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Abstract

The Differential privacy overview of Apple states,

“Apple retains the collected data for a maximum of

three months.” Analysis on recent data is formal-

ized by the sliding window model. This begs the

question: what is the price of privacy in the slid-

ing window model. In this paper, we study heavy

hitters in the sliding window model with window

size w. Previous works of Chan et al. (2012) es-

timates heavy hitters incur an error of order ✓w
for a constant ✓ > 0. In this paper, we give an ef-

ficient differentially private algorithm to estimate

heavy hitters in the sliding window model with
eO(w3/4) additive error and using eO(

p
w) space.

1. Introduction

Many real-world applications involve processing time-

evolving data. For example, consider a health agency track-

ing the spread of flu, or a network service provider mon-

itoring the traffic to be able to allocate resources and pre-

empt congestion, or a recommendation system following the

trending events to be able to better serve the users. Given the

temporal, streaming nature of data, a primary requirement

from a computational perspective is to enable analysis in

real time using small space. Furthermore, these systems

often rely on highly sensitive, private data and therefore,

privacy is of utmost concern in such applications. The fo-

cus, therefore, in this paper, is to study sublinear space

algorithms for private analysis of temporal data.

Several computing models have been studied for processing

temporal data. Perhaps, the most popular and the simplest of

all is the streaming model, wherein, at every time epoch new

data is received and processed but the output is produced

only at the end of the stream. This model has been studied

extensively in many privacy-preserving data analysis appli-

cations (Mir et al., 2011; Blocki et al., 2012; Upadhyay,
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2014a;b; Joseph et al., 2018). A related model that has been

studied with privacy considerations is that of continual re-

lease model, where the output is produced continually at

every time epoch as the data streams, in Chan et al. (2011);

Dwork et al. (2010a). Both these models consider the entire

stream of data useful (and hence, also referred to as the un-

bounded stream models). This is in contrast with the sliding

window model where the goal is to maintain a fixed length

window over the stream and process queries based on the

most recent data (Datar et al., 2002).

In this paper, we are primarily interested in the sliding win-

dow model since many real-world applications (including

the ones listed above) value recent data more than the his-

torical data. For example, Apple retains the data collected

from a user for a maximum of three months, anything older

than that is perhaps considered stale from the perspective

of making recommendations (Apple, 2017; Thakurta et al.,

2017a;b). A secondary motivation stems from privacy con-

cerns – naturally, if Apple retains only recent data for any

user, it limits the exposure to private data. From an algorith-

mic perspective, this poses an interesting question regarding

the privacy-vs-utility tradeoff since working with a sliding

window allows one to reclaim the privacy budget at every

epoch. Therefore, given a fixed privacy budget, one can give

a stronger privacy guarantee for a shorter sliding window

but at the expense of less accurate analysis.

Unlike privacy in the unbounded streaming model, privacy

in the sliding window model has largely been unexplored.

The only private algorithm in the sliding window model,

that we are aware of, is due to Chan et al. (2012) for finding

heavy hitters, i.e., returning a list of elements in a stream that

occur more than a certain number of times. The algorithm

of Chan et al. (2012) incurs an additive error of ✓w (for

a constant ✓ > 0) over a sliding window of size w, and

requires O(w) space. We, on the other hand, are interested

in sublinear space algorithm with o(w) additive error.

The requirement of sublinear space is very natural. For

example, consider network monitoring with a high-speed

router working at 100 Gbps line speed. At every epoch, one

of the objectives is to identify the IP address that injects the

highest traffic to the network. A trivial solution to this prob-

lem requires 1011 bits of space. However, in the scenario

of high-speed routers, where on-chip memory is expensive
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and multiple queries are made continuously, it is prohibitive

to use 1011 bits of memory for each query.

Our main contribution in this paper is a differentially private

algorithm for finding heavy hitters in the sliding window

model with space complexity o(w), and an additive error

guarantee of o(w) over the entire window.

1.1. Formal Problem Description

We first give an abstraction of problem description before

stating the specific problem we study in this paper. For

this, we fix the following notations. The stream consists of

elements from a set S. We use Y (and R, respectively) to

denote the domain (range, respectively) of the function to

be evaluated. We use id 2 Y to denote the initialization

value. We use N(µ,�2) to denote a Gaussian distribution

with mean µ and variance �2 and Lap(b) to denote a mean

zero Laplace distribution with scale b. For a vector x, we

use the notation ai(x) to denote its i-th coordinate.

