arXiv:1805.08195v1 [cs.GT] 21 May 2018

Depth-Limited Solving for
Imperfect-Information Games

Noam Brown, Tuomas Sandholm, Brandon Amos
Computer Science Department
Carnegie Mellon University
noamb@cs.cmu.edu, sandholm@cs.cmu.edu, bamos @cs.cmu.edu

Abstract

A fundamental challenge in imperfect-information games is that states do not have
well-defined values. As a result, depth-limited search algorithms used in single-
agent settings and perfect-information games do not apply. This paper introduces a
principled way to conduct depth-limited solving in imperfect-information games
by allowing the opponent to choose among a number of strategies for the remainder
of the game at the depth limit. Each one of these strategies results in a different set
of values for leaf nodes. This forces an agent to be robust to the different strategies
an opponent may employ. We demonstrate the effectiveness of this approach by
building a master-level heads-up no-limit Texas hold’em poker Al that defeats two
prior top agents using only a 4-core CPU and 16 GB of memory. Developing such
a powerful agent would have previously required a supercomputer.

1 Introduction

Imperfect-information games model strategic interactions between agents with hidden information.
The primary benchmark for this class of games is poker, specifically heads-up no-limit Texas hold’em
(HUNL), in which Libratus defeated top humans in 2017 [6]. The key breakthrough that led to
superhuman performance was nested solving, in which the agent repeatedly calculates a finer-grained
strategy in real time (for just a portion of the full game) as play proceeds down the game tree [5, 26, 6].

However, real-time subgame solving was too expensive for Libratus in the first half of the game
because the portion of the game tree Libratus solved in real time, known as the subgame, always
extended to the end of the game. Instead, for the first half of the game Libratus pre-computed a fine-
grained strategy that was used as a lookup table. While this pre-computed strategy was successful, it
required millions of core hours and terabytes of memory to calculate. Moreover, in deeper sequential
games the computational cost of this approach would be even more expensive because either longer
subgames or a larger pre-computed strategy would need to be solved. A more general approach
would be to solve depth-limited subgames in real time even in the early portions of a game.

The poker Al DeepStack does this using a technique similar to nested solving that was developed
independently [26]. However, while DeepStack defeated a set of non-elite human professionals in
HUNL, it never defeated prior top Als despite using over one million core hours to train the agent,
suggesting its approach may not be sufficiently practical or efficient in domains like poker. We
discuss this in more detail in Section 7. This paper introduces a different approach to depth-limited
solving that defeats prior top Als and is computationally orders of magnitude less expensive.

In perfect-information games, the value that is substituted at a leaf node of a depth-limited subgame
is simply an estimate of the state’s value when all players play an equilibrium [34, 32]. For example,
this approach was used to achieve superhuman performance in backgammon [38], chess [9], and
Go [35, 36]. The same approach is also widely used in single-agent settings such as heuristic
search [29, 24, 30, 15]. Indeed, in single-agent and perfect-information multi-agent settings, knowing
the values of states when all agents play an equilibrium is sufficient to reconstruct an equilibrium.
However, this does not work in imperfect-information games, as we demonstrate in the next section.

Preprint. Work in progress.

2 The Challenge of Depth-Limited Solving in Imperfect-Information Games

In imperfect-information games (also referred to as partially-observable games), an optimal strategy
cannot be determined in a subgame simply by knowing the values of states (i.e., game-tree nodes)
when all players play an equilibrium strategy. A simple demonstration is in Figure 1a, which shows a
sequential game we call Rock-Paper-Scissors+ (RPS+). RPS+ is identical to traditional Rock-Paper-
Scissors, except if either player plays Scissors, the winner receives 2 points instead of 1 (and the
loser loses 2 points). Figure 1a shows RPS+ as a sequential game in which P; acts first but does not
reveal the action to P». The optimal strategy (Minmax strategy, which is also a Nash equilibrium in
two-player zero-sum games) for both players in this game is to choose Rock and Paper each with
40% probability, and Scissors with 20% probability. In this equilibrium, the expected value to P; of
choosing Rock is 0, as is the value of choosing Scissors or Paper. In other words, all the red states in
Figure 1a have value 0 in the equilibrium. Now suppose P; conducts a depth-limited search with a
depth of one in which the equilibrium values are substituted at that depth limit. This depth-limited
subgame is shown in Figure 1b. Clearly, there is not enough information in this subgame to arrive at
the optimal strategy of 40%, 40%, and 20% for Rock, Paper, and Scissors, respectively.

(a) Rock-Paper-Scissors+ shown with the optimal (b) A depth-limited subgame of Rock-Paper-Scissors+
Py strategy. The terminal values are shown first for with state values determined from the equilibrium.
Py, then P». The dotted lines between the P> nodes

means they are indistinguishable to P».

In the RPS+ example, the core problem is that we incorrectly assumed P» would always play a fixed
strategy. If indeed P, were to always play Rock, Paper, and Scissors with probability (0.4, 0.4,0.2),
then P; could choose any arbitrary strategy and receive an expected value of 0. However, by assuming
P, is playing a fixed strategy, P, may not find a strategy that is robust to P, adapting. In reality, P»’s
optimal strategy depends on the probability that P; chooses Rock, Paper, and Scissors. In general, in
imperfect-information games a player’s optimal strategy at a decision point depends on the player’s
belief distribution over states as well as the strategy of all other agents beyond that decision point.

