
PISCES: Power-Aware Implementation of SLAM

by Customizing Efficient Sparse Algebra
Bahar Asgari, Ramyad Hadidi, Nima Shoghi Ghaleshahi, Hyesoon Kim

Georgia Institute of Technology, Atlanta, GA

{bahar.asgari, rhadidi, nimash, hyesoon.kim}@gatech.edu

Abstract—A key real-time task in autonomous systems is
simultaneous localization and mapping (SLAM). Although prior
work has proposed hardware accelerators to process SLAM in
real time, they paid less attention to power consumption. To
be more power-efficient, we propose Pisces, which co-optimizes
power consumption and latency by exploiting sparsity, a key char-
acteristic of SLAM missed in prior work. By orchestrating sparse
data, Pisces aligns correlated data and enables deterministic, one-
time, and parallel accesses to the on-chip memory. Therefore,
Pisces (i) eliminates unnecessary memory accesses and (ii) enables
pipelined and parallel processing. Our FPGA implementation
shows that Pisces consumes 2.5× less power and executes SLAM
7.4× faster than the state of the art.

Index Terms—SLAM, Robotics, Autonomous Systems, Re-
source Constraint, Sparse Algebra, Power Consumption, FPGA.

I. INTRODUCTION

The mobility and navigation of autonomous systems such as

self-driving vehicles, robots, and drones rely on simultaneous

localization and mapping (SLAM). Similarly, SLAM is crucial

in the odometry of virtual and augmented reality (VR/AR).

To track the location of the agent1 within a map, SLAM con-

stantly processes the inputs from sensors that periodically scan

the environment. To accurately run SLAM, researchers have

proposed several algorithms [1]–[5], the key building blocks of

which are compute-intensive matrix algebra such as multipli-

cation, transpose, and inversion. Additionally, with continued

advancement in sensor technologies with high scanning fre-

quency, SLAM performance is becoming a bottleneck for a

faster and more accurate navigation/odometry in autonomous

systems. With a limited power budget in autonomous systems,

performing the compute-intensive SLAM in real time is a key

challenge. This is why several recent studies have accelerated

SLAM on hardware [6]–[12].

Although the prior hardware implementations of SLAM

have gained performance improvements, they did not particu-

larly aim to consume power most efficiently. The first reason

is that none of them consider the sparse structure of the matrix

operation in SLAM, which results in inefficient accesses to on-

chip memory and high power consumption. Moreover, they

often paid less attention to the high ratio of data exchange

between a sequence of functions, which potentially consumes

high power if not implemented appropriately. For instance,

accelerating only the bottleneck-prune functions has been

proposed in prior work [6], [7], [9], which is necessary to

reduce latency but does not consume power efficiently. The

reason is that frequently transferring intermediate data between

1Agent refers to a vehicle, robot, drone, or a smart system running AR/VR.

the functions accelerated in the hardware and those executed in

a host incur extra accesses to on-chip memory and cause high

power consumption and outweigh the performance benefits.

In other studies, accelerating the prepossessing (i.e., feature

extraction) has been proposed [10], [11], which might not be

sufficient in achieving energy efficiency and low latency.

We accelerate the entire SLAM algorithm while considering

power consumption together with real timeliness. Our main

observation is that the computations of SLAM are sparse

and capture a deterministic structure of fixed-sized, small, and

dense matrix algebra. We exploit such sparsity, a fundamental

attribute of SLAM missed by prior work, to accelerate SLAM.

To realize our idea, we propose a power-aware implementation

of SLAM by customizing efficient sparse algebra, Pisces2,

which makes the following contributions:

• Pisces aligns the correlated dense blocks of data and maps

them to adjacent addresses of on-chip memory to enable

direct, deterministic, and parallel accesses.

• Pisces transforms the sparse matrix algebra to a sequence

of fixed-size dense matrix algebra and implements them

in a pipelined computation engine, which reads the

operands from on-chip memory only once and performs

all required operations on intermediate data before writ-

ing them back to the memory.

By making the preceding contributions, Pisces not only re-

duces power consumption by eliminating unnecessary accesses

to on-chip memory but also improves performance and guar-

antees real timeliness by enabling pipelined and concurrent

processing. For evaluation, we implement Pisces and the

state-of-the-art peers using Xilinx Vivado high-level synthesis

(HLS) tool. We implement them on a ZYNQ XC7Z020 FPGA.

Our results show that Pisces consumes 2.5× less power and

executes SLAM 7.4× faster than the state of the art.

II. SLAM OVERVIEW & RELATED WORK

Since the ’90s, several SLAM algorithms have been pro-

posed that are categorized as follows: (i) The direct methods,

which use the sensor inputs (e.g., RGB-D camera) to create

and process dense maps (e.g., dense visual SLAM [1]); (ii)

The indirect feature-based methods, which use a set of features

extracted from the sensor inputs rather than the images them-

selves (e.g., extended Kalman filter (EKF) [2] and oriented-fast

and rotated-brief (ORB) [3], [13] SLAMs). The main differ-

ence between the EKF and ORB methods is their accuracy. To

2Pisces is a constellation including eighteen main stars.