An algorithm in the streaming model takes the following

as input: (update function) U : S ⇥ Y ! Y; (evaluation

function) f : Y ! R; and (stream) a sequence (st)
1
t=1,

where st 2 S.

The update function defines how the stream should be

interpreted to define the input to the desired evaluation

function. For an update function, we denote its output

on a subsequence of stream (sn, . . . , sm) by x[n,m] :=
U(sm, U(sm�1, . . . U(sn, id)) . . .) 2 Y. The goal of a

streaming algorithm is to evaluate f(x[1,t]) at any time t.

Let’s consider a simple example to make the setup clear.

An important problem from both numerical linear algebra

perspective as well as learning theory, is the problem of

principal component analysis.

Example 1 (Principal component analysis). Suppose

X = R
d, Y = R

d⇥d, R = R
d⇥k, and

U(x1, . . . , xt) =
P

i xix
>
i . Let k · kF denotes the Frobe-

nius norm of the matrix. Then f(U(x1, . . . , xt)) =

argminU2Rd⇥k

���UU> �Pt
i=1 xix

>
i

���
F
.

The streaming model do not lend themselves to settings

where the data are time-sensitive. In such settings, recent

data are considered more accurate than data that arrived

prior to a certain time window.

To model such settings, Datar et al. (2002) introduced the

sliding window model. An algorithm in the sliding window

model also takes the size of window w as input. The ob-

jective of the algorithm is to output f(x[t�w+1,t]) at any

time t, where x[t�w+1,t] 2 Y is formed by the last w up-

dates. More formally, we define the sliding window model

of computation as follows.

Definition 1. Given a paramter w for the size of window,

an input stream of updates, and a function of interest f(·),
a randomized algorithm in the sliding window model yields

a (T,↵,�, ⌧) accurate estimate if, in every execution, with

probability at least 1��, simultaneously, for all 1  t  T ,

after processing a prefix (x1, . . . , xt), the current output

contains an estimate, f⇤, such that |f⇤ � f(x[t�w+1,t])| 
↵f(x[t�w+1,t]) + ⌧ .

We use differential privacy as the notion of privacy. At a high

level, differential privacy requires that the output distribution

of computation on two “adjacent” dataset does not differ by

“much.” In the context of the sliding window, the dataset is

given as a stream and notion of adjacent streams dictates

what is private and what is not private. In this paper, the

dataset is represented in the form of a vector.

We consider two streams as adjacent if they differ in a single

time epoch in the current window by at most one. More

precisely, we consider two streams S = {s1, . . . , st} and

S0 = {s01, . . . , s
0
t} adjacent at time t if the resulting n-

dimensional vector x and x0 formed by the last w updates

differ in at most one entry by 1. That is, there is an 1 
i  n such that |ai(x) � ai(x

0)|  1 and aj(x) = aj(x
0)

for j 6= i. This can be seen as the extension of event-level

privacy (Dwork et al., 2010a; Chan et al., 2011) to the

sliding window model. We now give the formal definition

of differential privacy.

Definition 2 (Differential privacy). Let M : X⇤ ! R be a

randomized algorithm. M is "-differentially private if for

every adjacent streams S and S0 and every measurable set

C ✓ R, Pr[M(S) 2 C]  e"Pr[M(S0) 2 C].

As mentioned earlier, one of the main problems studied

in this paper is that of a heavy hitter defined by Cormode

& Muthukrishnan (2005). They considered (�, ⇢)-heavy

hitter, where we are required to output all elements whose

frequency is at least � kxk1 and not output any element

whose frequency is less than (�� ⇢) kxk1, where x is the

vector formed by the stream. An equivalent definition of

heavy hitters also used in the literature is as follows:

Definition 3 ((⇣, �)-sliding heavy hitters). Given a publicly

known bounded universe X = {1, . . . , u} and a stream of

input (xt)t�1, where each xt 2 {0, 1}
|X|

, the problem of

(⇣, �)-heavy hitters is to return all 1  i  u such that

ai(x) � (1 + ⇣)� kxk1 at time T , where x :=
PT

t=1 xt,

along with the estimates of their frequency. Further, it

should not output any 1  j  u with aj(x) < (1 �
c⇣)� kxk1 for some constant c > 0.