In this paper we introduce a method for depth-limited solving that ensures a player is robust to such
opponent adaptations. Rather than simply substituting a single state value at a depth limit, we instead
allow the opponent one final choice of action at the depth limit, where each action corresponds to
a strategy the opponent will play in the remainder of the game. The choice of strategy determines
the value of the state. The opponent does not make this choice in a way that is specific to the state
(in which case he would trivially choose the maximum value for himself). Instead, naturally, the
opponent must make the same choice at all states that are indistinguishable to him. We prove that
if the opponent is given a choice between a sufficient number of strategies at the depth limit, then
any solution to the depth-limited subgame is part of a Nash equilibrium strategy in the full game.
We also show experimentally that when only a few choices are offered (for computational speed),
performance of the method is extremely strong.

3 Notation and Background

In an imperfect-information extensive-form game there is a finite set of players, P. A state (also
called a node) is defined by all information of the current situation, including private knowledge
known to only one player. A unique player P(h) acts at state h. H is the set of all states in the game
tree. The state b’ reached after an action is taken in h is a child of h, represented by h - a = A/,
while h is the parent of h’. If there exists a sequence of actions from h to h/, then h is an ancestor
of ' (and 1’ is a descendant of h), represented as h C h'. Z C H are terminal states for which no
actions are available. For each player i € P, there is a payoff function w; : Z — R. If P = {1, 2}
and u; = —us9, the game is two-player zero-sum. In this paper we assume the game is two-player
zero-sum, though many of the ideas extend to general sum and more than two players.

Imperfect information is represented by information sets (infosets) for each player ¢ € P. For any
infoset I belonging to player i, all states h, b’ € I are indistinguishable to player i. Moreover, every
non-terminal state h € H belongs to exactly one infoset for each player <.

A strategy o, () (also known as a policy) is a probability vector over actions for player ¢ in infoset
I. The probability of a particular action « is denoted by o;(I,a). Since all states in an infoset
belonging to player ¢ are indistinguishable, the strategies in each of them must be identical. We
define o; to be a strategy for player ¢ in every infoset in the game where player ¢ acts. A strategy
is pure is all probabilities in it are 0 or 1. All strategies are a linear combination of pure strategies.
A strategy profile o is a tuple of strategies, one for each player. The strategy of every player other
than ¢ is represented as o_;. u;(0;,0_;) is the expected payoff for player i if all players play
according to the strategy profile {o;, o_;). The value to player 7 at state h given that all players play
according to strategy profile o is defined as v{ (h), and the value to player ¢ at infoset I is defined as
v (1) = Y, cr (p(h)v7(h)), where p(h) is player ’s believed probability that they are in state h,
conditional on being in infoset I, based on the other players’ strategies and chance’s probabilities.

A best response to o _; is a strategy BR(o ;) such that u;(BR(0—;),0_;) = max,: u;(o},0-;). A
Nash equilibrium o* is a strategy profile where every player plays a best response: Vi, u; (o}, 0*,) =
max,: u;(o},0” ;) [28]. A Nash equilibrium strategy for player i is a strategy o that is part of any
Nash equilibrium. In two-player zero-sum games, if o; and o_; are both Nash equilibrium strategies,
then {0;, 0_;) is a Nash equilibrium.

An imperfect-information subgame, which we refer to simply as a subgame, is a contiguous
portion of the game tree that does not divide infosets. Formally, a subgame S is a set of states such
that for all h € S, if h € I, and b’ € I; for some player 4, then i’ € S. Moreover, if z € S and
z€Sandxz C y C z,theny € S. If h € S but no descendant of & is in S, then A is a leaf node.
Additionally, the infosets containing h are leaf infosets. Finally, if » € S but no ancestor of h is in .S,
then h is a root node and the infosets containing h are root infosets.

4 Multi-Valued States in Imperfect-Information Games

In this section we describe our new method, which we refer to as multi-valued states. For the
remainder of this paper, we assume that player P; is attempting to find a Nash equilibrium strategy in
a depth-limited subgame.

We begin by considering some unknown Nash equilibrium ¢*, and discuss what information about
o™ is required to reconstruct a P; Nash equilibrium strategy in a depth-limited subgame S. Later, we
will approximate this information and therefore be able to construct an approximate Nash equilibrium
strategy in S. We also assume for now that P; played according to o7 prior to reaching S.

As explained in Section 2, knowing the values of leaf nodes in the subgame when both players play
according to o* (that is, vy " (h) for state h and player P;) is insufficient to construct the portion of
o7 that is in the subgame (unlike in perfect-information games), because it assumes P> would not
adapt. But what if we do let P, adapt? Specifically, suppose we allow P, to choose any strategy in
the entire game, while constraining P; to play according to o} outside of the subgame. Since o7 is a
Nash equilibrium strategy and P, can choose any strategy in the game, so clearly P, cannot do better
than playing o in the subgame. Thus, P, would play o} (or a different Nash equilibrium) in S.

To simplify this process, upon reaching a leaf infoset I, we could have P choose a pure strategy for
the remainder of the game that follows I. So if there are N possible pure strategies, P» would choose
among N actions upon reaching I, where action n would correspond to playing pure strategy o for
the remainder of the game. Since the choice of action would define a P, strategy for the remainder
of the game and since P, is known to play according to o7 outside S, so the chosen action could
immediately reward the expected value vfgl 3 (h) to P;, where h € I is the state the players are in.
Therefore, knowing these expected values would be sufficient to have P; play according to a Nash
equilibrium in S. This is stated formally in Proposition 1.

