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Abstract—In this work, we propose an accurate full chip
steady-state power density map estimation method for the com-
mercial multi-core microprocessors. The new approach is based
on the measured steady-state thermal maps (images) from an
advanced infrared (IR) thermal imaging system to ensure its
accuracy. The new method consists of a few steps. First, based on
the first principle of heat transfer, 2D spatial Laplace operation
is performed on the given thermal map to obtain the so-called
raw power density map, which consists of both positive and
negative values due to the steady-state nature and boundary
conditions of the microprocessors. Then based on the total power
of the microprocessor from an online CPU monitoring tool, we
develop a novel scheme to generate the actual real positive-
only power density map from the raw power density map. At
the same time, we develop a novel approach to estimating the
effective thermal conductivity of the microprocessors. To further
validate the power density map and the estimated actual thermal
conductivity of the microprocessors, we construct a thermal
model with COMSOL, which mimics the real experimental set
up of measurement used in the IR imaging system. Then we
compute the thermal maps from the estimated power density
maps to ensure the computed thermal maps match the measured
thermal maps using FEM method. Experimental results on
intel i7-8650U 4-core processor show 1.8°C root-mean-square-
error (RMSE) and 96% similarity (2D correlation) between the
computed thermal maps and the measured thermal maps.

I. INTRODUCTION

Power, thermal and related reliability issues are the ma-
jor limiting factors on today’s high performance multi-core
processors, especially after the breakdown of the so-called
Dennard scaling, since power density starts to increase as
IC technology advances [1], [2]. To enhance reliability, re-
searchers have proposed many power/thermal regulation or
dynamic thermal management methods, including clock gat-
ing, power gating, Dynamic Voltage and Frequency Scaling
(DVES), and task migration techniques [3]-[6].

However, one important aspect of those works depends on
how to correctly estimate the full-chip temperature. The on-
chip temperature is mainly obtained by performing the thermal
analysis based on the run-time functional unit (or component-
wise) power estimation of the processor. Estimating compo-
nent power inputs still remains challenging for commercial
off-the-shelf microprocessors.

A few existing works have proposed to estimate the com-
ponent and the total power of a real microprocessor [7]-
[10]. One idea is to tune each component unit power until
the summation matches with the total power that can be
measured experimentally [7], [8]. The main difficulty of those
approaches, however, is that the searching for component unit
power values still remains an ad-hoc approach, which almost
always involves manual tunings. Wu et al. tried to mitigate
this problem by performing linear regression with K-means-
based method to identify the unique power track patterns
from the running programs [9]. In [10], the authors frame
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the problem as constrained optimization problem once the
thermal models were obtained from finite element simulation
and measurement. Recently an RNN-based approach has been
proposed to fast estimate the thermal and power hotspot
based on the system performance metrics such as Intel’s
Performance Counter Monitor (IPCM) using machine learning
based approaches [11].

In this paper, instead of focusing on the functional units or
component power,we try to obtain the full-chip power density
map from the measured thermal maps/images of commercial
multi-core microprocessor. Once power density maps are
obtained, component power can be easily obtained by area
integration over the chip layout. The estimated power map also
provides many insights into power consumption of different
modules and cores and uncores in a microprocessor and can
be instrumental to many other power/thermal management
applications. Our main contributions are as followings:

1. First, based on the first principle of heat transfer, 2D
spatial Laplace operation is performed on the given ther-
mal map to obtain the so-called raw power density map,
which consists of both positive and negative values due
to the steady-state nature and boundary conditions of the
microprocessors. We study two simple cases to provide
many insights into relationship between the raw power
density map and real power density maps. This work is
enabled by an advanced thermal measuring platform with
a high-precision thermal camera and a cooling system
installed on the back side of the CPU. It allows us to
take explicit temperature images (thermal maps) of CPU
die while the CPU is under load.

2. Then based on the total power of the microprocessor ob-
tained using an online CPU monitoring tool, we develop
a novel scheme to generate the actual real positive-only
power density map from the raw power density map. At
the same time, we develop a novel method to compute
effective thermal conductivity of microprocessor dies.

3. To further validate the power density map and the
estimated actual effective thermal conductivity of the
microprocessors, we construct a thermal model with
COMSOL, which mimics the real experimental setup:
with the same boundary conditions used in the IR imaging
system. We use the thermal measurements when CPU is
in idle status to determine the boundary conditions of the
thermal simulation model. Then we compute the thermal
map based on the estimated power density map to ensure
the computed thermal maps match the measured thermal
maps using FEM method.