It is easy to see that by setting � and ⇢ appropriately,

the above formulation is equivalent to the one considered

by Cormode & Muthukrishnan (2005).

As one can observe, we use the set-up similar to Chan et al.

(2012). In our set up, the universe and the individuals are
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separate. Every update can be seen as a user reporting an

element of the universe. That is, we consider the underlying

universe is publicly known. As such revealing the identity

of the heavy hitter does not reveal the identity of the user.

Our results are easily extendable to the setting where more

than one users contribute to an update.

Our Contributions. Current state-of-the-art non-private

algorithms in the sliding window model uses the smooth

histogram framework of Braverman & Ostrovsky (2010)

(see Section 2 for formal definition). A natural question is

whether we can extend this framework to differential privacy.

We give a counterexample showing that one cannot extend

this framework to the private setting even for a single release

of the output without incurring a prohibitively large additive

error (Claim 1). On the positive side, we give an algorithm

to estimate heavy hitters with accuracy eO(w3/4/") over the

entire window (Theorem 4 and Theorem 5) that uses space

sublinear in w. This significantly improves the previous

result by Chan et al. (2012), which incurs ✓w additive error

(for a constant ✓ > 0). We then show that dependence of

space on w is inevitable for a constant multiplicative ap-

proximation by giving a space lower bound for estimating

heavy-hitters by any differentially private algorithm (Theo-

rem 6). The lower bound on the space is for the case when

we produce the output just once.

Challenges of the Sliding Window Model. It is not clear

if existing techniques used in privacy-preserving algorithms

can be used in the sliding window model. There are two

techniques used in the previous works to deal with data in

the streaming model: private version of Bentley & Saxe

(1980)’s method and random projection based method. The

private version of Bentley & Saxe (1980)’s static to dynamic

data-structure transformation has been a key component of

many previous works (Chan et al., 2011; 2012; Dwork et al.,

2010a). Unfortunately, the construction of Bentley & Saxe

(1980) does not allow “automatic” deletion that happens in

the sliding window model (once a stream element is expired).

One can still use the construction to output an estimate in

the window of size w at the expense of using O(N) space,

where N is the total length of the stream. However, this is

highly undesirable when N � w. In concise, it is unclear

if we can use techniques based on Bentley & Saxe (1980)

to provide even O(w) space sliding window algorithm.

Another workhorse of low-space differentially private algo-

rithms is randomized projections (Arora et al., 2018; Bassily

& Smith, 2015; Bassily et al., 2017; Blocki et al., 2012;

2013; Kenthapadi et al., 2012; Liu et al., 2006; Upadhyay,

2013; 2018). All these techniques use linear sketches. How-

ever, once an input has been sketched, there is no way we

can find out its influence on the sketch at a later point if we

do not store the update. Since the sliding window has auto-

matic deletion and not stream based deletion, it is unclear

how to update the sketch due to the automatic deletion of

the update that lies beyond the current window.

Finally, one may argue that we can use existing non-private

algorithms in the sliding window model for heavy hitters

and then produce a private estimate of their output. The only

known (non-private) algorithm, that we are aware of, for

heavy hitters in the sliding window model is that by Braver-

man et al. (2018b). However, while their algorithm can be

used to estimate heavy hitters once, it is not clear how to

extend it to estimate heavy hitters continually over the entire

window because of some of the subroutines used in their

algorithm.

Our Approach. Our approach is different from previous

algorithms. At a high level, at any time T , we store a set

of time-stamps that is defined using a known algorithm in

the sliding window model for estimating frequency moment,

F1. Suppose these time stamps are t1 < t2 < · · · < ts = T .

We privately compute F1 of the vector formed during the

time interval [t1, T ] (say this is `⇤). We use the checkpoints

corresponding to the time stamps t1, . . . , ts to execute s
independent instances of private COUNT-MIN algorithm,

say CM1, . . . , CMs. These invocations results in a set

of s vectors, v1, . . . , vs. Here vi is the vector formed by

executing COUNT-MIN sketch on the n-dimensional vector

formed during the time interval [ti, T ]. To compute the

heavy hitter in the updates formed during the time interval

[T�w+1, T ], we use the private estimation of the norm, i.e.,

`⇤ with the sketch generated by the private COUNT-MIN

instance CM1. The analysis requires a delicate balance

due to the combination of streaming algorithm and sliding

window algorithm as well as the noise required to preserve

privacy. The linearity of COUNT-MIN and estimation of `1
norm allows us to extend the result to continual observation

over the entire window.