(o1, BR(o7))

Proposition 1 adds the condition that we know v, (I) for every root infoset I € S. This
condition is used if S' does not begin at the start of the game. Knowledge of véol BR(eT) (I)is

needed to ensure that any strategy o that P; computes in .S cannot be exploited by P changing their

strategy earlier in the game. Specifically, we add a constraint that v{” 271 (1) < 4{71-BRE1) (1)

for all P, root infosets I. This makes our technique safe:

Proposition 1. Assume Py has played according to Nash equilibrium strategy o7 prior to reaching
a depth-limited subgame S of a two-player zero-sum game. In order to calculate the portion of a
Py Nash equilibrium strategy that is in S, it is sufficient to know véal BR(E1)) (I)
(o1,02)

infoset I € S and v, (h) for every pure Py strategy oo and every leaf node h € S.

for every root P

Other safe subgame solving techniques have been developed in recent papers, but those techniques
require solving to the end of the full game [7, 17, 27, 5, 6] (except one [26], which we will compare
to in Section 7). For ease of understanding, when considering the intuition for our techniques in this
paper we suggest the reader first focus on the case where a subgame is rooted at the start of the game.

While we do not know o7, we can estimate it. And while it is impractical to know the value resulting
from every pure P, strategy against this estimate of o], in practice we may only need to know the
values resulting from just a few P, strategies (that may or may not be pure). Indeed, in many complex
games, the possible opponent strategies at a decision point can be approximately grouped into just a
few “meta-strategies,” such as which of three lanes to choose in the real-time strategy game Dota 2.
In our experiments, we find that excellent performance is obtained in poker with fewer than ten
opponent strategies. In part, excellent performance is possible with a small number of strategies
because the choice of strategy beyond the depth limit is made separately at each leaf infoset. Thus, if
the opponent chooses between ten strategies at the depth limit, but makes this choice independently
in each of 100 leaf infosets, then the opponent is actually choosing between 101°0 different strategies.
This raises two questions. First, how do we estimate ¢} ? Second, how do we determine the set of P
strategies? We answer each of these in turn.

To estimate o7, we construct a blueprint strategy profile 6*, which is a rough approximation of
a Nash equilibrium for the entire game. The agent will never actually play according to 6*. The
blueprint is only used to estimate v{71:72) (h). There exist several methods for constructing a blueprint.
One option, which achieves the best empirical results and is what we use, involves first abstracting
the game [19, 12] and then applying the iterative algorithm Monte Carlo Counterfactual Regret
Minimization [22]. Several alternatives exist that do not rely on a distinct abstraction step [3, 16, 10].

We now discuss two different ways to select a set of P, strategies. Ultimately we would like the
set of P, strategies to contain a diverse set of intelligent strategies the opponent might play, so that
P,’s solution in a subgame is robust to possible P» adaptation. One option is to bias the P, blueprint
strategy 65 in a few different ways. For example, in poker the blueprint strategy should be a mixed
strategy involving some probability of folding, calling, or raising. We could define a new strategy o
in which the probability of folding is multiplied by 10 (and then all the probabilities renormalized).
If the blueprint strategy 5* were an exact Nash equilibrium, then o%, would still be a best response
to 6. Thus, o, certainly qualifies as an intelligent strategy to play. In our experiments, we use this
biasing of the blueprint strategy to construct a set of four opponent strategies on the second betting
round. We refer to this as the bias approach.

Another option is to construct the set of P, strategies via self-play. The set begins with just one P»
strategy: the blueprint strategy 65. We then solve a depth-limited subgame rooted at the start of the
game and going to whatever depth is feasible to solve, giving P» only the choice of this P strategy
at leaf infosets. That is, at leaf node h we simply substitute vf : (h) for P;. Let the Py solution to this
depth-limited subgame be o;. We then approximate a P best response assuming P, plays according
to o7 in the depth-limited subgame and according to &7 in the remainder of the game. Since P;
plays according to this fixed strategy, approximating a P» best response is equivalent to solving a
Markov Decision Process, which is far easier to solve than an imperfect-information game. This P»
approximate best response is added to the set of strategies that P» may choose at the depth limit,
and the depth-limited subgame is solved again. This process repeats until the set of P; strategies
grows to the desired size. This self-generative approach bears some resemblance to the double oracle
algorithm [25] and recent work on generation of opponent strategies in multi-agent RL [23]. In our
experiments, we use this self-generative method to construct a set of ten opponent strategies on the
first betting round. We refer to this as the self-generative approach.

One practical consideration is that since 67 is not an exact Nash equilibrium, a generated P, strategy
o2 may do better than 65 against 67. In that case, P, may play more conservatively than ¢} in a
depth-limited subgame. To correct for this, one can “weaken” the generated P» strategies so that

they do no better than 65 against 6. Formally, if vé&r’aﬂ (I > vé&f’@) (I), we uniformly lower

vé&;’aﬁ (h) for h € I by vé&;m) (I)— vé&f 730 (I). (An alternative (or additional) solution would be

to simply reduce vé&;m) (h) for o9 # &5 by some heuristic amount, such as a small percentage of
the pot in poker.)

Once a P strategy 65 and a set of P; strategies have been generated, we need some way to calculate

and store véﬂl 2) (h). Calculating the state values can be done by traversing the entire game tree once.
However, that may not be feasible in large games. Instead, one can use Monte Carlo simulations to
approximate the values. For storage, if the number of states is small (such as in the early part of the
game tree), one could simply store the values in a table. More generally, one could train a function to
predict the values corresponding to a state, taking as input a description of the state and outputting
a value for each P, strategy. Alternatively, one could simply store 6 and the set of P, strategies.
Then, in real time, the value of a state could be estimated via Monte Carlo rollouts. We will present
results for both of these approaches.

