
Arithmetic and Boolean Secret Sharing MPC on
FPGAs in the Data Center

Rushi Patel∗, Pierre-François Wolfe†, Robert Munafo‡, Mayank Varia§, and Martin Herbordt¶
∗ † ‡ ¶ Dept. of Electrical and Computer Engineering & §Dept. of Computer Science,

Boston University, Boston, USA
Email: ∗ruship@bu.edu, †pwolfe@bu.edu, ‡rmunafo@bu.edu, §varia@bu.edu, ¶herbordt@bu.edu

Abstract—Multi-Party Computation (MPC) is an important
technique used to enable computation over confidential data
from several sources. The public cloud provides a unique op-
portunity to enable MPC in a low latency environment. Field
Programmable Gate Array (FPGA) hardware adoption allows
for both MPC acceleration and utilization of low latency, high
bandwidth communication networks that substantially improve
the performance of MPC applications. In this work, we show
how designing arithmetic and Boolean Multi-Party Computation
gates for FPGAs in a cloud provide improvements to current
MPC offerings and ease their use in applications such as machine
learning. We focus on the usage of Secret Sharing MPC first
designed by Araki et al [1] to design our FPGA MPC while also
providing a comparison with those utilizing Garbled Circuits for
MPC. We show that Secret Sharing MPC provides a better usage
of cloud resources, specifically FPGA acceleration, than Garbled
Circuits and is able to use at least a 10× less computer resources
as compared to the original design using CPUs.

Index Terms—Multiparty Computation, Secret Sharing, Secure
Computation, FPGA, Data Center, Cloud Service, Machine
Learning, Matrix Multiplication

I. INTRODUCTION

Confidential data is everywhere around us, personal, financial,
medical, and government. We hear about data leaks regularly
and lack trust in others when it comes to maintaining privacy
and security in our own data. The problem, however, is that
we may greatly benefit from sharing data and performing joint
computations, but are unable to do so easily with confidential
data. Multi-party computation (MPC) allows parties to securely
share confidential data and compute collective information
without ever releasing one’s own personal data. Cloud systems
for confidential data have been limited to privately owned
systems and are less widely utilized by those requiring more
computation power at any given moment. Thus, the public cloud
is rarely considered by those interacting with confidential data.

MPC has been an active area of research for the last 40
years [2]–[5], and it has been deployed to protect data in the
healthcare [6], [7], education [8], [9], finance [10]–[12], and
technology [13], [14]. In addition, the use of MPC for machine
learning applications is actively being researched [15]. Existing
work shows that general-purpose MPC can be used in viable
systems [16].

MPC currently focuses on two main approaches. Secret
Sharing allows for a balanced arithmetic intensity between
compute and network bandwidth, but it relies on a low latency
environment to achieve high performance results. In contrast,

Garbled Circuits typically perform better in higher latency
situations, due to fewer communication rounds, but require
high bandwidth to support large circuits. Because Garbled
Circuit approaches are typically compute-bound, they appear
more amenable to hardware acceleration, and as such have
been the subject of significant prior research with FPGAs
[17]–[27]. The evolving data center has seen a considerable
rise in accelerators to further improve both computation and
communication. This change suggests the current approach to
MPC on FPGAs may need to be reconsidered to better utilize
a growing and adaptive cloud environment.

Prior work [28] shows the first findings about the perfor-
mance of Boolean only Secret Sharing on an FPGA. We
build upon this work by extending the protocol to include
arithmetic Secret Sharing and by providing a roofline plot to
justify the advantage of Secret Sharing in the data center. The
roofline model analysis of MPC using CPUs and FPGAs finds
a compelling argument for hardware acceleration of MPC via
Secret Sharing vs Garbled Circuits when deployed in a data
center. Using a low latency and high bandwidth environment,
powered with high performance transceivers, we show an
effective MPC implementation with FPGA accelerators in a
cloud data center performing more multi-party computations
than alternatives providing a compelling argument for the usage
of MPC in high performance applications such as machine
learning.

In this paper, we examine the trade-offs between Garbled
Circuits and Secret Sharing in cloud data centers using a
roofline model, implement both arithmetic and Boolean Secret
Sharing in hardware, test this hardware design, and assess its
scalability for machine learning applications by analyzing its
usage in matrix multiply. We conclude by proposing directions
for future work towards a complete Secret Sharing MPC
machine learning application using FPGAs running in a cloud.

We summarize the contributions in this work:
• We extend Secret Sharing MPC on FPGA hardware to

include both arithmetic and Boolean protocols.
• We develop a roofline model to show the effectiveness of

Secret Sharing utilizing FPGAs in a data center.
• Using 5.5% of FPGA fabric in a consumer cloud environ-

ment, we match the throughput of an optimized 20-core
CPU implementation saturating a typical 10Gbps network
connection. This result scales with available bandwidth
allowing for a single FPGA to saturate a 200Gbs link.

