Fair Resource Allocation in Consolidated Flash Systems

Wonil Choi Bhuvan Urgaonkar
Penn State Penn State
Abstract

We argue that, along with bandwidth and capacity, lifetime
of flash devices is also a critical resource that needs to be
explicitly and carefully managed, especially in emerging con-
solidated environments. We study the resulting multi-resource
allocation problem in a setting where “fairness” across con-
solidated workloads is desired. Towards this, we propose to
adapt the well-known notion of dominant resource fairness
(DRF). We empirically show that using DRF with only band-
width and capacity (and ignoring lifetime) may result in poor
device lifetime. Incorporating lifetime, however, turns out to
be non-trivial. We identify key challenges in this adaptation
and present simple heuristics. We also discuss possible design
choices which will be fully explored in future work.

1 Introduction

Increasing storage capacity and bandwidth of flash devices
has enabled scenarios wherein multiple workloads are con-
solidated within a single flash system. Recent work has
studied resource management in this emerging flash sys-
tem [6,7,9, 10,15, 17]. The common design principles iden-
tified by this work include (i) the flash system should be
workload-aware, (ii) no flash block should be shared among
different users, and (iii) resource conflicts among users should
be alleviated to provide performance isolation.

While this trend continues, unfortunately, little attention has
been paid to “fair” division of flash system resources among
participating users. Notions of fairness are often deemed im-
portant in private clouds [5] or in public clouds with neutrality-
like mandates that may emerge in future [8]. Specifically, we
are concerned with the following questions: (i) what are the
resources to be divided in consolidated flash systems? and
(i1) how one can achieve a fair division of them? For the
first question, the resources that come to mind are bandwidth
and capacity. However, in addition to these conventional re-
sources, we argue that a flash-specific resource - flash lifetime
- should be explicitly and carefully managed. Flash cells wear
out as they are subjected to writes (and erases) and eventually
become unreliable. Flash lifetime has unique characteristics.
First, it is non-renewable (consumable) which sets it apart
from bandwidth and capacity because perhaps its treatment
should change over time (e.g., different closer to a device’s
end than when it is newly provisioned). Second, it is “‘con-
sumed” not just by host-induced (explicit or direct) writes but
also by implicit requests; specifically, garbage collection (GC)
component of flash systems irregularly and unpredictably con-
tributes writes that contribute to lifetime consumption.

Mahmut Kandemir

Myoungsoo Jung

Penn State KAIST

As this paper’s main focus, we seek to answer the second
question raised above when considering all three resources -
bandwidth, capacity, and lifetime - together. A recently pro-
posed mechanism for fair division of multiple resources is
Dominant Resource Fairness (DRF) [5]. Motivated by its fair-
ness properties, we propose to employ DRF in the context of
flash systems. Especially, we reveal that flash lifetime needs
careful management by comparing DRF that considers all
three resources vs. that ignores lifetime.

In managing these three different resources in a coordi-
nated manner, we need to answer the following question: how
can one treat lifetime on an equal footing with bandwidth
and capacity? Two extreme approaches come to mind. At
one extreme, there may be a longer-term goal of ensuring
that the device lasts for a certain time (say a year). At an-
other extreme, one may not have any such requirement and
be only interested in fairly dividing what lifetime remains at
any allocation decision point. For the former, it is natural to
spread out available writes across the desired lifetime into
allocation “epochs” - periods of relative workload stationarity
- where DRF-like allocation is newly performed per epoch
with a write “budget” for that epoch. For the latter, since re-
maining lifetime will keep diminishing with flash usage, a
DRF-like allocation will tend to view lifetime as an increas-
ingly bottlenecked resource. Both are plausible scenarios and
are partly business decisions, i.e., what kind of behavior do
we want — do we want to maintain the illusion of the device
acting similarly throughout its life (former) or do we want
fewer writes to go to older devices (latter)? More generally,
an approach between these two extremes may be appropriate
and understanding this is interesting future work. Assuming
the former scenario, we make the following contributions:

e We consider flash lifetime as a first-class resource that needs
to be managed together with bandwidth and capacity.

e We explore the use of DRF as a multi-resource fair alloca-
tion mechanism for consolidated flash systems. We empiri-
cally confirm that there is a strong need to incorporate lifetime
as an explicit resource in the management of these systems.
e We identify a set of challenges in employing DRF in con-
solidated flash systems and present preliminary heuristics.