5 Nested Solving of Imperfect-Information Games

We use the new idea discussed in the previous section in the context of nested solving, which is a
way to repeatedly solve subgames as play descends down the game tree [5]. Whenever an opponent
chooses an action, a subgame is generated following that action. This subgame is solved, and its
solution determines the strategy to play until the next opponent action is taken.

Nested solving is particularly useful in dealing with large or continuous action spaces, such as an
auction that allows any bid in dollar increments up to $10,000. To make these games feasible to solve,
it is common to apply action abstraction, in which the game is simplified by considering only a few
actions (both for ourselves and for the opponent) in the full action space. For example, an action
abstraction might only consider bid increments of $100. However, if the opponent chooses an action
that is not in the action abstraction (called an off-tree action), the optimal response to that opponent
action is undefined.

Prior to the introduction of nested solving, it was standard to simply round off-tree actions to a nearby
in-abstraction action (such as treating an opponent bid of $150 as a bid of $200) [14, 33, 11]. Nested
solving allows a response to be calculated for off-tree actions by constructing and solving a subgame
that immediately follows that action. The goal is to find a strategy in the subgame that makes the
opponent no better off for having chosen the off-tree action than an action already in the abstraction.

Depth-limited solving makes nested solving feasible even in the early game, so it is possible to play
without acting according to a precomputed strategy or using action translation. At the start of the
game, we solve a depth-limited subgame (using action abstraction) to whatever depth is feasible. This
determines our first action. After every opponent action, we solve a new depth-limited subgame that
attempts to make the opponent no better off for having chosen that action than an action that was in
our previous subgame’s action abstraction. This new subgame determines our next action, and so on.

6 Experiments

We conducted experiments on the games of heads-up no-limit Texas hold’em poker (HUNL) and
heads-up no-limit flop hold’em poker (NLFH). Appendix B reminds the reader of the rules of these
games. HUNL is the main large-scale benchmark for imperfect-information game Als. NLFH is
similar to HUNL, except the game ends immediately after the second betting round, which makes it
small enough to precisely calculate best responses and Nash equilibria. Performance is measured
in terms of mbb/g, which is a standard win rate measure in the literature. It stands for milli-big
blinds per game and represents how many thousandths of a big blind (the initial money a player must
commit to the pot) a player wins on average per hand of poker played.

6.1 Exploitability Experiments in No-Limit Flop Hold’em (NLFH)

Our first experiment measured the exploitability of our technique in NLFH. Exploitability of a strat-
egy in a two-player zero-sum game is how much worse the strategy would do against a best response
than a Nash equilibrium strategy would do against a best response. Formally, the exploitability of o
is min,, u1 (0, 02) — min,, u1(o1, 02), where o} is a Nash equilibrium strategy.

We considered the case of P; betting 0.75x the pot at the start of the game, when the action
abstraction only contains bets of 0.5x and 1x the pot. We compared our depth-limited solving
technique to the randomized pseudoharmonic action translation (RPAT) [11], in which the bet of

Exploitability of depth-limited solving in NLFH

o512
~
Q
E 10 —
g 8 — Action Translation
‘gﬁ-: 6 Multi-State Values
o -
= 4 In-Abstraction
S 2
0

1 2 4 8 16 32
Number of Values Per State

Figure 2: Exploitability of depth-limited solving in response to an opponent off-tree action as a function of
number of state values. We compare to action translation and to having had the off-tree action included in the
action abstraction (which is a lower bound on the exploitability achievable with 1,000 iterations of CFR+).

0.75x is simply treated as either a bet of 0.5x or 1x. RPAT is the lowest-exploitability known
technique for responding to off-tree actions that does not involve real-time computation.

We began by calculating an approximate Nash equilibrium in an action abstraction that does not
include the 0.75 x bet. This was done by running the CFR+ equilibrium-approximation algorithm [37]
for 1,000 iterations, which resulted in less than 1 mbb/g of exploitability within the action abstraction.
Next, values for the states at the end of the first betting round within the action abstraction were
determined using the self-generative method discussed in Section 4. Since the first betting round is a
small portion of the entire game, storing a value for each state in a table required just 42 MB.

To determine a P, strategy in response to the 0.75x bet, we constructed a depth-limited subgame
rooted after the 0.75x bet with leaf nodes at the end of the first betting round. The values of a leaf
node in this subgame were set by first determining the in-abstraction leaf nodes corresponding to the
exact same sequence of actions, except P initially bets 0.5x or 1x the pot. The leaf node values in
the 0.75x subgame were set to the average of those two corresponding value vectors. When the end
of the first betting round was reached and the board cards were dealt, the remaining game was solved
using safe subgame solving.

Figure 2 shows how exploitability decreases as we add state values (that is, as we give P, more best
responses to choose from at the depth limit). When using only one state value at the depth limit (that
is, assuming P; would always play according to the blueprint strategy for the remainder of the game),
it is actually better to use RPAT. However, after that our technique becomes significantly better and at
16 values its performance is close to having had the 0.75x abstraction in the abstraction in the first
place.

While one could have calculated a (slightly better) P» strategy in response to the 0.75x bet by solving
to the end of the game, that subgame would have been about 10,000 larger than the subgames
solved in this experiment. Thus, depth-limited solving dramatically reduces the computational cost
of nested subgame solving while giving up very little solution quality.