II. BACKGROUND

A. Data Center Model

The target data center model used here is the adoption of a
MPC-as-a-service which can utilize the various configurations
of accelerators found in different cloud and cluster setups. The
MPC use case requires multiple computing and communicating
parties for security and low latency networking for performance.
Thus we consider scenarios where data center processing
hardware is owned by different parties and co-located within
a single physical location. This helps to limit the additional
bottlenecks found when traversing physical distances to perform
low-latency operations.

FPGA hardware acceleration has seen increasing adoption in
data centers due to their very high bandwidth and low-latency
communication used by means of high speed transceivers. As
described in Section II-B, FPGA hardware properties, especially
co-location of compute and communication logic on the same
device, yield high throughput for MPC protocols based on
Secret Sharing, which makes the most effective use of available
bandwidth.

Current and projected offerings in commercial cloud systems
include FPGAs as co-accelerators (connected only to the CPU),
FPGAs connected to CPU but interconnected with each other
through their own dedicated secondary network [29]–[32], or as
network attached devices in various configurations. In this last
configuration, the FPGA is connected directly to the network,
either as a stand-alone leaf node [33], on a network interface
card (NIC) [34], or as an inline accelerator (Bump-in-the-Wire)
between the NIC and the network [35]–[37].

The interconnected cluster and network-attached configura-
tions provide low-latency network connected systems which
helps to benefit MPC secret sharing computation. The former
co-accelerator model can be utilized with parties co-located
on a single FPGA. We utilize this model as our experiment
platform as it is readily available on current commercial cloud
offerings. We plan to investigate an FPGA network model in
our future work as it will help to address some security and
confidentiality concerns when co-locating parties on a single
hardware resource. Maximizing throughput is a focus for this
work as this metric determines how efficiently multiple client
tasks can be completed.

B. MPC Paradigms

In general, MPC protocols allow an arbitrary number of
compute parties N to perform a joint computation while
resisting a subset of T ‘bad’ parties who wish to breach
the confidentiality of other people’s data or tamper with the
integrity of the calculation. In this work, we examine a 3-party
protocol which tolerates 1 adversarial party who “semi-honestly”
follows the protocol and only tries to break confidentiality. This
matches a scenario in which a small number of FPGAs owned
by different parties are co-located within a data center.

General-purpose MPC designs often represent the agreed-
upon computation as an arithmetic or Boolean circuit, and
follow the Garbled Circuit or Secret Sharing approaches.

Garbled Circuits rely on one compute party generating a (large)
encoded version of the entire circuit, which it then transmits
to a second party who can evaluate the encoded circuit on
encoded inputs in order to obtain the answer. On the other
hand, Secret Sharing-based MPC systems have the compute
parties evaluate each gate of the circuit in parallel on their own
pieces or shares of the data, with a small amount of network
communication required for each multiplication or AND gate
(none is required for addition or XOR gates).

The computation and communication overhead of MPC
manifests itself differently for Garbled Circuits and Secret
Sharing. Even with optimizations [38]–[42], Garbled Circuits
have a small number of communication rounds but a large
communication size (80-128× the size of the original data), ren-
dering them beneficial in high-latency scenarios but detrimental
when processing large datasets. Conversely, Secret Sharing
approaches require a low-latency environment because they
involve many rounds of communication, however they consume
substantially less bandwidth per computational step.

To date, most MPC implementations are in software, and thus
rely on general-purpose processing hardware and commodity
networking equipment. In this scenario, Secret Sharing tends
to be network latency-bound whereas Garbled Circuits are
often compute-bound. Consequently, most of the prior focus
in hardware acceleration has been directed toward Garbled
Circuits. Our work specifically considers MPC implementa-
tions in the data center, where Secret Sharing systems offer
higher maximum throughput and the network latency can be
low enough to realize meaningful performance benefits by
optimizing the computation with FPGAs.

C. Selected MPC Protocol

The original Secret Sharing implementation [1], [43] dif-
ferentiates between arithmetic and Boolean operations. The
design by Araki et al. requires that 3 parties agree to perform a
computation, however it only requires each party to communi-
cation with one other party at a time (aside from initial secret
sharing and revealing the final result). This means for most
actions 1 adversarial party is tolerated, but breaks the trust in
the system when employed in higher application scenarios.

We focus on the implementation of both types of Secret
Sharing circuits, Boolean and arithmetic. The main difference
between these two categories is based around the use of a
ring modulo 2n. For all n > 1 operations are categorized into
arithmetic gates either addition or multiplication. We opted to
use n = 128 for our arithmetic implementation. For the special
case n == 1, addition is the same as XOR and multiplication
is the same as AND.

