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Abstract—We consider the problem of decentralized sequen-
tial active hypothesis testing (DSAHT), where two transmitting
agents, each possessing a private message, are actively helping
a third agent–and each other–to learn the message pair over
a discrete memoryless multiple access channel (DM-MAC). The
third agent (receiver) observes the noisy channel output, which is
also available to the transmitting agents via noiseless feedback.
We formulate this problem as a decentralized dynamic team,
show that optimal transmission policies have a time-invariant
domain, and characterize the solution through a dynamic pro-
gram. Several alternative formulations are discussed involving
time-homogenous cost functions and/or variable-length codes,
resulting in solutions described through fixed-point, Bellman-type
equations.

Subsequently, we make connections with the problem of
simplifying the multi-letter capacity expressions for the noiseless
feedback capacity of the DM-MAC. We show that restricting at-
tention to distributions induced by optimal transmission schemes
for the DSAHT problem, without loss of optimality, transforms
the capacity expression, so that it can be thought of as the average
reward received by an appropriately defined stochastic dynamical
system with time-invariant state space.

I. INTRODUCTION

Active hypothesis testing refers to the problem where an
agent is adaptively selecting the most informative sensing
action, from a set of available ones, in order to obtain informa-
tion about an underlying phenomenon of interest (hypothesis).
The term “active” emphasizes the fact that the agent can
exert some control over the sensing action. This problem
was originally introduced by Blackwell [1] in its single-shot
version. The “sequential” aspect of this problem refers to
the setting where sensing decisions are performed at each
time instance based on the available information and state of
knowledge of the decision agent, i.e., in a closed-loop fashion.
This problem generalizes the classical sequential hypothesis
testing [2] and has been studied originally by [3].

Decentralized sequential active hypothesis testing (DSAHT)
refers to a setting where multiple agents, each with some par-
tial information about the underlying phenomenon of interest,
are actively collaborating in order to obtain information about
the said phenomenon. Transmission of information over a mul-
tiple access channel (MAC) with feedback can be thought of as
an instance of a DSAHT problem. Indeed in this setting, two
agents (transmitters), each possessing a private message, are
actively helping a third agent (receiver) to learn the message
pair by transmitting symbols to the common medium modeled
as a MAC. The third agent (receiver) observes the noisy
channel output, which is also available to the transmitting

agents via noiseless feedback, giving rise to a sequential pro-
cess. The decentralized Wald (non-active) problem has been
studied in [4], and more recently, a more general setting was
considered in [5]. A real-time communication system with two
encoders communicating with a single receiver over separate
noisy channels without feedback was considered in [6].

In the first part of this paper, we formulate the DSAHT
over the MAC as a decentralized dynamic team problem. We
show that optimal encoders are not required to depend on
the entire feedback history, but have a time-invariant domain.
Specifically they only depend on their private message and
an appropriately defined posterior belief on the message pair
from the viewpoint of the receiver. This result is both intuitive
and satisfying as it generalizes the optimal encoding schemes
for point-to-point channels [7], [8]. Furthermore, we show that
the optimal encoders are characterized through a dynamic pro-
gram. Several alternative formulations are discussed involving
time-homogenous cost functions and/or variable-length codes,
resulting in solutions described through fixed-point, Bellman-
type equations.

In the second part of this paper we discuss how the above re-
sults can shed light on the problem of characterizing the MAC
feedback capacity. A multi-letter capacity expression for DM-
MAC with noiseless feedback has been established in [9] and
restated in [10]. Other than the case of Gaussian channels [11],
currently there is no known single-letter capacity expression
for general discrete memoryless MACs (DM-MACs) with
feedback. The capacity of MAC with cribbing encoders and
feedback has been studied in [12] and single-letter capacity
expressions have been obtained (which are identical to the
no-feedback case [13]). Finally, in [14] it was shown that
the Cover&Leung single-letter capacity region [15] is the true
capacity region for a special class of channels. Leveraging
the structural results for the optimal encoders for the DSAHT
problem, we show that the capacity expression can be thought
of as the average per-unit-time reward of an appropriately
defined Markov controlled process. In order to achieve this
structural result, we introduce some new quantities (other than
the posterior belief on the message pair from the viewpoint of
the receiver that was introduced for the DSAHT problem) that
summarize the private beliefs of each transmitter for their own
messages conditioned on the corresponding channel input and
output.