6.2 Experiments Against Top Als in Heads-Up No-Limit Texas Hold’em (HUNL)

Our main experiment uses depth-limited solving to produce a master-level HUNL poker Al called
Modicum using computing resources found in a typical laptop. We test Modicum against Baby
Tartanian8 [4], the winner of the 2016 Annual Computer Poker Competition, and against Slumbot [18],
the winner of the 2018 Annual Computer Poker Competition. Neither Baby Tartanian8 nor Slumbot
uses real time computation; their strategies are a precomputed lookup table. Baby Tartanian8 used
about 2 million core hours and 18 TB of RAM to compute its strategy. Slumbot used about 250,000
core hours and 2 TB of RAM to compute its strategy. In contrast, Modicum used just 700 core
hours and 16GB of RAM to compute its strategy and can play in real time at the speed of human
professionals (an average of 20 seconds for an entire hand of poker) using just a 4-core CPU. We
now describe Modicum and provide details of its construction in Appendix A.

The blueprint strategy for Modicum was constructed by first generating an abstraction of HUNL using
state-of-the-art abstraction techniques [12, 20]. Storing a strategy for this abstraction as 4-byte floats
requires just 5 GB. This abstraction was approximately solved by running Monte Carlo Counterfactual
Regret Minimization for 700 core hours [22].

HUNL consists of four betting rounds. We conduct depth-limited solving on the first two rounds
by solving to the end of that round using MCCFR. Once the third betting round is reached, the
remaining game is small enough that we solve to the end of the game using an enhanced form of
CFR+ described in the appendix.

We generated 10 values for each state at the end of the first betting round using the self-generative
approach. The first betting round was small enough to store all of these state values in a table using
240 MB. For the second betting round, we used the bias approach to generate four opponent best
responses. The first best response is simply the opponent’s blueprint strategy. For the second, we
biased the opponent’s blueprint strategy toward folding by multiplying the probability of fold actions
by 10 and then renormalizing. For the third, we biased the opponent’s blueprint strategy toward
checking and calling. Finally for the fourth, we biased the opponent’s blueprint strategy toward
betting and raising. To estimate the values of a state when the depth limit is reached on the second
round, we sample rollouts of each of the stored best-response strategies.

The performance of Modicum is shown in Table 1. For the evaluation, we used AIVAT to reduce
variance [8]. Our new agent defeats both Baby Tartanian8 and Slumbot with statistical significance.
Moreover, based on results from the previous experiment, our new agent is likely far less exploitable
than Baby Tartanian8 and Slumbot. For comparison, Baby Tartanian8 defeated Slumbot by 36 &+ 12
mbb/g, Libratus defeated Baby Tartanian8 by 63 £ 28 mbb/g, and Libratus defeated top human
professionals by 147 £ 77 mbb/g. While our new agent is probably not as strong as Libratus, it
was produced with less than 0.1% of the computing resources and memory, and is not vulnerable to
off-tree opponent actions on the first two betting rounds.

Baby Tartanian8 | Slumbot
Blueprint (No real-time solving) | —57 £ 13 —11+£38
Naive depth-limited solving —10+£8 —1+15
Depth-limited solving 65 11+9

Table 1: Head to head performance of our new agent against Baby Tartanian8 and Slumbot with 95% confidence
intervals shown. Our new agent defeats both opponents with statistical significance. Naive depth-limited solving
means states are assumed to have just a single value, which is determined by the blueprint strategy.

While the rollout method used on the second betting round worked well, rollouts may be significantly
more expensive in deeper games. To demonstrate the generality of our approach, we also trained
a deep neural network (DNN) to predict the values of states at the end of the second betting round
as an alternative to using rollouts. The DNN takes as input a 34-float vector of features describing
the state, and outputs four floats representing the values of the state for the four possible opponent
strategies (represented as a fraction of the size of the pot). The DNN was trained using 180 million
examples per player by optimizing the Huber loss with Adam [21], which we implemented using
PyTorch [31]. In order for the network to run sufficiently fast on just a 4-core CPU, the DNN has
just 2 hidden layers and 64 nodes per layer. This achieved a Huber loss of 0.03. Using a DNN rather
than rollouts resulted in the agent losing to Baby Tartanian8 by 11 & 10 mbb/g. Thus, performance is
slightly worse (which is to be expected). Nevertheless, this is still strong performance overall and
demonstrates the generality of our approach.

7 Comparison to Prior Work

Section 2 demonstrated that in imperfect-information games, states do not have unique values and
therefore the techniques common in perfect-information games and single-agent settings do not apply.
This paper introduced a way to overcome this challenge by assigning multiple values to states. A
different approach is to modify the definition of a “state” to instead be all players’ belief probability
distributions over states, which we refer to as a joint belief state. This technique was previously
used to develop the poker Al DeepStack [26]. The evidence suggests that in the domain we tested
on, using multi-valued states leads to better performance. This is exemplified by the fact that our
approach defeats two prior top Als with less than 1,000 core hours of computation. In contrast, while
DeepStack defeated human professionals who were not specialists in HUNL, it was never shown to
defeat prior top Als even though it used over 1,000,000 core hours of computation. Still, there are
benefits and drawbacks to both approaches. The right choice may depend on the domain and future
research may change the competitiveness of either approach.

A joint belief state is defined by a probability (belief) distribution for each player over states that
are indistinguishable to the player. In poker, for example, a joint belief state is defined by each

players’ belief about what cards the other players are holding. Joint belief states maintain some of
the properties that regular states have in perfect-information games. In particular, it is possible to
determine an optimal strategy in a subgame rooted at a joint belief state independently from the rest
of the game. Therefore, joint belief states have unique, well-defined values that are not influenced by
the strategies played in disjoint portions of the game tree. Given a joint belief state, it is also possible
to define the value of each root infoset for each player. In the example of poker, this would be the
value of a player holding a particular poker hand given the joint belief state.