The process of MPC secret sharing involves 3 phases. First,
confidential data is securely split into three shares and given
to each party member. Each party’s share does not contain
enough information to deduce the original confidential data.
The protocol dictates that only 2 parties’ shares are necessary
to reconstruct the final result. Computation is performed using
either the Boolean XOR and AND gates or arithmetic addition,
and multiplication gates. The decision to use either form of

Start Secret Share

RandomValue Random

⊕,−

X3X1 X2

⊕,− ⊕,−⊕,−

A1A2 A3

X3A3X1A1X2A2

Finish Secret Share

Fig. 1: Initial construction of three party secret shares

Secret Sharing is made as a group between all parties either
before the share splitting phase occurs or after a transformation
is done between secret sharing protocols. Reconstruction of
the final value is done with the help of another party member’s
final share information. We explore the details of each step
below for the protocol implemented.

1) Data Split - Share construction: Each share consists of
two pieces: one uniformly random value, and one value based
on data passed from another party. We denote each share as a
pair (xi, ai) and v as our confidential data being shared among
the party. Shares are generated and distributed based on the
computation being performed, either arithmetic or Boolean
logic. Shares are generated using uniformly random values
x1, x2, x3 which follow the rule stated in Eq. 1. Based on the
protocol form of Secret Sharing, values for (xi, ai) are created
using either Eq. 2 or Eq. 3, where if i = 1 then i− 1 = 3. The
process of generating three unique shares for the confidential
value v is visualized in Figure 1.

x1, x2, x3 ∈ Z2n (1)

Arithmetic:

x1 + x2 + x3 = 0 then ai = xi−1 − v (2)

Boolean:

x1 ⊕ x2 ⊕ x3 = 0 then ai = xi−1 ⊕ v (3)

2) Gate operations - Computation phase: To perform any
operation two shares are passed to each party, one for each
data value ‘v1, v2’. We denote an input pair for v1 as (x, a),
v2 as (y, b) and the output of the operation as (z, c).

• XOR: Each party can compute the XOR of their individual
shares simply by performing a local xor of the individual
parts in the pair.

z = x⊕ y and c = a⊕ b (4)

Start Local Computation

XiAi YiBi

YiXi Ai Bi

⊕,+ ⊕,+

Zi Ci

ZiCi

Finish Local Computation

Fig. 2: Local computation of XOR, addition gate

• Addition: Similar to XOR, individual parties can perform
a simple addition of arithmetic shares using their local
information without the need for communication.

z = x+ y and c = a+ b (5)

• AND: Performing an AND operation requires parties to
communicate with one another and thus is more complex.
First, each party i produces a correlated random value
αi ∈ {0, 1} which follows Eq. 6. From here we calculate
ri using Eq. 7. Lastly, each party passes their ri value to
one other party member and finally calculates the output
share (z, c).

α1 ⊕ α2 ⊕ α3 = 0 (6)

r = x&y ⊕ a&b⊕ α (7)

z = ri ⊕ ri−1 and c = ri (8)

• Multiply: Much of the computation for multiply is similar
to the AND gate previously described. Parties select
correlated random values that hold αi ∈ Z2n , following
Eq. 9. Calculation of each ri is done using Eq. 10. Due to
the unique nature of the shares and their set associativity,
we take advantage of the modular multiplicative inverse
for our q value. Similar to the communication necessary
in the AND gate, each party passes their generated ri and
calculates their individual shares (z, c).

α1 + α2 + α3 = 0 (9)

r = (a ·b−x ·y+α) ·q where q ·3 ≡ 1 (mod 2n) (10)

z = ri−1 − ri and c = −2ri−1 − ri (11)

3) Final results - Data reconstruction: Finally once all
computation is performed on the party shares, each member
can reconstruct the final value by requesting information from
one other party member.
Arithmetic:

v′ = zi−1 − ci (12)

Boolean:
v′ = zi−1 ⊕ ci. (13)

Start Corr. Rand. for Pi

Random

ID++Ki Ki+1

PRF PRF

f(Ki,Ki+1)

αi

End Corr. Rand. for Pi

(a) correlated random value

Start AND,mulitply for Pi

YiBi

Xi Yi

αi

Bi

XiAi

Ai

&, · &, ·

f(Ai, Bi, Xi, Yi, αi)Ri

Transmit Ri to party Pi+1

(b) initial computation and exchange

Receive Ri−1 from party Pi−1

Ri Ri−1

=,− f(ri, ri−1)

Ci Zi

ZiCi

Finish AND,MULTIPLY for Pi

(c) final computation

Fig. 3: Party i’s contribution toward computing an AND,multiply gate

We focus on the Araki et al. Secret Sharing using 3 parties
as our starting point. Extensions of this protocol can provide
more security over malicious individuals or allow for more
party members [44]–[46]. Our goal is to provide evidence
toward the benefits of accelerating MPC in the data center
while leaving room to adapt the protocol for future use cases.