In the following, we denote random variables with cap-
ital letters X,Y, Z, ..., their realizations with small letters
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x, y, z, ..., and alphabets with calligraphic letters X ,Y,Z, ....
A sequence is denoted with X1:t = (X1, ..., Xt). We use
the notation P(x|y) to denote P(X = x|Y = y). The space
of probability distributions (or equivalently probability mass
functions) on the finite alphabet X is denoted by P(X ).

II. CHANNEL MODEL

We consider a two-user DM-MAC. The input symbols X1,
X2 and the output symbol Z take values in the finite alphabets
X 1, X 2 and Z , respectively1. The channel is memoryless in
the sense that the current channel output is independent of all
the past channel inputs and the channel outputs, i.e.,

P(zt|x11:t, x21:t, z1:t−1) = Q(zt|x1t , x2t ). (1)

Our model considers noiseless feedback, that is, the presence
of the channel output z1:t−1 to both encoders with unit delay.

Consider the problem of transmission of messages W i ∈
Wi = {1, . . . ,M i}, i = 1, 2, over the MAC with noiseless
feedback using fixed length codes of length n. Encoders
generate their channel inputs based on their private messages
and past outputs. Thus

Xi
t = f̃ it (W

i, Xi
1:t−1, Z1:t−1) = f it (W

i, Z1:t−1), i = 1, 2.
(2)

The decoder estimates the messages W 1 and W 2 based on n
channel outputs, Z1:n as

(Ŵ 1, Ŵ 2) = g(Z1:n). (3)

A fixed-length transmission scheme for the channel Q is
the pair s = (f, g), consisting of the encoding functions f =
(f1, f2) with f i = f i1:n and the decoding function g. The
error probability associated with the transmission scheme s is
defined as

Pe(s) = Ps((W 1,W 2) 6= (Ŵ 1, Ŵ 2)). (4)

A further generalization of these schemes considers ran-
domized encoding functions, i.e.,

Xi
t ∼ f it (·|W i, Xi

1:t−1, Z1:t−1), i = 1, 2, (5)

where f it :Wi ×X t−1 ×Zt−1 → P(X ) or even randomized
encoding functions with a common randomness (common
between the transmitters and the receiver), i.e.,

Xi
t = f it (W

i, Xi
1:t−1, Z1:t−1, Ut), i = 1, 2, (6)

where P(ut|u1:t−1, x11:t−1, x21:t−1, z1:t−1) = P(ut) = u(ut),
with u(·) the uniform distribution over [0, 1]. In this case, the
decoder is of the form (Ŵ 1, Ŵ 2) = g(Z1:n, U1:n).

For simplicity of exposition we only consider fixed-length
schemes, although the model can be generalized to variable-
length schemes and the subsequent structural results are valid
in that case as well.

1Throughout the paper we use superscripts 1, 2, for quantities relating to
user 1 or 2, respectively, and subscripts to denote time.

III. DECENTRALIZED SEQUENTIAL ACTIVE HYPOTHESIS
TESTING ON THE MAC

One may pose the following optimization problem. Given
the alphabets X 1, X 2, Z , the channel Q, the pair (M1,M2),
and for a fixed length n, design the optimal transmission
scheme s = (f, g) that minimizes the error probability Pe(s)

Pe∗ = min
s
Pe(s). (P1)

In the following we reformulate the problem (P1) into
an equivalent optimization problem. Using the “common
agent” methodology for decentralized dynamic team prob-
lems [16], we now decompose the encoding process Xi

t =
f it (W

i, Z1:t−1) into an equivalent two-stage process. In the
first stage, based on the common information Z1:t−1, the
mappings (or “partial encoding functions”) eit, i = 1, 2 are
generated as eit = φit[z1:t−1]2 (or collectively, et = (e1t , e

2
t ) =

φt[z1:t−1]) where eit :Wi → X i. In the second stage, each of
these mappings are evaluated at the private information of each
agent, producing xit = eit(w

i). In other words, for i = 1, 2, let
E i be the collection of all encoding functions ei :Wi → X i.
In the first stage, the common information given by Z1:t−1 is
transformed using mappings φit : Zt−1 → E i to produce a pair
of encoding functions et = (e1t , e

