [Goldberg et al., 2001], which consists of ratings from 24,983 users
of 100 jokes—in this example, the jokes could be proxies for comedians, one of whom you and your
college alumni council will hire for your upcoming reunion. In our setup, there will be three council
members who are members of a large pool of alumni (the 24,983 users). We filter out 90 of the
jokes that are sparsely rated, narrowing down on 10 jokes, each of which was rated by a total of
24,952 users. The ratings are continuous and range from -10 to 10. To aid the visualization of our
results, we set the number n of agents equal to 3 (we describe the distribution over agents in the
next paragraph). To ensure that the social welfare of any joke is contained in [−1, 1], we divide
each agents’ rating by 30. We use the notation V to denote the set of all users’ ratings for the 10
jokes, so V ⊆

[

−1
3 ,

1
3

]10
and |V | = 24, 952.

Our goal is to learn a neutral affine maximizer (Definition 4.5 in Section 4.2) that takes as input
three agents’ bids for the ten jokes and returns one of the ten jokes along with a set of payments
that each agent will either pay or receive. Our learning algorithm receives a set of valuation vectors
sampled from a distribution over three agents’ preferences. For our experimental setup, one option
would be to define the distribution over agents to be uniform over V . However, then all agents
would be identical in expectation, and this type of homogeneity is unrealistic in real-world settings.
In order to define a distribution over heterogeneous agents, we categorize the users into two groups
which we call differentiating and indifferent. A user is differentiating if the sample variance of
their ratings for the 10 jokes is greater than 20. Meanwhile, we call a user is indifferent if the
sample variance of their ratings for the 10 jokes is less than 15. Let Vi ⊆

[

−1
3 ,

1
3

]10
be the set of

indifferent users and let Vd ⊆
[

−1
3 ,

1
3

]10
be the set of differentiating users. We define the set Π of

problem instances to consist of three-tuples of ratings, one from a differentiating agent and two
from indifferent agents (Π = Vd × Vi × Vi). We define the distribution Γ to be uniform over Π.

Experimental results. In Figures 10a, 10b, and 10c, we draw a set of samples and illustrate
average social welfare over the samples as a function of the parameters. As a reminder, if µi = 0,
then agent i is a sink agent (Definition 4.5 in Section 4.2). In Figure 10a, agent 1 is the sink agent
(µ1 = 0), in Figure 10b, agent 2 is the sink agent (µ2 = 0), and in Figure 10c, agent 3 is the
sink agent (µ3 = 0). Without loss of generality, we may assume that one of the agents’ weights
is fixed as 1. In Figure 10a, we set µ2 = 1 and in Figures 10b and 10c, we set µ1 = 1. We
draw 5000 samples from Γ and plot average social welfare for varying parameter settings. Setting
µ1 = 1, µ2 = 0, and µ3 = 1.25 achieves an average social welfare of 7.03, whereas the mechanism
by Faltings and Nguyen [2005], which chooses the agents weights µ uniformly at random among
{(0, 1, 1), (1, 0, 1), (1, 1, 0)}, achieves an average social welfare of 5.991. Our mechanism therefore
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2005]. Moreover, they illustrate the importance of selecting a sufficiently large training set. As
Figure 10d demonstrates, a NAM with high social welfare on the training set may have low social
welfare on the test set; the training set is too small to guarantee generalization. As the training
set grows, average social welfare over the training set converges to average social welfare over the
test set.

5 Conclusion

We provided a general sample complexity theorem for learning high-performing algorithm parame-
ters. Our bound applies to any parameterized algorithm for which the performance as a function of
its parameters is piecewise structured: for any fixed problem instance, boundary functions partition
the parameters into regions where the algorithm’s performance is a well-structured function. Our
sample complexity bound grows slowly with the intrinsic complexity of both the boundary functions
and the well-structured functions. We proved this guarantee by exploiting intricate connections
between primal function classes (measuring a parameterized algorithm’s performance as a function
of its input) with dual function classes (measuring an algorithm’s performance on a fixed input
as a function of its parameters). We demonstrated that a diverse array of algorithm configuration
problems exhibit this structure, and thus our main theorem implies strong sample complexity guar-
antees for a broad array of algorithms and application domains. This applies both to optimizing an
algorithms run time (as we exemplified in integer linear programming and constraint satisfaction
applications) and to optimizing an algorithms solution quality (as we exemplified in computational
biology, voting, pricing, auction, clustering, greedy algorithm, and integer nonlinear programming
applications).
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