III. DESIGN & IMPLEMENTATION

A. FPGA Implementation

Our designs for the arithmetic and Boolean versions of
Secret Sharing contain many common details and features.
This provides the opportunity to customize the allocation and
utilization of gates in the design at a higher level without the
need to reconfigure the hardware. We will discuss in depth the
process involved when utilizing AND and multiply gates as
those require different calculation and communication actions.
XOR and addition gates are done locally and do not require
much additional design choices as seen in Figure 2.

We rely on OpenCores projects [47], [48] for our design
when generating pseudo-random numbers. This design choice
was made out of convenience to eaily adapt the design to any
hardware provided. Our future plans are to utilize vendor
specific Random Number Generator (RNG) hard cores or
reference designs created by FPGA vendors to provide a
better optimized version for targeted hardware. Security of the
OpenCores RNG module was not considered for this application
but will be examined in the future when making a selection
between different vendor specific tools and designs. We use the
selected random number during initial key generation, share
splitting phase, and the correlated random requirements in both
AND and multiply gates.

The usage of a correlated random number between each of
the three parties is important to both following the protocol
listed in Section II-C2 as well as providing a method for all
parties to obtain random values without the need for additional
communication. Figure 3a shows the process we developed
for our protocol. Prior to performing any MPC computations
each party generates an initial key through the use of the
RNG block and maintains a copy of the key value and shares

this same value with one other party member in round robin
fashion. These keys are then used to generate a pseudo-random
value of 128-bits using both keys in possession. The function
f(Ki,Ki+1) is pre-determined when the party selects to use
Boolean or arithmetic operations.
Arithmetic:

α1 +α2 +α3 = 0 and αi = PRF (Ki)−PRF (Ki+1) (14)

Boolean:

α1⊕α2⊕α3 = 0 and αi = PRF (Ki)⊕PRF (Ki+1) (15)

Calculation of α must be performed for each use of an AND
or multiply gate to provide additional security to the protocol
and prevent replay attacks on the system.

B. Analysis of FPGA Implementation

The FPGA implementation uses Amazon Web Services
(AWS) FPGAs available through its Elastic Compute Cloud
(Amazon EC2). Specifically, Xilinx Virtex UltraScale+ VU9P
FPGAs are accessible via a virtual machine in EC2 F1 instances.
Amazon includes a hardware shell for software/hardware co-
design between the node CPU (Intel Xeon E5-2686 v4) and
FPGA. Software control for F1 instances rely on provided
DMA functions and PCIe function templates which commu-
nicate directly with the hardware shell [49]. This furnishes
the mechanism for loading data, controlling operations, and
retrieving results.

The PCIe packets are translated through the Amazon shell
and utilize multiple AXI bus configurations to send and receive
data with the software system. We use the general purpose
AXI bus supporting a 512 bit data packet to provide a single
message containing two secret share vectors (4×128-bits) prior
to starting the hardware operations. The HDL design takes
each AXI bus message, parses the information, and relays data
to the desired module.

Since all gates are routed individually, connecting gates
to form a specific circuit or equation can be done either
through the software host process or with an agreed upon
hardware change between all party members. This provides us

the opportunity to route multiply and addition gates to function
together for matrix multiply as individual connections or as a
joint multiply accumulate (MAC) module. Previous work done
with matrix multiply shows efficient methods of using Garbled
Circuits to accelerate the generation of MPC circuitry before
passing the garble tables over to the participating party member
[21], [26], [27]. Our approach to matrix multiply using secret
sharing performs all computation jointly during run-time. We
discuss later in Section IV-B how our FPGA implementation
can fully utilize the network bandwidth found in the data center
for larger applications such as machine learning.

IV. RESULTS

A. Testing and Data

MPC Secret Sharing modules are assessed in terms of total
FPGA resource utilization and total throughput with all gates
running in parallel.

Our final implementation requires only a single cycle to
perform either an XOR or addition gate and a total of 4 cycles
to calculate an AND or multiply gate. This is obtainable after
an initial 21 cycles of pre-computation of party keys and initial
correlated random values. The computation for each additional
correlated random value is performed during the utilization of
the current peusdo-random value during AND or multiply gate
evaluation.