2 Preliminaries
2.1 Dominant Resource Fairness (DRF)

In a computer system with multiple resource types, one of
the most popular strategies to make a division of the multiple
resources is based on Dominant Resource Fairness (DRF) [5].
Observing that each user can have a different dominant re-

source, DRF seeks to equalize dominant shares (i.e., the share
that the user has been allocated of dominant resource) across
all users; and, this allocation is regarded to be fair by satis-
fying a set of desirable properties [3,5]. If all users have the
same dominant resource, the DRF reduces to max-min fair-
ness (MMF) [2] allocation, which maximizes the minimum
allocation received by a user on the dominant resource.

2.2 Our Target System

Stream-based User: One critical requirement in employing
DREF is the standardized resource demand of each user. That
is, each user has an executable unit (e.g., VM, task, instance)
that needs a certain amount of resources; and, the total amount
of resources allocated to a user can increase or decrease by
launching more or less executable units. Representative ex-
amples include database and server applications where the
number of clients varies. We refer to the executable unit as
stream. Note that, while the total resource demand of a user
increases linearly with the number of launched streams in
vanilla DREF, this is not always the case in reality, which is a
challenge (i.e., non-linearity between stream count and total
demands) when employing DRF in consolidated flash sys-
tems. We will discuss this and present our heuristic later (§5).
Flash Cache: As our target system, we consider a consol-
idated flash “cache” [1, 11-14] with a backing-store in the
next layer, due to two following reasons: (i) allocating limited
amount of capacity is a significant task in caching systems
(compared to main-storage that should accommodate all of
users’ data), since the allocated capacity determines hit-ratios
and performance of users — the more user capacity a user has,
the higher hit-ratio it experiences. (ii) managing (regulating)
lifetime is feasible in caching systems; once a user exhausts
the allocated amount of writes, its further writes can be pre-
vented by servicing them from the backing-store in the next
layer. Note that our proposed resource allocation strategy is
agnostic to the exact caching policy; and it is also applicable
to main-storage setting.

3 System Resources Considered

We have chosen to follow the conventional resource-based
notion of fairness. One reason to pursue such an approach is
that it may benefit from some properties [5] that DRF offers.
One downside to fairness definitions based on application-
specific performance metrics such as hit-ratio and latency is
that they open up means for workloads to starve others out.

3.1 Conventional Bandwidth and Capacity
Bandwidth: Across various computing domains (e.g., mem-
ory, network), system bandwidth has been one of the represen-
tative, prime resource that is divided among multiple users. In
particular, (i) how to divide the total bandwidth (e.g., notion
of fairness) and (ii) how to guarantee the partitioned band-
width (e.g., performance isolation) are two major concerns
addressed in the literature. For consolidated flash systems,
recent studies [6,9, 10, 16] demonstrated that provisioning a
specified bandwidth for each user in them is feasible.

<Consolidated Flash Device>

| Total Resource (Bandwidth, Capacity, Write) |
User C's Per-Stream

I:l Demand (BW, CAP, WR)
I:IEI D@D . User C’s Total
<A’ Streams> <B’ Streamsz Demand (BW, CAP, WR)

<User A> <User B> <User C>
Figure 1: Illustration of our allocation problem: a flash de-

vice’s 3 types of resources are to be divided across competing
users, each with its unique per-stream resource demand.

Capacity: In memory and storage systems, device capacity
also has been a key resource to be partitioned among users.
Particularly, any caching device where all user data cannot
be accommodated needs to determine how much capacity is
allocated to a user, which directly affects the hit ratio and the
performance of the user. Considering various placement of
flash devices in the memory-storage hierarchy, various studies
have focused on flash capacity partitioning [1, 11-14].

3.2 Flash-Specific Device Lifetime

We pay attention to another significant, flash-specific resource,
namely, flash lifetime. As opposed to the other conventional
resources, lifetime (or, its proxy, write count) has two unique
characteristics. First, it is consumable (non-renewable); in
other words, a flash memory can process only a limited num-
ber of write operations, beyond which the device becomes
unavailable. Since the limited lifetime resource has a direct
relationship with the ownership cost (economical condition),
it can be considered as the first-class resource to be managed
in some cases. Second, the lifetime is affected by other re-
sources. Specifically, the write count is consumed by both
explicit write requests (from the host) and implicit write traf-
fic (from the device-internals); and the latter is significantly
affected by the storage capacity assigned to it. That is, the
number of writes issued by the garbage collection (GC) is
determined by the over-provisioned (OP) capacity.