One way to do depth-limited subgame solving, other than the method we describe in this paper, is
to learn a function that maps joint belief states to infoset values. When conducting depth-limited
solving, one could then set the value of a leaf infoset based on the joint belief state at that leaf infoset.

One drawback is that because a player’s belief distribution partly defines a joint belief state, the
values of the leaf infosets must be recalculated each time the strategy in the subgame changes. With
the best domain-specific iterative algorithms, this would require recalculating the leaf infosets about
500 times. Monte Carlo algorithms, which are the preferred domain-independent method of solving
imperfect-information games, may change the strategy millions of times in a subgame, making them
incompatible with the joint belief state approach. In contrast, our multi-valued state approach requires
only a single function call for each leaf node regardless of the number of iterations conducted.

Moreover, evaluating multi-valued states with a function approximator is cheaper and more scalable
to large games than joint belief states. The input to a function that predicts the value of a multi-valued
state is simply the state description (for example, the sequence of actions), and the output is several
values. In our experiments, the input was 34 floats and the output was 4 floats. In contrast, the input
to a function that predicts the values of a joint belief state is a probability vector for each player over
the possible states they may be in. For example, in HUNL, the input is more than 2, 000 floats and
the output is more than 1, 000 floats. The input would be even larger in games with more states per
infoset.

Another drawback is that learning a mapping from joint belief states to infoset values is computation-
ally more expensive than learning a mapping from states to a set of values. For example, Modicum
required less than 1,000 core hours to create this mapping. In contrast, DeepStack required over
1,000,000 core hours to create its mapping. The increased cost is because a joint belief state value
mapping is learning an inherently more complex function. The multi-valued states approach is learn-
ing the values of best responses to a particular strategy (namely, the approximate Nash equilibrium
strategy 65). In contrast, a joint belief state value mapping is learning the value of all players playing
an equilibrium strategy given that joint belief state. As a rough guideline, computing an equilibrium
is about 1,000 x more expensive than computing a best response in large games [1].

On the other hand, the multi-valued state approach requires knowledge of a blueprint strategy that is
already an approximate Nash equilibrium. A benefit of the joint belief state approach is that rather
than simply learning best responses to a particular strategy, it is learning best responses against every
possible strategy. This may be particularly useful in self-play settings where the blueprint strategy is
unknown, because it may lead to increasingly more sophisticated strategies.

Another benefit of the joint belief state approach is that in many games (but not all) it obviates the
need to keep track of the sequence of actions played. For example, in poker if there are two different
sequences of actions that result in the same amount of money in the pot and all players having the
same belief distribution over what their opponents’ cards are, then the optimal strategy in both of
those situations is the same. This is similar to how in Go it is not necessary to know the exact
sequence of actions that were played. Rather, it is only necessary to know the current configuration
of the board (and, in certain situations, also the last few actions played).

A further benefit of the joint belief state approach is that its run-time complexity does not increase
with the degree of precision. In contrast, for our algorithm the computational complexity of finding a
solution to a depth-limited subgame grows linearly with the number of values per state.

8 Conclusions

We introduced a principled method for conducting depth-limited solving in imperfect-information
games. Experimental results show that this leads to stronger performance than the best precomputed-
strategy Als in HUNL while using orders of magnitude less computational resources. Additionally,
the method exhibits low exploitability.

9 Acknowledgments

This material is based on work supported by the National Science Foundation under grants IIS-
1718457, 11S-1617590, and CCF-1733556, and the ARO under award W911NF-17-1-0082, as well
as XSEDE computing resources provided by the Pittsburgh Supercomputing Center. We thank Thore
Graepel, Marc Lanctot, and David Silver of Google DeepMind for helpful inspiration, feedback,
suggestions, and support.

References

[1] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145-149, January 2015.

[2] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, distributed
equilibrium computation, and post-processing, with application to a champion no-limit texas
hold’em agent. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 7—15. International Foundation for Autonomous Agents and
Multiagent Systems, 2015.

[3] Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding in
games. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2015.

[4] Noam Brown and Tuomas Sandholm. Baby Tartanian8: Winning agent from the 2016 annual
computer poker competition. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence (IJCAI-16), pages 4238-4239, 2016.

[5] Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-
information games. In Advances in Neural Information Processing Systems, pages 689-699,
2017.

[6] Noam Brown and Tuomas Sandholm. Superhuman Al for heads-up no-limit poker: Libratus
beats top professionals. Science, page eaaol733, 2017.

[7] Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games
using decomposition. In AAAI Conference on Artificial Intelligence (AAAI), pages 602—608,
2014.

[8] Neil Burch, Martin Schmid, Matej Morav¢ik, and Michael Bowling. AIVAT: A new variance
reduction technique for agent evaluation in imperfect information games. 2016.

[9] Murray Campbell, A Joseph Hoane, and Feng-Hsiung Hsu. Deep Blue. Artificial intelligence,
134(1-2):57-83, 2002.

[10] Jiii Cermék, Branislav Bosansky, and Viliam Lisy. An algorithm for constructing and solv-
ing imperfect recall abstractions of large extensive-form games. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pages 936-942. AAAI Press, 2017.

[11] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with large
action spaces: axioms, paradoxes, and the pseudo-harmonic mapping. In Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence, pages 120-128. AAAI
Press, 2013.

[12] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

[13] Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
37-45, 2015.