At the time of this publication, Amazon F1 does not currently
offer their “FPGA-Link” and thus only provides FPGA to
FPGA connections through PCIe or over their 25GbE network
through a host NIC. Our current design focuses on obtaining
the most utilization on a single FPGA and thus is not limited
based on network speed. For verification and to fully utilize
our design without network bottlenecks, we designed a test
environment allowing for 3 parties on a single FPGA. This is
a possible use case in a real world environment through the
use of a trusted third party to perform calculations on behalf
of all three party members. This design included the necessary
routing and control logic which enabled the system to perform
calculations between all parties from start to end without the
need of software intervention. The test environment allocates 3
AND or multiply gates, one for each party member, then each
group is duplicated to fully utilize the FPGA; summarized in
Table I.”

We include the number of bits in Table I as a measure of
the amount of data communicated during the exchange part of
each computation cycle.

Amazon F1 instances provide a few choices in clock speed
when synthesizing FPGA designs. As a conservative estimate
the default choice of 125Mhz is selected as we are not
currently limited by a computation bottleneck. We determine
that the current design utilizing 4 cycles per AND operation
and running at 125Mhz has the potential to perform 160
Gbps of computations when being fully utilized with only
20% utilization exceeding the current Amazon F1 network
bandwidth.

Comparing with the Araki et al. design running on 20 Xeon
E5-2686 v4 cores, their theoretical MPC op./sec can reach a

TABLE I: AWS Implementation Result Analysis

AND Cores Bits MPC (billions op.)/sec
1 128 2.67
3 384 8.00
12 1536 32.0
24 3072 64.0
48 6144 128
60 7680 160

10
-2

10
0

10
2

Arithmetic Intensity (MOPs/bit)

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

M
P

C
 O

p
er

at
io

n
s

p
er

 S
ec

o
n

d
 (

M
O

P
s)

 Araki et al. w/

 optimal network

Secret Sharing

using FPGA-Link

 Garbled Circuits using PCIe 5.0

Peak Perf. (Xeon E5 2650 v3)

Peak Perf. (AWS Virtex UltraScale+)

Araki et al. Limit

AWS FPGA Limit

10GbE

PCIe 5.0 64GbE

FPGA-Link 200GbE

Fig. 4: Roofline model comparing Secret Sharing performance
against data center bandwidth. We denote limitations in the
Araki et al. design and our FPGA Secret Sharing implementa-
tion, and FPGA implementations based on Garbled Circuits.

total of 10 billion operations, while our fully utilized FPGA
design surpasses it by over 10×.

B. Analysis

Based on the minimal data dependencies and flow in Figure
3, in principle all MPC Secret Sharing gates can execute one
operation per clock cycle. This can be done by utilizing a fully
pipelined implementation of the AND and multiply gate. Such
a design would saturate a 10Gbps network connection when
operated at 78.13 MHz. Operating at the higher frequencies
used commonly by FPGAs would require higher bandwidth.

Our tests and analysis of different quantities of MPC blocks
on Amazon AWS provide sufficient data points to establish that
Secret Sharing MPC can be competitive when implemented
on FPGA hardware in the data center.

The original work utilized a software implementation of
the protocol executed on general purpose processors [1], [43].
Specifically, each party used varying numbers of cores from
one or two Xeon processors. The authors were able to nearly
saturate their 10Gbps link (7.38Gbps) between parties when

using all cores in each node. While the authors were limited
by multiple cores causing queuing congestion at the Network
Interface Card (NIC) the use of a CPU appears to have more
limited scaling potential. Using the reported number of AES/sec
and network communication for 1 core, scaling from 73.3%
CPU usage to 100% would appear to show 1 core being capable
of saturating a ∼0.780Gbps connection. Multiplying for 20
cores that would indicate a peak of ∼15.6Gbps.

In comparison, the FPGA block we tested for performing
Secret Sharing only requires 3 AND cores to exceed the
7.38Gbps reached with 20 CPU cores, reaching a full 8.00Gbps.
This uses ∼5% of the fabric available on the FPGA targeted, a
10× improvement vs the CPU utilization. Attempting to fully
employ the available fabric it is possible to implement 60 AND
cores based on our design which would permit saturation of a
160Gbps link.

We demonstrate the peak performance obtainable using
the roofline model in Figure 4. Figure 4 shows the limiting
factors and constraints of Secret Sharing designs: compute
bandwidth (horizontal lines) and network bandwidth (diagonal
lines). We first show that the peak performance is demonstrated
in number of MPC operations per second (MOPs), while
arithmetic intensity (AI) is designated as MOPs/bit of data
transferred over the network. We utilize the AND gate as our
common Secret Sharing gate and assume a pipelined design
of one MOP per cycle. Each Secret Sharing gate requires
exactly one bit of communication thus an arithmetic intensity
of 1 is achievable. Therefore the Araki et al. design has the
potential to hit a peak performance of 1010 MOPs if they
did not encounter any drawback due to network congestion.
Comparatively we show that a fully utilized FPGA running all
AND gates can outperform by ∼2 orders of magnitude. This
analysis shows that the Araki et al system provides an almost
perfect balance between network and MOPs when utilizing their
10Gbps interface. However, if a larger bandwidth network is
available, such as 40 GbE, then their application will be limited
by computational performance and thus will not effectively
utilize the bandwidth available.