There is no uniform definition of fairness in device wear-
out. We are interested in a “multi-resource” fairness definition
where lifetime/writes is one resource out of many. If one in-
sists on thinking about wear-out alone, it may help to imagine
infinite capacity and bandwidth but finite lifetime. The prob-
lem would then boil down to MMF allocation [2] of lifetime.

3.3 Coordination of Three Resources

To treat the three different resource in an orchestrated man-
ner, we define “epoch” (a period of relative workload sta-
tionarity) and, in every epoch, our DRF framework newly
divides the given total resources to the given competing users.
In an epoch, each user and their streams are assumed to be
backlogged — each continues to consume a fixed amount of
bandwidth while taking a fixed amount of storage capacity.
Regarding the lifetime, on the other hand, a total write budget
is prescribed to the epoch; and all users and their streams are
supposed to share (and divide) the given write budget. In this
epoch-based framework, we can manage the three resources
on relatively different time scale in a coordinated fashion.

Device’s Total
Resources
for 1h Epoch

Total Bandwidth (BW): 500 MB/s;
Total Capacity (CAP): 256 GB;
Total Write Budget (WR): 11,184,810; 1TB/4K-PAGE/24h

User’s Per-Str # Host 1/0 Data Size (GB) Amp.

eam D d WR | RD Shared | Per-Stream | Value
A 1,000,000 100,000 20 5 3.0
B 100,000 1,000,000 60 20 1.2
C 300,000 50,000,000 30 10 1.5

Table 1: Configuration of device and workloads: an example
epoch where 3 types of resources are divided by 3 users.

4 DREF Allocation Examples

Figure 1 illustrates our target problem. A flash system pro-
vides three types of resources: bandwidth, capacity, and life-
time. In a given epoch, these resources are allocated to mul-
tiple users, each of which has its unique resource demand.
We assume that each user’s bandwidth, capacity, and lifetime
demands (resource usages in the worst-case scenario) can
be obtained using static workload profiling and analytical
models. For example, the total lifetime demand of a user can
be calculated by considering (i) # host writes it generates,
(ii) its own write amplification (WA) model, and (iii) over-
provisioned (OP) capacity allocated to it. We implemented
our framework using MATLAB and explored how the re-
source allocation changes depending on the inputs (device’s
resources and users’ demand).

4.1 DRF Considering All Three Resources

Example: Let us consider an example scenario to see how
DREF allocates the three resources among the three partici-
pants. Table | lists up the device’s total resources and the
per-stream characteristics (e.g., host I/O, data size, write am-
plification) of the three users. User A mainly needs the write
resource as its stream generates many host writes and exhibits
a high write amplification (WA) value. User B dominantly
needs the capacity resource as its stream loads a large amount
of data into device. Finally, User C primarily wants the band-
width resource as its stream generates intensive host reads.
Allocation Process: Let us visit how DRF allocates the three
resources. Algorithm 1 describes the DRF algorithm. At first,
(1) it randomly picks a user, launches its stream, and counts
the allocated resource. Next, (ii) it finds the dominant share
(s;) of each user — the dominant share is the maximum frac-
tion of allocated amount to the total amount among the three
resources. Then, (iii) it finds the user who has the minimum
dominant share; and, the user acquires more resources by
launching its stream if there are still available resource to do
so. Here, (iv) actual resource demands (b;, ¢;, w;) in launching
the additional stream should be estimated from per-stream
characteristics. We present our simple heuristic in §5. Finally,
it repeats (ii)~(iv) until no more streams can be launched due
to lack of (remaining) resources.

Result: Both Table 2 and Figure 2 show how DRF allocates
the three resources among the three users. Specifically, DRF
tries to equalize the dominant shares of all users while increas-
ing the number of launched streams. As indicated in Table 2,
the dominant shares of Users A, B, and C are close to each

Algorithm 1: DRF allocation of three resources.

Input: Device’s total resources (< B,C,W >, where B, C, and W are bandwidth,
capacity, and writes, respectively), the number of users (N), users’
capacity demands (¢).

Output: Users’ allocated resources (A; =< b;,c;,w; >, where b;, ¢;, and w; are
bandwidth, capacity, and writes allocated to user i), the numbers of
launched streams (k;, where the number of streams for user i).