[14] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sgrensen. A heads-up no-limit Texas
hold’em poker player: discretized betting models and automatically generated equilibrium-
finding programs. In Proceedings of the Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 911-918. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2008.

[15] Peter E Hart, Nils J Nilsson, and Bertram Raphael. Correction to "a formal basis for the heuristic
determination of minimum cost paths". ACM SIGART Bulletin, (37):28-29, 1972.

[16] Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

[17] Eric Jackson. A time and space efficient algorithm for approximately solving large imperfect
information games. In AAAI Workshop on Computer Poker and Imperfect Information, 2014.

[18] Eric Jackson. Targeted CFR. In AAAI Workshop on Computer Poker and Imperfect Information,
2017.

[19] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract
strategies in extensive-form games. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pages 1371-1379. AAAI Press, 2012.

[20] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating state-space
abstractions in extensive-form games. In Proceedings of the 2013 International Conference
on Autonomous Agents and Multiagent Systems, pages 271-278. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[22] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 1078—1086, 2009.

[23] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Julien Perolat, David
Silver, Thore Graepel, et al. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems, pages 4193-4206, 2017.

[24] Shen Lin. Computer solutions of the traveling salesman problem. The Bell system technical
Jjournal, 44(10):2245-2269, 1965.

[25] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 536543, 2003.

[26] Matej Moravcik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 2017.

[27] Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen Gaukrodger. Refining
subgames in large imperfect information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2016.

[28] John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36:48-49, 1950.

[29] Allen Newell and George Ernst. The search for generality. In Proc. IFIP Congress, volume 65,
pages 17-24, 1965.

[30] Nils Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.

[31] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[32] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210-229, 1959.

[33] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state translation in
extensive games with large action sets. In Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence, pages 278-284, 2009.

[34] Claude E Shannon. Programming a computer for playing chess. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 41(314):256-275, 1950.

[35] David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of Go with deep neural networks and tree search. Nature, 529(7587):484—-489,
2016.

10

[36] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
Go without human knowledge. Nature, 550(7676):354, 2017.

[37] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 645-652, 2015.

[38] Gerald Tesauro. Programming backgammon using self-teaching neural nets. Artificial Intelli-
gence, 134(1-2):181-199, 2002.

11

Appendix: Supplementary Material

A Details of How We Constructed the Modicum Agent

In this section we provide details on the construction of our new agent and the implementation
of depth-limited subgame solving, as well as a number of optimizations we used to improve the
performance of our agent.

The blueprint abstraction treats every poker hand separately on the first betting round (where there are
169 strategically distinct hands). On the remaining betting rounds, the hands are grouped into 30,000
buckets [2, 12, 20]. The hands in each bucket are treated identically and have a shared strategy, so
they can be thought as sharing an abstract infoset. The action abstraction was chosen primarily by
observing the most common actions used by prior top agents. We made a conscious effort to avoid
actions that would likely not be in Baby Tartanian8’s and Slumbot’s action abstraction, so that we
do not actively exploit their use of action translation. This makes our experimental results relatively
conservative. While we do not play according to the blueprint strategy, the blueprint strategy is
nevertheless used to estimate the values of states, as explained in the body of the paper.

We used unsafe nested solving on the first and second betting rounds, as well as for the first subgame
on the third betting round. In unsafe solving [13], each player maintains a belief distribution over
states. When the opponent takes an action, that belief distribution is updated via Bayes’ rule assuming
that the opponent played according to the equilibrium we had computed. Unsafe solving lacks
theoretical guarantees because the opponent need not play according to the specific equilibrium
we compute, and may actively exploit our assumption that they are playing according to a specific
strategy. Nevertheless, in practice unsafe solving achieves strong performance and exhibits low
exploitability, particularly in large games [5].

In nested unsafe solving, whenever the opponent chooses an action, we generate a subgame rooted
immediately before that action was taken (that is, the subgame starts with the opponent acting). The
opponent is given a choice between actions that we already had in our action abstraction, as well
as the new action that they actually took. This subgame is solved (in our case, using depth-limited
solving). The solution’s probability for the action the opponent actually took informs how we update
the belief distribution of the other player. The solution also gives a strategy for the player who now
acts. This process repeats each time the opponent acts.

Since the first betting round (called the preflop) is extremely small, whenever the opponent takes
an action that we have not previously observed, we add it to the action abstraction for the preflop,
solve the whole preflop again, and cache the solution. When the opponent chooses an action that they
have taken in the past, we simply load the cached solution rather than solve the subgame again. This
results in the preflop taking a negligible amount of time on average.

To determine the values of leaf nodes on the first and second betting round, whenever a subgame
was constructed we mapped each leaf node in the subgame to a leaf node in the blueprint abstraction
(based on similarity of the action sequence). The values of a a leaf node in the subgame (as a fraction
of the pot) was set to its corresponding blueprint abstraction leaf node. In the case of rollouts, this
meant conducting rollouts in the blueprint strategy starting at the blueprint leaf node.

As explain in the body of the paper, we tried two methods for determining state values at the end
of the second betting round. The first method involves storing the four opponent approximate best
responses and doing rollouts in real time whenever the depth limit is reached. The second involves
training a deep neural network (DNN) to predict the state values determined by the four approximate
best responses.

For the rollout method, it is not necessary to store the best responses as 4-byte floats. That would use
32| A| bits per abstract infoset, where | A| is the number of actions in an infoset. If one is constrained
by memory, an option is to randomize over the actions in an abstract infoset ahead of time and pick
a single action. That single action can then be stored using a minimal number of bits. This means
using only [loga(|A|)] bits per infoset. This comes at a slight cost of precision, particularly if the
strategy is small, because it would mean always picking the same action in an infoset whenever it is
sampled. Since we were not severely memory constrained, we instead stored the approximate best
responses using a single byte per abstract infoset action. In order to reduce variance and converge

12

more quickly, we conduct multiple rollouts upon reaching a leaf node. We found the optimal number
of rollouts to be three given our memory access speeds.