By contrast, using a fully pipelined version of our design, we
show a theoretical peak performance of the FPGA accelerated
Secret Sharing design able to achieve 1012 MOPs. This
indicates that the design of Secret Sharing on FPGAs remains
limited by the current bandwidth offered in the data center.
This limitation allows for the extra FPGA resources to be
distributed for other tasks such as more local computations of
XOR and addition gates or control logic for high performance
applications. We compare this against the arithmetic intensity
of Garbled Circuits with the assumption that each garbling table
can be created each clock cycle. Traditionally each MPC gate
contains a table of 4 SHA hashes. We consider the arithmetic
intensity (AI) of Garbled Circuits to be 1/(4× 128) = 0.002,
which when translated to the roofline model shows that Garbled
Circuits are heavily network limited due to the low arithmetic
intensity and high bandwidth requirements.

These results demonstrate preferable scaling properties sup-
porting the selection of FPGAs for acceleration. Based on the

results, targeting the anticipated 200Gbps links in the Amazon
F1 would require less than 25% fabric utilization to reach full
saturation utilizing the pipeline improvement described earlier.
With a frequency improvement, adjustable through AWS, even
less fabric would be required. The remaining available fabric is
beneficial as it allows for work distribution, additional secure
computations, and higher application control logic such as
matrix multiply.

V. RELATED WORK

There exists earlier research exploring hardware accelerated
MPC, but the efforts have focused on Garbled Circuits rather
than Secret Sharing. The hardware considered has included
GPUs [19], [50]–[52]; most efforts, however, employ FPGAs.
The earliest of these efforts dates to 2010 [17], [18], with more
work recently [23]–[25], and some considering Amazon AWS
[21], [25], [27]. Other work explored garbling entire processors
[20], [22] and specialized problem acceleration [21].

The usage of MPC in data centers [24], [26] matches our
decisions. Their architecture and usage of individual blocks for
AND and XOR operations guided our choice to allow greater
software control of the FPGA without the hardware needing
to be recreated for each use.

VI. CONCLUSION

In this paper, we describe one approach to implementing
all MPC gates described by Araki et al. [44] in hardware. We
demonstrate the viability of Secret Sharing MPC in a low
latency environment and test the design on an FPGA in the
cloud highlighting greater potential scalability of the design
compared to alternatives. With these insights, we plan to pursue
improvements to this design to increase the performance further
and to implement the higher level controls both in software and
hardware to use the Secret Sharing building block in a complete
MPC cloud service for higher applications and specifically for
machine learning.

Some future work includes HDL implementation optimiza-
tions allowing for a fully pipelined scheme, FPGA to FPGA
communication using future AWS offering or with an in-house
design, and implementation of share conversion between both
forms of Secret Sharing. Additional research directions include
different viable MPC security models and hardware security
considerations on FPGAs including but not limited to the usage
of vendor specific random number generation, secure data at
rest on FPGAs, and applying secure multi-party computation
for machine learning applications.

ACKNOWLEDGEMENTS

Supported by Red Hat and by NSF Grants 1618303,
1718135, 1739000 1915763, 1919130, 1925504, and 1931714.
DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited. This material is based upon work
supported by the United States Air Force under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the United States NSF or Air Force.

REFERENCES

[1] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 805–817.
[Online]. Available: https://doi.org/10.1145/2976749.2978331

[2] D. Evans, V. Kolesnikov, and M. Rosulek, A Pragmatic Introduction to
Secure Multi-Party Computation. NOW Publishers, 2018.

[3] A. C. Yao, “Protocols for Secure Computations.” Annual Symposium on
Foundations of Computer Science - Proceedings, pp. 160–164, 1982.

[4] A. C. C. Yao, “How To Generate and Exchange Secrets.” Annual
Symposium on Foundations of Computer Science (Proceedings), no. 1,
pp. 162–167, 1986.

[5] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[6] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter,
N. P. Smart, and R. N. Wright, “From keys to databases - real-world
applications of secure multi-party computation,” Comput. J., vol. 61,
no. 12, pp. 1749–1771, 2018.

[7] T. Giannopoulos and D. Mouris, “Privacy preserving medical data
analytics using secure multi party computation. an end-to-end use case.”
Ph.D. dissertation, National and Kapodistrian University of Athens, 09
2018.

[8] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste,
“Students and taxes: a privacy-preserving social study using secure
computation,” IACR Cryptology ePrint Archive, vol. 2015, p. 1159,
2015.