2
t ). In the second stage these

functions are evaluated at the private messages wi producing
xit = eit(w

i) = φit[z1:t−1](wi).
Furthermore, it should be clear that for any pair of encoding

functions, the optimal decoder is the maximum likelihood
(ML) decoder (assuming equally likely hypotheses), denoted
by gML. Thus we have reformulated problem (P1) as

Pe∗ = min
φ
Pe(φ), (P2)

where we have defined Pe(φ) with a slight abuse of notation
based on the above equivalence between encoding functions
f and mappings φ, as well as the use of ML decoding.

In the following we will show that this problem can be
further reformulated as a Markov decision process (MDP).
We define the posterior belief3 on the message pair at time t
as

πt(w
1, w2) , Pf (W 1 = w1,W 2 = w2|z1:t) (7a)

= Pφ(W 1 = w1,W 2 = w2|z1:t, e1:t). (7b)

The ML decoder can now be expressed based on πn as

(Ŵ 1, Ŵ 2) = arg max
w1,w2

Πn(w1, w2), (8)

and the resulting error probability is

Pe(φ) = Eφ[1− max
w1,w2

Πn(w1, w2)] = Eφ[cn+1(Πn)], (9)

where we defined the terminal cost function as

cn+1(πn) = 1− max
w1,w2

πn(w1, w2), (10)

and the expectation is wrt the random variable Πn.

2We use square brackets to denote functions with range being function sets,
i.e., we use notation eit = φit[z1:t−1] because eit is itself a function.

3Note that the posterior belief is used as a conditional distribution, and as
a random variable Πt(·, ·) := Pφ(W 1 = ·,W 2 = ·|Z1:t)
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It is now a simple exercise to show that πt can be updated
using Bayes rule in a policy-independent way as

πt = F (πt−1, et, zt), (11)

where the mapping F is defined through

πt(w
1, w2)

= Pφ(w1, w2|z1:t, e1:t) (12a)

=
Pφ(w1, w2, zt, et|z1:t−1, e1:t−1)

Pφ(zt, et|z1:t−1, e1:t−1)
(12b)

(a)
=

Pφ(zt|w1, w2, z1:t−1, e1:t)πt−1(w1, w2)

Pφ(zt|z1:t−1, e1:t)
(12c)

=
Q(zt|e1t (w1), e2t (w

2))πt−1(w1, w2)∑
w̃1,w̃2

Q(zt|e1t (w̃1), e2t (w̃
2))πt−1(w̃1, w̃2)

, (12d)

where the quantity Pφ(et|z1:t−1, e1:t−1) has been cancelled
from numerator and denominator in (a). We summarize the
above result into the following lemma.

Lemma 1: The posterior belief πt on the message pair
(W 1,W 2) can be updated in a policy-independent4 (i.e., φ-
independent) way as πt = F (πt−1, et, zt).

Proof: The proof is essentially given in (12).
The final step in the “common agent” methodology is

to show that a fictitious common agent who observes only
the common information Z1:t−1 faces an MDP with state
at time t, Πt−1; action Et = (E1

t , E
2
t ); zero instantaneous

costs ct(Πt−1, Et) = 0 for t = 1, . . . , n; and terminal
cost cn+1(Πn). Indeed, (Πt−1, Et)t≥1 is a controlled Markov
chain, since

Pφ(πt|π1:t−1, e1:t)

=
∑
zt

Pφ(πt|zt, π1:t−1, e1:t)
∑
w1,w2

Pφ(zt|w1, w2, π1:t−1, e1:t)

Pφ(w1, w2|π1:t−1, e1:t) (13a)

=
∑
zt

1F (πt−1,et,zt)(πt)×∑
w1,w2

Q(zt|e1t (w1), e2t (w
2))πt−1(w1, w2) (13b)

= P(πt|πt−1, et). (13c)

At this point we have transformed problem (P2) into the
following MDP

Pe∗ = min
φ

E[
n∑
t=1

ct(Πt−1, Et) + cn+1(Πn)]. (P3)

As a result, the optimal policy is deterministic Marko-
vian, i.e., of the form Et = θt[Πt−1] (or explicitly, Eit =
θit[Πt−1]), resulting in an encoding policy of the form Xi

t =
θit[Πt−1](W i) = f it (Πt−1,W

i).