< CB,CC,CW >+<0,0,0> // Device’s consumed resources

< DB;,DC;,DW; > // User i's demands for the next stream

si // User i's dominant share

Pick a random user i

DC; + (1), DW; < w;(1), DB; < b;(1)

while (CB+ DB; < B)&(CC + DC; < C)&(CW + DW; < W) do

Launch a stream for user i

// Update # of launched streams

ki —ki+1

// Update allocated resources A;

b; < b;+ DB, c; < ¢i +DC;,w; < w; + DW;

// Update device’s consumed resources

CB < CB+DB;,CC < CC+ DC;,CW + CW +DW;

// Find dominant share of each user

for i < all participating users do

| i< max(b;/B,c;/C,w;/W)
end
// Find the user with the lowest dominant share

i+ min}l_, s

// Estimate user i’s demands for the next stream
DC; < é;(ki+1) — ¢i(k;)

DW; = i(ki + 1) — wi(ki)

DB; bi(ki+1) — b;(k;)

end

other, whereas their dominant resources are all different. As a
result, Users A, B, and C are allocated the specified amount
of resources by launching 2, 4, and 5 streams, respectively.
Figure 2 also shows that the largest areas of the users across
the resources (write allocation of A, capacity allocation of B,
and bandwidth allocation of C) are nearly equal. Note that, the
bandwidth and write resources are not fully allocated, since
the capacity resource is almost exhausted and the remaining
capacity is not enough to launch a stream from any user.
Other Scenarios: The three users in the above example are
representative of various workload types. That is, each of
three is bandwidth-dominant, capacity-dominant, or lifetime-
dominant. We examined many other user (consolidation) sce-
narios, whose results are left out, due to space limit. One
general observation to highlight is that, when consolidated
users are similar (i.e., all are lifetime-dominant or bandwidth-
dominant), the DRF allocation is equal to the MMF [2] allo-
cation of the common dominant resource.

4.2 DRF without Lifetime Management

2-Resource DRF: Considering non-renewable lifetime as
a precious resource that should be carefully and explicitly
managed, we included it the DRF allocation above. To see
the impact of ignoring lifetime management, we employ a
2-resource DRF where only the two conventional resources
(bandwidth and capacity) are considered in the same example
(Table 1). The process of equalizing dominant shares of all
users does not change; but, the dominant share (s;) is calcu-
lated by max(b;/B,c;/C) since lifetime is out of the picture.
Allocation Result: Table 3 and Figure 3 show how 2-resource
DRF allocates the two resources among the three users. One
important point is that User A’s dominant resource changes

[User [[Dom.Share [Dom. Share (Alloc./Total) | #streams | Alloc. BW [Alloc. CAP [Alloc. WR | 0% :IUsezrs; I:I;';;r B %‘U:ggc
A Write 6,000,000/11,184,810 = 0.536 2 7 MB/s 30 GB 6,000,000
B Capacity 140GB/256GB = 0.546 4 5 MB/s 140 GB 480,000 BW
C Bandwidth 274MBs/512MBs = 0.535 5 274 MB/s 80 GB 2,250,000 CAP

[[Alloc. Sum | 286MB/s |_250GB__| 8730000 | o

[| Total | 512MB/s | 256GB | 11,184,810 | >

Table 2: 3-resource DRF: it tries to equalize the dominant shares of all three users.

Figure 2: 3-resource DRF allocation.

[User [[Dom.Share [Dom. Share (Alloc./Total) [#streams | Alloc. BW [Alloc. CAP | Used WR | I:IUser A I:IUser B -User c
A Capacity 85GB/256GB = 0.332 3 44 MBJs 85GB 39,000,000 0% 25% 50% 75% 100%
B Capacity 100GB/256GB = 0.391 2 3 MB/s 100 GB 240,000 BW
C Bandwidth 219MBs/512MBs = 0.427 4 219 MB/s 70 GB 1,800,000 CAP
[WR value indicates the sum of used writes. [Alloc. Sum | 266 MB/s [255GB 41,040,000
[WR value comes from total WR resource of the baseline. | Total | 512MB/s | 256GB | (11,184,810)
igure 3: 2-Resource DRF’s allocation.