Experimental results on intel i7-8650U 4-core processor
show that the root-mean-square-error (RMSE) of the computed
thermal maps and the measured thermal maps are around
1.8°C. Furthermore, computed thermal maps and the measured
thermal maps have 96% similarity (2D correlation).
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II. THE POWER DENSITY MODELING SETUP
In this section we briefly outline the framework of the
proposed approach, thermal imaging system, and necessary
data collection from the commercial multi-core processor.

A. The power density modeling framework

Power map (surface power density distribution) has tight
relationship with the temperature distribution, the Laplace
transform of temperature and the thermal conductivity. Our
proposed approach involves two kinds of data. First one is
the thermal maps of CPU measured through a high-precision
thermal camera, which senses the infrared emissions from
CPU surface and transforms them into images of temperature
distribution. The second is the total CPU power consumption
along time, which can be obtained through the processor’s Per-
formance Counter Monitor. Fig. 1(a) shows the validation flow
of the power map estimation model and evaluate how accurate
the estimations are. Fig. 1(b) illustrates the estimation flow
from data resources to estimated results for real processors.
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Fig. 1. Frame work overview: (a) validation flow (b) estimation flow.

B. Thermal imaging system

High precision and resolution of measuring the thermal
maps are critical to the estimation results. In order to achieve
these, we take advantage of a high-precision thermal camera
installed closely over the CPU die along with a liquid cooling
system attached underneath the motherboard, as shown in
Fig. 2. This system adapts the thermal imaging method pro-
posed in [12]. It maximizes the explicitness of thermal maps
by directly exposing the top surface of CPU die to the camera,
while ensuring the CPU’s normal thermal condition by cooling
it from the back side of the motherboard. Massive heat gen-
erated from CPU flows downwards through the motherboard
into the cooling system, and is finally dissipated by the quickly
circulated coolant. The model of our thermal camera is FLIR
A325SC, 240x320px, 16bit and 60Hz capturing rate. Thanks
to a close-up lens, the camera makes temperature difference
50mK clearly visible within as small as 50pm/px.

III. NEW POWER DENSITY MAP ESTIMATION METHOD

In this section, we present our new method to estimate the
full-chip power density from the real multi-core processors.
We start with a simple example, which leads to an important
observation for the proposed method. Then we will present
how to compute the thermal conductivity of the real micro-
processors, which is important for later thermal analysis and
validation.
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A. Proposed power density map based on Laplace operation

We first start with the fundamental heat diffusion equation
(1), which gives the relationship between temperature and heat
generation:

aT
pCp = V(RVT) = g ()
where T is temperature (K), p is the mass density of the
material (kg-m—?), C'p is the mass heat capacity (J-kg ™ *-K™1),
k is the thermal conductivity (W-m~!-K~") and g is the spatial
heat energy generation (W - m~3).

When CPU runs into steady state the transient term can thus

be ignored and the equation (1) can be simplified as:

—kV°T = gr(z,y) )

where V2 is the Laplace operator. From the simplified heat
equation (2), we can see that the negative spatial Laplacian
of the temperature distribution across the die is equal to
the spatial heat generation. Therefore, we can perform the
2D spatial Laplacian on a given thermal map to locate the
underlining heat-sources gr(x,y).

However, this view only works well for identifying locations
for heat source peaking, analysis for quantitative relationship
between the Laplace transform and the power distribution for
entire chip was not enough. To identify the major power and
thermal hotspots, it is sufficient to merely find the locations
of local minimum values across the Laplace transform. This
is because in steady state a local power density peak will
always cause a local minimum Laplacian value on that same
spot. But when looking at the whole die area, negative-
Laplacian of spatial temperature is not exactly equivalent to
the CPU power distribution. One important observation is that
the negative-Laplacian of the temperature can have negative
values. This cannot be explained by CPU power distribution
since CPU power will never be negative. Fig. 3 shows one
of such negative-Laplacian maps based on experimental mea-
surements, where negative parts have remarkable amplitude
comparable to the positive parts.

In order to closely study the relationship between the
Laplace transform of temperature and the CPU power dis-
tribution, we build a simple ideal case in COMSOL Multi-
physics heat transfer tool [13]. This case structure contains a
rectangular base which has geometry 10x15x0.5mm, and a
4x4x0.5mm heat source block embedded in the base, whose
total power is set at 3W (0.1875W - mm~2) and homogeneous
in space (Fig. 4(a)). The geometries can be flexible, we
set it to approximately match the usual size of CPU die
and core. Material of the structure in this case has ~ of
400W - m~! - K™, For the boundary conditions, a convective
heat flux set at 1000W - m~2K~! is applied on the bottom
surface. This convective heat flux mimics the heat dissipation
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Fig. 3. A negative-Laplacian map example of experiment thermal measure-
ments in 3D view.

through bottom surface. Ambient temperature is set at room
temperature 297K.
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Fig. 4. Simple ideal cases: (a) homogeneous heat source in orange region
with total power 3W. (b) linear heat source in orange region (10 X 2mm),
with areal power density 0.05(z — 2) W - mm™2, = € [2,12] and total SW.