4The term “policy-independent” emphasizes the important fact that the
update depends on the “actions”, et, generated by the policy φ and not by
the policy itself. In other words, conditioned on the actions, et, we do not
require the policy φ to perform the update.

Furthermore, the characterization of the optimal Markov
policy is the backward dynamic program

Vn+1(πn) = cn+1(πn) (14a)
Vt(πt−1) = min

et
E[Vt+1(F (πt−1, et, Zt))|πt−1, et] (14b)

= min
et

∑
zt,w1,w2

Q(zt|e1t (w1), e2t (w
2))πt−1(w1, w2)

Vt+1(F (πt−1, et, zt)). (14c)

All the above results can be summarized in the following
theorem

Theorem 1: The optimization problem (P1) can be restated
as an MDP with state at time t, Πt−1; action Et = (E1

t , E
2
t );

zero instantaneous costs ct(Πt−1, Et) = 0 for t = 1, . . . , n;
and terminal cost cn+1(Πn) given in (10). Consequently,
the optimal encoders are of the form Xi

t = Eit(W
i) =

θit[Πt−1](W i) = f it (Πt−1,W
i). Finally, the mapping θ can

be found through backward dynamic programming as in (14).
Proof: The proof is given in the previous discussion.

We conclude this section by pointing out that the main
idea behind the characterization of the optimal solution of the
decentralized sequential active hypothesis testing (DSAHT)
problem was to transform the decentralized problem (three
agents with common and private information) into a cen-
tralized problem (single, “fictitious” agent) who observes the
common information, Z1:t−1 of all three agents and takes
actions Et = (E1

t , E
2
t ) which are then evaluated on the private

information W i to generate the inputs Xi
t . The price to pay for

this reduction is that the action set of the fictitious common
agent is now a pair of functions (instead of the transmitted
symbols). The gain from this characterization is that the
solution can be obtained by backward dynamic programming
and the resulting optimal encoding functions do not have a
time-varying domain, but can be summarized into a sufficient
statistic Πt−1.

The same structural results can be derived for similar
problems where the terminal cost is not the one defined above
but an arbitrary function of πn. Due to space limitations, these
alternative formulations are not presented here. They can be
found in the full version of the paper [17].

IV. CONNECTION BETWEEN DSAHT AND THE MAC
CHANNEL CAPACITY

A. Multi-letter capacity expressions

A multi-letter capacity expression for DM-MAC with noise-
less feedback has been established in [9] and can be stated as
follows.

Fact 1 (Theorem 5.1 in [9], [10]): The capacity region of
the DM-MAC with feedback is CFB =

⋃∞
n=1 Cn where Cn,

the directed information n-th inner bound region, is defined
as Cn = co (Rn), where co(A) denotes the convex hull of a
set A, and
Rn = ∪Pn

{(R1,R2) : 0 ≤ R1 ≤ In(X1 → Z||X2),

0 ≤ R2 ≤ In(X2 → Z||X1),

0 ≤ R1 +R2 ≤ In(X1, X2 → Z)}, (15)
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where In(A → B||C) = 1
n

∑n
t=1 I(A1:t;Bt|C1:t, B1:t−1) =

1
n

∑n
t=1 I(At;Bt|C1:t, B1:t−1). All information quantities are

evaluated using the joint distribution

P(x11:n, x
2
1:n, z1:n) =

n∏
t=1

Q(zt|x1t , x2t )q1t (x1t |x11:t−1, z1:t−1)×

q2t (x2t |x21:t−1, z1:t−1), (16)

and the union is over all input joint distributions on x1t , x
2
t that

are conditionally factorizable as

P(x1t , x
2
t |x11:t−1, x21:t−1, z1:t−1) =

q1t (x1t |x11:t−1, z1:t−1)q2t (x2t |x21:t−1, z1:t−1) (17)

for t = 1, 2, ..., n.
Furthermore, the regions Cn can be expressed in the

form [10]