Table 3: 2-resource DRF (where lifetime is not considered): it ends up in an entirely new While bandwidth and capacity are con-
allocation compared to 3-resource DRF, and this causes a significant write consumption. sidered, lifetime is not managed.

from write in 3-resource DRF to capacity. As usual, the DRF
tries to equalize the dominant shares while maximizing the
number of launched streams. As a result, Users A, B, and C
are allocated the specified amount of resources by launching
13, 2, and 4 streams, respectively, which is significantly dif-
ferent from the 3-resource DRF allocation. Since User A’s
capacity demand is very low and its dominant share also re-
mains low, a lot of streams are launched. Figure 3 also shows
that the largest areas of the users across the resources (capac-
ity allocation of A, capacity allocation of B, and bandwidth
allocation of C) are fairly close to each other.

Lifetime Implication: In the case of 2-resource DRF alloca-
tion, the expected number of writes to be used by the three
users is 41,040,000, which is more than 3x of the write
budget of the baseline. Specifically, 95% of the writes are
used by User A, since User A is allowed to launch up to 13
streams and; these streams collectively consume a consider-
able amount of writes. One can conclude from this observa-
tion that, if flash lifetime is not carefully managed, (i) while
bandwidth and capacity are “fairly” divided to users, their
write consumption does not look fair; and, (ii) overall, the end
of flash life can be accelerated. Therefore, if one wants his/her
flash device to last longer, the DRF-based resource allocation
should take the writes (lifetime) into account. Note however
that, in this scenario (if device operator does not manage the
lifetime), the other resources (bandwidth and capacity) pro-
vided by the device can be fairly (or almost fully) allocated
to the competing users in our framework.

S Challenges: User’s Demand Estimation

To adapt the DREF, the following question needs to be ad-
dressed: if an additional stream is launched for a user, how
much bandwidth, capacity, and write resource does the user
ask? That is, one needs to obtain the actual resource demands
for each user with a given number of streams. However, this
is not a straightforward task, due to the following challenges.
Non-Linearity in Demand Increase: If a resource demand
increases linearly with streams, estimating the total demand
is easy. In fact, this can be done for the bandwidth and write

demands of a user, since each stream has its own host I/O and
GC traffic. Unfortunately, capacity demand is different, since
streams of a user commonly share part of the data. A typical
example is a database application where frequently-accessed
data are cached and its multiple clients share the data.

Let us see how DRF works if users’ capacity demands
lack the knowledge of shared data and increases linearly with
streams. We modify the values of “shared data size” and “per-
stream data size” of the three users in our baseline Table 1;
shared data sizes are assumed to be zero while per-stream
data sizes are a bit adjusted (Table 4). In this scenario, User
C’s dominant resource changes from bandwidth to capacity,
as its capacity demand significantly (linearly) increases with
streams. As a result, DRF makes an entirely-new allocation
against the baseline (Table 2), where Users A, B, and C launch
2, 1, and 2 streams, respectively. Actually, this is not a de-
sirable scenario, since resources (bandwidth and write) are
significantly under-utilized. Specifically, the total allocated
bandwidth and write decrease from 286MB/s and 8,730,000
to 174MB/s and 7,470,000, respectively. This is because the
linear increase in capacity demands makes the capacity re-
source fully allocated with a small number of streams, and as a
result, other resources lose opportunity to be further allocated.

To this end, we propose a simple heuristic to construct the
capacity demand by being aware of the shared data among
streams. User i’s capacity demand with k streams (c;(k)) con-
sists of a fixed capacity for share data (c{) and a set of capaci-
ties for per-stream data (cf).

éi(k) =cj+cl xk. (D
Note that the allocation examples so far are based on above
heuristic, from which one can conclude that DRF can make
a better resource allocation once the capacity demands (non-
linearity with stream) of each user are accurately estimated.
Note also that, the scenario of inter-user data sharing (data
are shared across users) will be factored in future work.
Correlation among Resource Demands: Resource de-
mands of a user are correlated in complex ways; consequently,
estimation of total demands of a user should take this corre-
lation into account. For example, let us assume that a user

[User [[SharedData | Per-Stream Data [| Dom.Share | Dom. Share (Alloc./Total) [#streams [Alloc. BW [Alloc. CAP [Alloc. WR |

A 0GB 25 GB Write 6,000,000/11,184,810 = 0.536 2 8 MB/s 50 GB 6,000,000

B 0GB 80 GB Capacity 80GB/256GB = 0.313 1 2 MB/s 80 GB 120,000

C 0GB 40 GB Capacity 120GB/256GB = 0.468 2 164 MB/s 120 GB 1,350,000
[Note that streams have no shared data! [Alloc. Sum [174 MB/s [250 GB [7,470,000]
| So, capacity demands increase linearly with streams. | Total | 512MB/s | 256GB | 11,184,810 |

Table 4: 3-resource DRF which is unaware of non-linearity increase in capacity demands and assumes zero shared data sizes.