As shown in Fig. 4(a), it is obvious that the high-raising
portion of negative-Laplacian map reflects the area of active
power density. Furthermore, we observe that integration of
negative-Laplacian map over all the area (pixels) is always
zero, no matter how the power setting and geometry changes.
The reason is that the thermal map we obtained comes from
steady state of the CPU with specific thermal boundary condi-
tions. This means that power generation and power dissipation
are balanced in such equilibrium state. The negative power
density value actually represents more power dissipation than
generation at the specific location due to the thermal transfer
and convection process at the boundaries. Where positive value
means the opposite. For the very positive high-raising portion,
which means the heat generation is significantly larger than
the dissipation, typically indicates the hotspots of the chip.

In another example, we have an ideal linear heat source,
whose power density increase linearly along the x-axis with
total power 5W. Fig. 4(b) illustrates the location of power
source, power setting and its corresponding negative-Laplacian
map. We can observe the negative-Laplacian in such rectan-
gular power region shows an important linear trend as well,
while the surrounding region is negative.

Based on the observations from these ideal examples, we
can see that the positive part of the negative-Laplacian map
are the region where most of the real power density is located.
In this two simple cases, they contain the 100% real power
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density distribution. As a result, we can just use the positive
part of the the negative-Laplacian map as the estimated power
map. But the actual values of power map in those region are
yet to be determined, which will be answered in the following
section by calculating the accurate thermal conductivity x.

B. Estimation of real thermal conductivity

Modern microprocessor die is usually as thin as within
0.5mm thickness, thus thermal characteristics along z-axis can
be viewed as homogeneous. Power density distribution is only
important on the surface x-y plane.

In reality, heat density is a combination of CPU power
and heat dissipation by heat sink. Assume the thickness of
CPU die is Az, p(z,y) stands for surface power density at
location (z,y) and p4(x,y) denotes heat dissipated locally.
Heat density can be expressed as:

p(z,y) — pa(r,y)

gr(z,y) = A 3)
Then for location (x,y), (2) can be rewritten as:
—kV2T(z,y) = w )

Az

Considering the entire chip, integrate both sides on the whole
die area,

i / V2T, y)dady / f%j’d(mmdy

Suppose P is total CPU power, and Py is total heat dissipation
(mainly through convective heat flux), (5) can be further
written as:

&)

_K/VQT(% y)dedy = 214 (©)

Az
At steady state P should be equal to P,;. This infers the
integration on the right hand side of (6) would give zero
total heat, as CPU power is balanced with heat removal. It
also implies the integrated Laplacian should be zero. In fact,
this zero result has been observed both in our experiments
and aforementioned simulation. Based on the discussion in
the previous sub-section, (6) can be approximated as:

P
— 2T dedy ~ —
ff/SPV (z,y)dxdy s

N P/Az
- —fSP V2T (z,y)dxdy

@)

K

®)

where Sp indicates area where negative-Laplacian of temper-
ature is positive. Since die thickness Az is constant, once
negative-Laplacian map is obtained from temperature image,
the equivalent thermal conductivity x can be obtained. It
basically means that the proportional factor s can be acquired
from dividing total power by thickness and by areal integration
of the positive parts of negative-Laplacian. Having this &,
CPU power density map becomes straightforward, which is
expressed as:

p(z,y) = {S’Az[—vmx,yn,

Using the above equations to estimate the power map for
the homogeneous heat source example and the linear heat
source example, the results are showed in Fig. 5. Fig. 5(c)
and Fig. 5(d) are the estimated power densities for the two

~V2T(x,y) >0

—V2T(x,y) <0 ©)
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Fig. 5. Comparison between estimated power density maps and exact ones
for simple ideal examples. (a) and (b) are original power density maps for
homogeneous heat source and linear heat source, respectively. (c) and (d) are
the corresponding estimated power density maps

cases, while Fig. 5(a) and Fig. 5(b) are the corresponding
original power density maps. As we can see, some spikes exist
at corners in the estimation results due to numerical noise.