Cn =
{

(R1, R2) ≥ 0 : ∀ λ = (λ1, λ2, λ3) ∈ R3
+,

λ1R1 + λ2R2 + λ3(R1 +R2) ≤ Cn(λ)} , (18)

where

Cn(λ) , sup
Pn

In(λ) (19a)

In(λ) ,
1

n

n∑
t=1

[λ1I(X1
t ;Zt|X2

1:t, Z1:t−1)+

λ2I(X2
t ;Zt|X1

1:t, Z1:t−1)+

λ3I(X1
t , X

2
t ;Zt|Z1:t−1)] (19b)

and in the above, the set Pn is defined as

Pn =
{

(q1t , q
2
t )nt=1 : qit ∈ (X i)t−1 ×Zt−1 → P(X i)

}
. (20)

Observe that the problem of evaluating capacity is essen-
tially (at least) as hard as the problem of evaluating the
quantity Cn(λ) for a given λ. Also note that the optimization
problem involved in evaluating Cn(λ) can be thought of as
a decentralized optimization problem involving two agents:
the first is choosing the distribution q1t on x1t after observing
the common information z1:t−1 and his private information
x11:t−1, while the second is choosing the distribution q2t on x2t
after observing the common information z1:t−1 and his private
information x21:t−1. This decentralized nature contributes to the
difficulty of this optimization problem.

B. Input distributions induced by structured strategies

How can the DSAHT problem stated in the previous section,
together with the structural results obtained, help us with the
problem of characterizing the feedback capacity for the DM-
MAC? The idea behind the answer is that in evaluating the
capacity of the DM-MAC one may restrict attention to the op-
timal encoders obtained for the DSAHT problem without loss
of optimality. Indeed, Theorem 1 states that transmitters of
the form Xi

t = Eit(W
i) = θit[Πt−1](W i) = f it (Πt−1,W

i) are
sufficient for minimizing the error probability of the message
pair and there is not loss in optimality if one restricts attention
to such optimal encoding schemes when evaluating capacity. In
the following we show that the information theoretic quantities
involved in the evaluation of In(λ) in (19), as well as the input

distributions qit in (17) take a specific simplified form when
the structured strategies of Theorem 1 are used.

To aid this goal, we define additional posterior beliefs on
the message at time t given all available information to each
transmitter as

π̂it(w
i) , P(W i = wi|xi1:t, z1:t), i = 1, 2. (21)

Note that π̂it is the marginal belief that user i maintains on
her own message W i. We now state the following lemma
regarding the induced distributions Pθ(xit|xi1:t−1, z1:t−1).

Lemma 2: The conditional distribution
Pθ(x1t , x2t |x11:t−1, x21:t−1, z1:t−1), induced by structured
strategies of the form Xi

t = Eit(W
i) = θit[Πt−1](W i) =

f it (Πt−1,W
i) is always in Pn, i.e., it can be factored as

Pθ(x1t , x2t |x11:t−1, x21:t−1, z1:t−1)

= Pθ(x1t |x11:t−1, z1:t−1)Pθ(x2t |x21:t−1, z1:t−1). (22)

Furthermore, the marginal distributions Pθ(xit|xi1:t−1, z1:t−1)
can be simplified as

Pθ(xit|xi1:t−1, z1:t−1) =
∑
wi

1eit(wi)(x
i
t)π̂

i
t−1(wi) (23)

=: P (xit|π̂it−1, eit) (24)

Proof: We first show (using induction) that the conditional
distribution Pθ(w1, w2|x11:t, x21:t, z1:t) induced by structured
strategies of the form Xi

t = Eit(W
i) = θit[Πt−1](W i) =

f it (Πt−1,W
i) can be factored as

Pθ(w1, w2|x11:t, x21:t, z1:t) = Pθ(w1|x11:t, z1:t)Pθ(w2|x21:t, z1:t)
(25a)

= π̂1
t (w1)π̂2

t (w2). (25b)

Indeed, for t = 0 we have Pθ(w1, w2) = (1/M1)(1/M2) =
P(w1)P(w2) = π̂1

0(w1)π̂2
0(w2). Assuming that the above is

true for time t− 1 we have for t

Pθ(w1, w2|x11:t, x21:t, z1:t)