[9] J. Feigenbaum, B. Pinkas, R. Ryger, and F. Saint-Jean, “Secure
computation of surveys,” in EU Workshop on Secure Multiparty
Protocols, 2004, pp. 2–14. [Online]. Available: https://www.cs.yale.edu/
homes/jf/SMP2004.pdf

[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft, “Secure multiparty computation goes live,”
in Financial Cryptography, ser. Lecture Notes in Computer Science, vol.
5628. Springer, 2009, pp. 325–343.

[11] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft,
“Confidential benchmarking based on multiparty computation,” in Fi-
nancial Cryptography, ser. Lecture Notes in Computer Science, vol.
9603. Springer, 2016, pp. 169–187.

[12] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa, “An mpc-based
privacy-preserving protocol for a local electricity trading market,” in
CANS, ser. Lecture Notes in Computer Science, vol. 10052, 2016, pp.
615–625.

[13] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in ACM Conference on
Computer and Communications Security. ACM, 2017, pp. 1175–1191.

[14] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, M. Raykova, S. Saxena,
K. Seth, D. Shanahan, and M. Yung, “On deploying secure computing
commercially: Private intersection-sum protocols and their business
applications,” IACR Cryptology ePrint Archive, vol. 2019, p. 723, 2019.

[15] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for ma-
chine learning,” in ACM Conference on Computer and Communications
Security. ACM, 2018, pp. 35–52.

[16] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS. The Internet Society,
2012.

[17] K. Järvinen, V. Kolesnikov, A. R. Sadeghi, and T. Schneider, “Embedded
SFE: Offloading server and network using hardware tokens,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6052 LNCS, pp.
207–221, 2010.

[18] ——, “Garbled circuits for leakage-resilience: Hardware implementation
and evaluation of one-time programs,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6225 LNCS, pp. 383–397, 2010.

[19] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen, “Faster maliciously
secure two-party computation using the GPU,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 8642, no. grant 61061130540, pp.
358–379, 2014.

[20] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A. R. Sadeghi,
and F. Koushanfar, “GarbledCPU: A MIPS processor for secure compu-
tation in hardware,” Proceedings - Design Automation Conference, vol.
05-09-June, 2016.

[21] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushanfar,
“MAXelerator: FPGA Accelerator for Privacy Preserving Multiply-
Accumulate (MAC) on Cloud Servers,” 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6, 2018.

[22] E. M. Songhori, M. S. Riazi, S. U. Hussain, A. R. Sadeghi, and
F. Koushanfar, “ARM2GC: Succinct garbled processor for secure
computation,” Proceedings - Design Automation Conference, 2019.

[23] S. U. Hussain and F. Koushanfar, “FASE: FPGA acceleration of secure
function evaluation,” Proceedings - 27th IEEE International Symposium
on Field-Programmable Custom Computing Machines, FCCM 2019, pp.
280–288, 2019.

[24] X. Fang, S. Ioannidis, and M. Leeser, “Secure function evaluation using
an FPGA overlay architecture,” FPGA 2017 - Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 257–266, 2017.

[25] ——, “SIFO: Secure computational infrastructure using FPGA overlays,”
International Journal of Reconfigurable Computing, vol. 2019, 2019.

[26] K. Huang, M. Gungor, X. Fang, S. Ioannidis, and M. Leeser, “Garbled
circuits in the cloud using FPGA enabled nodes,” 2019 IEEE High
Performance Extreme Computing Conference, HPEC 2019, pp. 1–6,
2019.

[27] M. Leeser, M. Gungor, K. Huang, and S. Ioannidis, “Accelerating large
garbled circuits on an FPGA-enabled cloud,” Proceedings of H2RC
2019: 5th International Workshop on Heterogeneous High-Performance
Reconfigurable Computing - Held in conjunction with SC 2019: The
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 19–25, 2019.

[28] P.-F. Wolfe, R. Patel, R. Munafo, M. Varia, and M. Herbordt, “Secret
Sharing MPC on FPGAs in the Datacenter,” in IEEE Conference on
Field Programmable Logic and Applications, 2020.

[29] J. Sheng, C. Yang, and M. Herbordt, “Towards Low-
Latency Communication on FPGA Clusters with 3D
FFT Case Study,” in International Symposium on Highly
Efficient Accelerators and Reconfigurable Technologies, 2015,
https://pdfs.semanticscholar.org/832d/c69145f5ba0ed6a951583201b1b20dd
2096e.pdf.

[30] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,
“Novo-G#: A Community Resource for Exploring Large-Scale Reconfig-
urable Computing Through Direct and Programmable Interconnects,” in
2016 IEEE High Performance Extreme Computing Conference (HPEC),
Waltham, MA, 2016, pp. 1–7, doi: 10.1109/ HPEC.2016.7761639.