[User]| Per-Stream Data [Amp. Value [[Dom.Share | Dom. Share (Alloc./Total) [#streams [Alloc. BW [Alloc. CAP [Alloc. WR

A 10 GB 1.5 Write 4,500,000/11,184,810 = 0.402 3 6 MB/s 50 GB 4,500,000

B 10 GB 2 Capacity 110GB/256GB = 0.429 5 7 MB/s 110 GB 1,000,000

C 15 GB 1.2 Bandwidth 219MBs/512MBs = 0.427 4 219 MB/s 90 GB 1,440,000
[Note that per-stream data size and amp. value change from the baseline. [Alloc. Sum [232 MB/s [250 GB [6,940,000]
[So, changes in capacity demands lead to changes in write demands. [Total [512 MB/s [256 GB [11,184,810]

Table 5: 3-resource DRF where the capacity demand (OP size) and the corresponding write (WA value) demand are changed.

expects (needs) a high hit ratio from a large capacity; then,
its bandwidth demand should correspondingly increase to ac-
commodate the high hit ratio. Among a range of relationships,
we focus on an interesting one between capacity demand and
write demand. In general, the more (OP) capacity an applica-
tion has, the less GC overheads (GC writes) it experiences [4].
Here, let us assume that the OP capacity of a user is part of
its per-stream capacity (§6). Accordingly, if a user increases
its capacity demand (per-stream data size), its write demand
should also decrease correspondingly, since its WA value and
GC writes decrease. Keeping this in mind, we propose a sim-
ple heuristic to estimate the write demand of a user, given its
capacity demand. Specifically, User i’s write demand with k
streams (w;(k)) can be calculated as follows:

Wi(k) =k xwi (1) x Ai(cf (K)), 6
where A; and ¢ are the amplification function and the OP
capacity of user i. For the amplification function, one can
employ an existing analytic model [4]. Our simple heuris-
tic is based on the assumptions that (i) the number of host
writes (w') linearly increases with the number of streams (i.e.,
wh(k) = k x wl(1)), and (ii) streams have the same write am-
plification value since their host write traffic and OP capacity
are assumed to be the same.

We examine another scenario where both capacity and
write demands are adjusted. Note that, “per-stream data size”
(OP in it) and “amp. value” are adjusted in Table 5. Under the
changed capacity and write demands, the DRF leads to a new
allocation against the baseline. Specifically, Users A, B, and C
are allowed to launch 3, 5, and 4 streams, respectively. As this
example shows, one can construct the most beneficial resource
demand vector for a user by exploring the complex correlation
among resource demands and adjusting their amounts.

6 DRF Design Parameters

OP Fraction of Allocated Capacity: One can raise a ques-
tion: how much OP capacity is given to a user out of the total
allocated capacity? We use the following simple heuristic to
specify the amount of the OP capacity. The OP capacity of
User i with k streams (c?(k)) can be calculated as follows:
(k) =kxcl x f, 3)
where c? is per-stream capacity and f is user-specified frac-
tion of OP capacity to the entire per-stream capacity. It is crit-

ical to find the most appropriate f value, since it determines
both the capacity and write demands, which can collectively
and significantly affect the resulting DRF allocation.
Lifetime Management Policy: In our baseline example, the
total write resource 11,184,810 (Table 1) represents the num-
ber of 4KB-page writes allowed for a period of 1 hour, as-
suming that only 1TB write consumption is permitted for a
day. However, there can be a range of options for managing
a device’s lifetime; for example, one might set a tighter bud-
get to last his/her device much longer, while one might not
concern the device wear-out and the replacement cost. To see
the impact of lifetime management policy, we consider an
extreme scenario where the total write resource is set to all
the remaining writes to the end of device’s life. According to
our analysis, when we set the total write resource to a very
large number (assuming that our device is young), the DRF
results in the same allocation as the 2-resource DRF case
where the lifetime resource is not managed (Table 3). This
is because the large write resource makes User A’s dominant
resource the capacity (instead of write) and DRF excludes the
capacity resource from its interest. However, the situation can
change again as the device gets older and its remaining writes
becomes small. We will explore the lifetime management
choices to best allocate multiple resources in future work.