=
Pθ(w1, w2, x1t , x

2
t , zt|x11:t−1, x21:t−1, z1:t−1)∑

w̃1,w̃2

Pθ(w̃1, w̃2, x1t , x
2
t , zt|x11:t−1, x21:t−1, z1:t−1)

(26a)

=
1e1t (w1)(x

1
t )π̂

1
t−1(w1)∑̃

w1

1e1t (w̃1)(x
1
t )π̂

1
t−1(w̃1)

1e2t (w2)(x
2
t )π̂

2
t−1(w2)∑̃

w2

1e2t (w̃2)(x
2
t )π̂

2
t−1(w̃2)

(26b)

=Pθ(w1|x11:t, z1:t)Pθ(w2|x21:t, z1:t) (26c)

=π̂1
t (w1)π̂2

t (w2). (26d)

As a byproduct of this proof we see that the belief π̂it can be
updated as

π̂it(w
i) =

1eit(wi)(x
i
t)π̂

i
t−1(wi)∑

w̃i 1eit(w̃i)(x
i
t)π̂

i
t−1(w̃i)

, (27)

or more succinctly

π̂it = F̂ i(π̂it−1, e
i
t, x

i
t) = F̂ i(π̂it−1, θ

i
t[πt−1], xit), i = 1, 2.

(28)

2088

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 30,2020 at 14:17:08 UTC from IEEE Xplore.  Restrictions apply. 



Now the induced distributions
Pθ(x1t , x2t |x11:t−1, x21:t−1, z1:t−1) can be evaluated as

Pθ(x1t , x2t |x11:t−1, x21:t−1, z1:t−1)

=
∑
w1,w2

Pθ(x1t , x2t , w1, w2|x11:t−1, x21:t−1, z1:t−1) (29a)

=
∑
w1,w2

Pθ(x1t , x2t |w1, w2, x11:t−1, x
2
1:t−1, z1:t−1)

Pθ(w1, w2|x11:t−1, x21:t−1, z1:t−1) (29b)

= [
∑
w1

1e1t (w1)(x
1
t )π̂

1
t−1(w1)][

∑
w2

1e2t (w2)(x
2
t )π̂

2
t−1(w2)]

(29c)

= P (x1t |π̂1
t−1, e

1
t )P (x2t |π̂2

t−1, e
2
t ) (29d)

= P (x1t |π̂1
t−1, θ

1
t [πt−1])P (x2t |π̂2

t−1, θ
2
t [πt−1]) (29e)

= Pθ
1
t (x1t |π̂1

t−1, πt−1)Pθ
2
t (x2t |π̂2

t−1, πt−1). (29f)

The last equation is the proof that
Pθ(x1t , x2t |x11:t−1, x21:t−1, z1:t−1) factors into the conditionals
Pθ(xit|xi1:t−1, z1:t−1) and that in the latter expressions the
conditional history xi1:t−1, z1:t−1 is summarized in the
quantities (π̂it−1, e

i
t) = (π̂it−1, θ

i
t[πt−1]) = (π̂it−1, πt−1).

The next step in the development is to derive simpli-
fied expressions for the mutual information quantities that
are involved in the expression In(λ) in (19). Specifi-
cally, we will derive simplified expressions for the quan-
tities I(X1

t ;Zt|X2
1:t, Z1:t−1), I(X2

t ;Zt|X1
1:t, Z1:t−1), and

I(X1
t , X

2
t ;Zt|Z1:t−1), or equivalently, for the quantities

H(Zt|X2
1:t, Z1:t−1), H(Zt|X1

1:t, Z1:t−1), H(Zt|Z1:t−1) and
H(Zt|X1

t , X
2
t ). Our results are summarized in the following

theorem.
Theorem 2: The mutual information quantities that are

involved in the expression for In(λ) in (19) can be evaluated
as expectations of time invariant quantities depended only on
Πt−1, Π̂i

t−1 and Et. Specifically, for each t = 1, . . . , n we
have

I(X1
t ;Zt|X2

1:t, Z1:t−1) = Eθ[i1(Π̂2
t−1,Πt−1, Et)] (30a)