For the DNN approach, whenever a subgame on the second round is generated we evaluate each leaf
node using the DNN before solving begins. The state values are stored (using about 50 MB). This
takes between 5 and 10 seconds depending on the size of the subgame.

Starting on the third betting round, we always solve to the end of the game using an improved form of
CFR+. We use unsafe solving the first time the third betting round is reached. Subsequent subgames
are solved using safe nested solving (specifically, Reach subgame solving where the alternative
payoffs are based on the expected value from the previously-solved subgame [5]).

To improve the performance of CFR+, we ignore the first 50% of iterations when determining the
average strategy. Moreover, for the first 30 iterations, we discount the regrets after each iteration by

\/% where T indicates the iteration. This reduces exploitability in the subgame by about a factor

of three.

The number of CFR+ iterations and the amount of time we ran MCCFR varied depending on the size
of the pot. For the preflop, we always ran MCCFR for 30 seconds to solve a subgame (though this
was rarely done due to caching). On the flop, we ran MCCEFR for 10 to 30 seconds depending on the
pot size. On the turn, we ran between 150 and 1,000 iterations of our modified form CFR+. On the
river, we ran between 300 and 2,000 iterations of our modified form of CFR+.

B Rules of the Poker Games

We experiment on two variants of poker: heads-up no-limit Texas hold’em (HUNL) and heads-up
no-limit flop hold’em (NLFH).

In the version of HUNL we use in this paper, and which is standard in the Annual Computer Poker
Competition, the two players (P; and P5) in the game start each hand with $20,000. The position
of the two players alternate after each hand. There are four rounds of betting. On each round, each
player can choose to either fold, call, or raise. Folding results in the player losing and the money
in the pot being awarded to the other player. Calling means the player places a number of chips in
the pot equal to the opponent’s share. Raising means that player adds more chips to the pot than the
opponent’s share. A round ends when a player calls (if both players have acted). Players cannot raise
beyond the $20,000 they start with, so there is a limited number of actions in the game. All raises
must be at least $100, and at least as larger as the most recent raise on that round (if there was one).

At the start of each hand of HUNL, both players are dealt two private cards from a standard 52-card
deck. P; must place $100 in the pot and P» must place $50 in the pot. A round of betting then occurs.
When the round ends, three community cards are dealt face up that both players can ultimately use
in their final hands. Another round of betting occurs, starting with P; this time. After the round is
over, another community card is dealt face up, and another round of betting starts with P; acting first.
Finally, one more community card is revealed to both players and a final betting round occurs starting
with Pj. Unless a player has folded, the player with the best five-card poker hand, constructed from
their two private cards and the five community cards, wins the pot. In the case of a tie, the pot is split
evenly.

NLFH is similar to HUNL except there are only two rounds of betting and three community cards.

C Proof of Proposition 1

Proof. Consider the augmented subgame S’ structured as follows. S’ contains .S and all its descen-
dants. Additionally, for every root node i € S (that is, a node whose parent is not in S), S’ contains
a node ' belonging to P». If hy and hy are root nodes in S and h; and ho share an infoset, then
b and hi share an infoset. S’ begins with an initial chance node that reaches 4’ with probability
proportional to the probability of reaching h if P tried to do so (that is, the probability of reaching it
according to P;’s strategy and chance’s probabilities).

13

Atnode i/, P, has two actions. The “alt” action leads to a terminal node that awards véa; BR(eT) ().
The “enter” action leads to h. From Theorem 1 in [7], a solution to S’ is part of a P; Nash equilibrium
strategy in the full game.

Now consider the depth-limited augmented subgame S” that is similar to S” but does not contain the

descendants of S. We show that knowing vfﬁm) (h) for every pure P, strategy oo and every leaf

node h € S is sufficient to calculate the portion of a P; Nash equilibrium strategy for S’ that is in S”.
That, in turn, gives a strategy in S that is a Nash equilibrium strategy in the full game.

We modify S” so that, after P;’s strategy is chosen, P, chooses a probability distribution over the N
pure strategies where the probability of pure strategy o is represented as p(n). This mixture of pure
strategies defines a strategy 03" = > _ v (p(n)o%). In this way, P, can pick any strategy because
every strategy is a mixture of pure strategies. Upon reaching a leaf node h, P; receives a reward of
YN (p(n)vfgr 73 (h)) = {717 (h). Clearly P; can do no better than playing o, because it is
a Nash equilibrium and P» can play any strategy. Thus, any strategy P; plays in S, when combined
with o7 outside of S”, must do at least as well as playing o} in the full game. O

14

	1 Introduction
	2 The Challenge of Depth-Limited Solving in Imperfect-Information Games
	3 Notation and Background
	4 Multi-Valued States in Imperfect-Information Games
	5 Nested Solving of Imperfect-Information Games
	6 Experiments
	6.1 Exploitability Experiments in No-Limit Flop Hold'em (NLFH)
	6.2 Experiments Against Top AIs in Heads-Up No-Limit Texas Hold'em (HUNL)

	7 Comparison to Prior Work
	8 Conclusions
	9 Acknowledgments
	A Details of How We Constructed the Modicum Agent
	B Rules of the Poker Games
	C Proof of Proposition ??