7 Conclusions

DREF is a useful tool to divide multiple resource types across
competing users. We propose to employ DRF in consoli-
dated flash systems where bandwidth, capacity, and lifetime
resources are correlated in complex ways. We explore chal-
lenges in DRF adaptation and design parameters that can
affect the resource allocation. In future work, we will study
the notion of lifetime fairness in multiple device settings.

Acknowledgments

We thank Anirudh Badam, our shepherd, and the anony-
mous reviewers for their valuable feedback. This research
is supported in part by NSF grants 1822923, 1439021,
1629915, 1626251, 1629129, 1763681, 1526750, 1439057,
and 1717571. Jung’s research is in part supported by
NRF2016R1C1B2015312, DOE DEAC02-05CH11231, NRF
2015M3C4A7065645, NRF 2017R1A4A1015498 and Sam-
sung grant (1I0181008-05622-01).

References

[1] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. CloudCache: On-
demand Flash Cache Management for Cloud Computing.
In USENIX FAST, 2016.

[2] Dimitri Bertseka and Robert Gallager. Data Networks.
In Prentice-Hall Inc., 1992.

[3] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion
Sotica. HUG: Multi-Resource Fairness for Correlated
and Elastic Demands. In NSDI, 2016.

[4] Peter Desnoyers. Analytic Modeling of SSD Write
Performance. In SYSTOR, 2012.

[5] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Resource
Types. In NSDI, 2011.

[6] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and Moinud-
din K. Qureshi. FlashBlox: Achieving Both Perfor-
mance Isolation and Uniform Lifetime for Virtualized
SSDs. In USENIX FAST, 2017.

[7] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The Multi-streamed Solid-State Drive.
In USENIX HotStorage, 2014.

[8] George Kesidis, Bhuvan Urgaonkar, Neda Nasiriani, and
Cheng Wang. Neutrality in Future Public Clouds: Im-
plications and Challenges. In USENIX HotCloud, 2016.

[9] Bryan S. Kim. Utilitarian Performance Isolation in
Shared SSDs. In USENIX HotStorage, 2018.

[10] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards
SLO Complying SSDs Through OPS Isolation. In
USENIX FAST, 2015.

[11] Ricardo Koller, Ali Jose Mashtizadeh, and Raju Ran-
gaswami. Centaur: Host-Side SSD Caching for Storage
Performance Control. In ICAC, 2015.

[12] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim,
Stephen Smaldone, and Grant Wallace. Nitro: A
Capacity-Optimized SSD Cache for Primary Storage. In
USENIX ATC, 2014.

[13] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchan-
dani, and Deng Liu. vCacheShare: Automated Server
Flash Cache Space Management in a Virtualization En-
vironment. In USENIX ATC, 2014.

[14] Yuanjiang Ni, Ji Jiang, Dejun Jiang, Xiaosong Ma, Jin
Xiong, and Yuangang Wang. S-RAC: SSD Friendly
Caching for Data Center Workloads. In SYSTOR, 2016.

[15] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Ja-
gadeesh Shetty, Jooyoung Hwang, Sangyeun Cho,
Daniel DG Lee, and Jaecheon Jeong. FStream: Man-
aging Flash Streams in the File System. In USENIX
FAST, 2018.

[16] Hui Wang and Peter Varman. Balancing Fairness and
Efficiency in Tiered Storage Systems with Bottleneck-
Aware Allocation. In USENIX FAST, 2014.

[17] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,
and Vijay Balakrishnan. AutoStream: Automatic Stream
Management for Multi-streamed SSDs. In SYSTOR,

2017.

	Introduction
	Preliminaries
	Dominant Resource Fairness (DRF)
	Our Target System

	System Resources Considered
	Conventional Bandwidth and Capacity
	Flash-Specific Device Lifetime
	Coordination of Three Resources

	DRF Allocation Examples
	DRF Considering All Three Resources
	DRF without Lifetime Management

	Challenges: User's Demand Estimation
	DRF Design Parameters
	Conclusions