[31] C. Plessl, “Bringing FPGAs to HPC Production Systems and
Codes,” in H2RC’18 workshop at Supercomputing (SC’18), 2018, doi:
10.13140/RG.2.2.34327.42407.

[32] A. Mondigo, T. Ueno, K. Sano, and H. Takizawa, “Comparison of Direct
and Indirect Networks for High-Performance FPGA Clusters,” in ARC
2020. Lecture Notes in Computer Science, vol 12083, F. Rincon, J. Barba,
H. So, P. Diniz, and J. Caba, Eds. Springer, 2020, 10.1007/978-3-030-
44534-8 24.

[33] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey,
“System architecture for network-attached fpgas in the cloud using partial
reconfiguration,” in IEEE Conference on Field Programmable Logic and
Applications, 2019.

[34] V. Krishnan, O. Serres, and M. Blocksome, “COnfigurable Network
Protocol Accelerator (COPA),” in 2020 IEEE Symposium on High-
Performance Interconnects (HOTI), 2020.

[35] A. Putnam, et al., “A Reconfigurable Fabric for Accelerating Large-
Scale Datacenter Services,” in International Symposium on Computer
Architecture, 2014, pp. 13–24, doi: 10.1109/ISCA.2014.6853195.

[36] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in 49th IEEE/ACM
Int. Symp. Microarchitecture, 2016, pp. 1–13.

[37] J. Sheng, C. Yang, A. Caulfield, M. Papamichael, and M. Herbordt, “HPC
on FPGA Clouds: 3D FFTs and Implications for Molecular Dynamics,”
in 27th International Conference on Field Programmable Logic and
Applications, 2017, doi: 10.23919/ FPL.2017.8056853.

[38] D. H. U. Beaver, S. M. Micali, and P. M. Rogaway, “The Round
Complexity of Secure Protocols,” ACM, 1990.

[39] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” ACM International Conference Proceeding Series,
pp. 129–139, 1999.

[40] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5126 LNCS, no. PART 2, pp. 486–498, 2008.

[41] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole - reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT
(2), ser. Lecture Notes in Computer Science, vol. 9057. Springer, 2015,
pp. 220–250.

[42] S. Yakoubov, “A Gentle Introduction to Yao’s Garbled Circuits,” 2017,
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf.

[43] T. Araki, A. Barak, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara,
“Demo: High-throughput secure three-party computation of kerberos
ticket generation,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1841–1843.
[Online]. Available: https://doi.org/10.1145/2976749.2989035

[44] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara,
A. Watzman, and O. Weinstein, “Optimized Honest-Majority MPC for
Malicious Adversaries - Breaking the 1 Billion-Gate per Second Barrier,”
Proceedings - IEEE Symposium on Security and Privacy, pp. 843–862,
2017.

[45] Furukawa, Jun and Lindell, Yehuda and Nof, Ariel and Weinstein,
Or, “High-Throughput Secure Three-Party Computation for Malicious
Adversaries and an Honest Majority,” in Advances in Cryptology –
EUROCRYPT 2017, Coron, Jean-Sébastien and Nielsen, Jesper Buus,
Ed. Cham: Springer International Publishing, 2017, pp. 225–255.

[46] J. Furukawa and Y. Lindell, “Two-thirds honest-majority MPC for
malicious adversaries at almost the cost of semi-honest,” Proceedings of
the ACM Conference on Computer and Communications Security, pp.
1557–1571, 2019.

[47] H. Hsing, “tiny aes,” https://opencores.org/projects/tiny aes, 2012.
[Online]. Available: https://opencores.org/ocsvn/tiny aes/tiny aes/trunk

[48] J. Castillo, “systemc rng,” https://opencores.org/projects/systemc rng,
2004. [Online]. Available: https://opencores.org/ocsvn/systemc rng/
systemc rng/trunk

[49] Amazon Web Services, “aws fpga,” https://github.com/aws/aws-fpga,
2016. [Online]. Available: https://github.com/aws/aws-fpga.git

[50] S. Pu, P. Duan, and J.-C. Liu, “Fastplay-A Parallelization Model and
Implementation of SMC on CUDA based GPU Cluster Architecture,”
IACR Cryptology ePrint Archive, vol. 2011, p. 97, 2011.

[51] S. Pu and J. Liu, “Computing Privacy-Preserving Edit Distance and Smith-
Waterman Problems on the GPU Architecture.” IACR Cryptology ePrint
Archive, 2013. [Online]. Available: http://eprint.iacr.org/2013/204.pdf

[52] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “GPU and CPU
parallelization of honest-but-curious secure two-party computation,” ACM
International Conference Proceeding Series, pp. 169–178, 2013.