I(X2
t ;Zt|X1

1:t, Z1:t−1) = Eθ[i2(Π̂1
t−1,Πt−1, Et)] (30b)

I(X1
t , X

2
t ;Zt|Z1:t−1) = Eθ[i3(Πt−1, Et)], (30c)

where the functions i1, i2, i3 are specified in the proof of the
theorem and expectations are taken wrt the joint distribution

Pθ(π0:n−1, π̂0:n−1, e1:n)

=
n−1∏
t=0

1θt+1[πt](et+1)
∑

zt,x1
t ,x

2
t

Q(zt|x1t , x2t )1F (πt−1,et,zt)(πt)

1F̂ 1(π̂1
t−1,e

1
t ,x

1
t )

(π̂1
t )1F̂ 2(π̂2

t−1,e
2
t ,x

2
t )

(π̂2
t )

[
∑
w1

1e1t (w1)(x
1
t )π̂

1
t−1(w1)][

∑
w2

1e2t (w2)(x
2
t )π̂

2
t−1(w2)].

(31a)

Proof: The proof is omitted due to space limitations. It
can be found in the full version of the paper in [17].

We remark at this point that the presence of the new quantity
π̂it is surprising and requires further investigation since it
does not appear in the DSAHT formulation of Section III.

It is a marginal posterior of each message conditioned on
the transmitted signal of the corresponding user and the
received signal and we refer to it as the private state of
user i. This new quantity gives further insight as to why the
problem of finding the MAC feedback capacity has resisted
solution till now. To see why, take for instance the instan-
taneous quantity H(Zt|X2

1:t, Z1:t−1) related to (30a). This
quantity depends on the distributions P(x2t |x21:t−1, z1:t−1) =
q2t (x2t |x21:t−1, z1:t−1), but it also depends on a distribution of
the form P(x1t |x21:t, z1:t−1) which is not a simple function of
qit, but it depends on the entire sequence of (q1τ , q

2
τ )τ∈{1,...,t}.

It is exactly this long-range dependence of the instantaneous
quantities at time t on all previous distributions up to time t
that makes this optimization problem unwieldy.

We now comment on the significance of this theorem. Fix
λ ∈ R3

+. Theorem 2 shows that the expression In(λ) in (19)
involved in evaluating the channel capacity can be expressed
as

In(λ) =
1

n

n∑
t=1

Eθ[i(Πt−1, Π̂t−1, Et;λ)]. (32)

Furthermore, the unstructured optimization problem for find-
ing Cn(λ) in (19) can now be restated as

Cn(λ) = sup
θ

1

n

n∑
t=1

Eθ[i(Πt−1, Π̂t−1, Et;λ)]. (33)

The above expression hints at thinking of the quantity Cn(λ)
as the average reward received from a dynamical system
with “state” (Π̂t−1,Πt−1) partially controlled by the encoding
functions Et = θt[Πt−1], and optimized over all such policies.
What remains to show is that indeed the pair (Π̂t−1,Πt−1) is
the state of a controlled dynamical system. The result is stated
in the following theorem.

Theorem 3: (Π̂t−1,Πt−1)t≥1 is a Markov process controlled
by the quantity Et, i.e.,

Pθ(π̂t, πt|π̂1:t−1, π1:t−1, e1:t) = P(π̂t, πt|π̂t−1, πt−1, et),
(34)

and the latter distribution does not depend on the policy θ.
Proof: The proof is omitted due to space limitations. It

can be found in the full version of the paper in [17].

V. CONCLUSIONS

We conclude by making the following remarks. First, the
investigation of optimal structured encoders can help in the
development of new encoding schemes for the MAC with
feedback even if capacity achievability is not the primary goal,
but, say, error probability minimization (or error exponent
maximization) is the primary goal. Second, after taking the
limit n→∞ we anticipate that the belief objects πt (and π̂it)
will take a limiting form as beliefs over the sets [0, 1)× [0, 1)
(and [0, 1)) and thus will become independent of the message
sizes M i. Furthermore, (33) will take the form of an infinite-
horizon, average reward per unit time of the aforementioned
Markov controlled process. These steps will unveil a single-
letter characterization of the MAC feedback capacity and
constitute our future research direction.
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