To compare the similarity of the two power maps, we
introduce 2D correlation coefficient, or simply correlation to
evaluate the similarity between the real power map and the
estimated power map, which is defined as

2% (Amn = 4) (Bunn — B)

(10)
(Ezte ) (pzom )

m n

where A and B are mean of all entries in A and B, respec-
tively. r is a scalar between 0 and 1, the more it approaches
1 the more they look alike. For the above two examples, the
correlations of the first and second example are 0.977 and
0.973 respectively. In addition, RMSE of estimated power
map on the active powered region is 0.005W - mm~“ and
0.015W - mm~2 respectively for the two cases as well. As
a result, we can see that the proposed power map estimation
method is quite accurate.

The thermal conductivity  of silicon is about 130W -m~!-
K1, copper is about 400W - m~—' - K~!. Due to the mixture
of silicon, copper and some other materials in real die, the
overall £ could be somewhere around 130~400W-m~!- K.
The material in the motivation examples in simulation has
of 400W - m~! - K~™'. In our case, the estimated r by the
proposed method is about 417W - m~' - K~!, about 5% error
for the estimation.

Therefore, we have verified the approach of estimating the
power map in simulations. Moreover, the estimated power
density maps sufficiently match the original power setting.

IV. POWER MAP ESTIMATION FOR REAL
MICROPROCESSORS

As processor power in different locations changes over
time, thermal map of CPU die also changes. Observed from
thousands of thermal maps from multiple different workloads,
thermal state can run into steady state in a few seconds after
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each power level change. Furthermore, during majority of
running time CPU is running in steady state. As a result, we
can estimate the CPU power map from the measured thermal
map in the steady state. Based on the power map model
derived in section III, we can also find the equivalent thermal
conductivity x of the die from the measurement of thermal
maps.

For our work, the total power of CPU is also needed. Intel
Performance Counter Monitor (PCM) provides users a soft-
ware interface that computes the internal resource utilization
of the latest Intel core processors. One metric of the PCM
dataset is CPU energy consumption between two accesses.
To ensure precision, power data has to be synchronized with
the thermal maps. As mentioned in the system setup, if the
capturing frequency of infrared camera is f, PCM data should
be recorded in this same frequency. Suppose the CPU energy
along discretized time points is series F, then total power
P = E/At is also a time series, and At =1/f.

One thermal map is related to one negative-Laplacian map,
and it will result in one x value. Different thermal maps may
result in different s values. To obtain a reasonable «, sufficient
data samples from different workloads and time points are
needed. A reasonable  should be a constant despite different
workloads and time. In this work, we execute eight workloads
of different kinds and capture over 14000 thermal maps for
each workload. Using the approach described in section III,
k computed with respect to different workloads along time
line are plotted in Fig. 6. As we can see, x comes out quite
constant and even for different workloads although there is
a large overlap, which is expected. Some glitches exist due
to CPU changing power levels thus not running in steady
state. During those times, temperature transient term (pC'p %—:tp)
cannot be ignored. Furthermore, the arithmetic mean of « is
174W-m~'. K™, We define this « as the estimated equivalent
thermal conductivity of CPU die.

400

. . .
4000 6000 8000 10000
Discretized Time Points

.
0 2000 12000 14000

Fig. 6. Estimated thermal conductivity of die with respect to multiple
workloads in time domain.

For real CPUs, as we do not know exact power density
distribution, to validate the estimated power density map, we
have compared their corresponding thermal maps. The idea is
to build a thermal model and thermal simulation framework,
which mimics the experimental set up of the chip die in
the thermal imaging system with similar thermal boundary
conditions and thermal structures. Thus, the validation flow
can be summarized as following:

1) Obtain sufficient number of estimated power maps based
on the proposed method. The experimental measure-
ments should include an idle status, meaning CPU has
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extremely low power, which will be used to set boundary
conditions.

2) Build a finite element method (FEM) thermal simulation
model that mimics the real structure of the processor die
in the thermal imaging system.

3) Substitute the estimated thermal conductivity ~ as well
as the estimated power map into thermal simulation
model as parameters and inputs.

4) Examine similarities between the simulated thermal
maps and the experiment measured thermal maps.
Higher degree of identity indicates higher precision of
power map estimation, vice versa.

We will expand the details of implementing this validation
flow in the result section.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we will present estimated power map results
for the Intel 17-8650U, which has 4 CPU cores, and an
integrated GPU. As all the existing works focus on component-
wise power estimations, it is difficult to do the direct compar-
ison. Instead, we validate the estimated power density map
by finite element based thermal simulation using COMSOL
Multiphysics as discussed earlier and show the results in this
section [13].

A. Thermal model to imitate experiment setup

J [ Thermal Map/Image Area
Package Base Board

Input Power Map

AN
24mm .

Heat Flux

Fig. 7. Thermal model created to imitate the real experiment setup.

Once we obtain the estimated power density maps and
equivalent thermal conductivity ~ of the CPU die, we then
start to build a heat transfer structure that mimics the real
experiment setup. Fig. 7 illustrates the structure created using
COMSOL Multiphysics which matches the real CPU package
geometry. Geometries of Intel i7-8650U are acquired from
the open resource from WikiChip organization [14]. The
CPU package dimension is 42x24x 1.3mm, thickness of base
circuit board is 0.8mm. There are two dies soldered on the
base board, the CPU die, which is the object we will study, has
dimension 14x9x0.5mm. In our model, material of the CPU
die and package base board are initialized with silicon and FR4
(Circuit Board), respectively. However, thermal conductivity
of die part (silicon) is set to the computed x, ie. Kk =
174W - m~! - K=! in our case. A convective heat flux is
applied to the bottom surface of the package base board,
which simulates the heat flow from CPU package through
motherboard to the cooling system, as indicated by the arrows
at bottom in Fig. 7. The convective heat flux rate and thermal
conductivity of base board will be determined as boundary
conditions later.

For thermal simulation, we also need to know the correct
thermal boundary conditions of the die. One idea is to explore
the idle status of CPU (its boundary conditions are same of
the CPU in other workload modes) as it is easy to extract the
power map in this status. Specifically, since the idle status has
extremely low power, power map is pre-known as almost zero,
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Fig. 8. Setting proper boundary conditions for thermal simulation model
using measurements of CPU’s idle status

except for very few places that have slight power. Majority of
CPU appears to be approaching ambient temperature, spacial
temperature appears relatively flat. At the beginning, simulated
thermal map according to the estimated idle power map has
the same trend with the measured thermal map, whereas the
amplitude and the range have a little discrepancy. This will
guide us how to adjust the thermal conductivity of package
base board and bottom convective heat flux rate such that the
simulated thermal map matches the measured thermal map as
much as possible for idle status (Fig. 8). After some efforts, we
found that convective heat flux rate is about 600W -m—2. K~
and thermal conductivity of base board is about 6W-m~—*-K ™!

B. Accuracy study

We have examined sufficiently large amount of data samples
that relate to multiple different steady states. For most data
samples, the estimated power maps are able to duplicate the
thermal maps that are almost identical to the measured thermal
maps, with average similarities over 0.96. Besides, RMSE for
thermal maps simulated by estimated power maps is 1.8°C.
Fig. 9 lists four typical samples of the power map estimation
results. The first row are the experiment measured thermal
maps, the second row are the estimated power maps in 3D
view, and the last row are thermal maps generated by FEM
thermal simulation.

Fig. 10 further illustrates the power density distribution
(Fig. 10(b)) on the processor die layout (Fig. 10(a)) at a
steady state. Intel i7-8650U has system agent (which contains
the Image Processing Unit (IPU), the Display Engine (DE),
and the I/0 bus), GPU module on the side and 4 core array
in the middle. As we can see, 4 cores consume dominant
power, whereas system agent and GPU module consumes low
power at such steady state (Fig. 10(c)). We can see that power
pattern aligns with the location of cores and Ring/Interconnect
quite well. We obtain the component power by power density
integration for the component, which are presented in Table. I.

TABLE I
ESTIMATED POWER FOR PROCESSOR COMPONENT (17-8650U)
Component Power | Component Power
System Agent  0.70W | Ring/Interconnect 1.78W
GPU 0.59W | L3 cache 0.53W
Core#l 2.22W | Core#2 2.36W
Core#3 2.27W | Core#4 2.51W
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Fig. 9. The power map estimation results, from first to last row are experiment measured thermal maps, estimated power maps in 3D view, and simulation
generated thermal maps, respectively. Each column is related to one workload at one steady state.
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Fig. 10. (a) Intel i7-8650U processor die layout. (b) an estimated power density map. (c) projection of power density map onto the processor die layout

VI. CONCLUSION

In this paper, we have proposed an accurate full chip steady-
state power density map estimation method for the commercial
multi-core microprocessors. The new approach consists of
several steps: 2D spatial Laplacian operation of measured
thermal maps to generate the raw power density map, then
computing the real power density map from the raw density
map by re-distributing the total power of the chip. As a
byproduct, we can also compute the real effective thermal
conductivity of the microprocessor die. To further validate the
estimated power map, finite element based thermal simulation
was carried out based on the estimated power map and thermal
models imitating the experimental set up of measurement used
in the IR imaging system. Experimental results on intel i7-
8650U 4-core processor shows that RMSE of the computed
thermal maps and the measured thermal maps are around
1.8°C. Furthermore, computed thermal maps and the measured
thermal maps have 96% similarity (2D correlation).
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