We believe this approach of combining techniques in the

sliding window model along with the techniques in the

streaming model of computation can be used to give private

algorithms for many other practically important functions.

2. Prior related work

Without any space constraints, one can compute any com-

putable function exactly in space O(w) using the generic

transformation based on the technique of Bentley & Saxe

(1980). However, such algorithms are infeasible in the prac-

tical setting discussed in Section 1. Therefore, one primary

objective in the sliding window model is to perform the

computation using o(w) space.

There are two main techniques that yield sublinear space

algorithms in the sliding window model, one is the expo-

nential histogram based approach for subadditive functions
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and the other is the smooth histogram based approach for

(↵,�)-smooth functions. Our algorithms use the smooth

histogram framework for estimating certain functions of the

streamed vector. To understand the framework, we first need

the definition of a smooth function.

Let A,B,C be a subsequence of the stream such that B is a

subsequence of A and C follows A. By abusing the notation,

we denote by f(A) the computation of the function f on the

variable formed due to the updates in the subsequence A.

Definition 4 (Smooth Function). A function f : X
⇤ ! R

is (↵1,↵2)-smooth (with 0 < ↵2  ↵1 < 1) if it has the

following properties: (a) 1
poly(w)  f(A)  poly(w) for

any subsequence A; (b) f(B)  f(A) for B ✓ A; and

(c) For any subsequence A,B and C such that B ✓ C, if

(1�↵2)f(A)  f(B), then (1�↵1)f(A[C)  f(B[C).

The smooth histogram data structure maintains a number of

“checkpoints” throughout the data stream. Each checkpoint

corresponds to a sketch of all the elements observed from

the time of the checkpoint until the most recently arrived

element. The most recent element received influences all the

sketches in the smooth histogram. A checkpoint is created

with the arrival of each new element and checkpoints are

discarded when their corresponding sketches get “too close”

to the next checkpoint. Braverman & Ostrovsky (2010)

constructed a smooth histogram data structure for smooth

functions and showed the following.

Theorem 1 (Braverman & Ostrovsky (2010)). Let ↵ be

the desired approximation parameter. Let f : X ! R be

an (↵1,↵2)-smooth function for ↵1 and ↵2 some function

of ↵. Let w be the sliding window parameter and (dt)
1
t=1

be a data stream. Assume that there exists an algorithm

in the insertion only model that computes the function f
within (1� ↵, 1 + ↵) factor using Sf space and Uf update

time. Then there is an efficient algorithm that computes the

function f(·) in the sliding window model using O( 1
↵2

(Sf +

logw) logw) space and O( 1
↵2

Uf logw) operations.

A direct corollary of Theorem 1 is the estimation of `1 norm.

Braverman & Ostrovsky (2010) maintain s = O( 1
↵
logw)

checkpoints to estimate frequency moment of a stream

within (1 � ↵, 1 + ↵) factor. The output of their algo-

rithm is ` :=
��x[t1,t]

��
1
, where x[t1,t] is the vector formed

between the first checkpoint and the current time. We refer

the interested readers to Braverman & Ostrovsky (2010) for

more details. They showed the following result.

Lemma 1 (Braverman & Ostrovsky (2010)). There is

a sliding window algorithm that on input a stream that

forms a vector x in the current window and approxima-

tion parameter ↵, outputs an estimate ` 2 R such that

(1� ↵)`  kxk1  (1 + ↵)` at time t. The space required

by this algorithm is O( 1
↵
logw log(1/�)).

Our algorithm uses an instantiation of COUNT-MIN algo-

rithm by Cormode & Muthukrishnan (2005). We use the

following result:

Theorem 2 ((Cormode & Muthukrishnan, 2005)). For a

stream x, let aqi(x) be the actual frequency of element

qi and baqi(x) is the frequency estimated by COUNT-MIN

algorithm executed with parameters (�, ⇣/4,�). Then with

probability at least 1 � �, it outputs all elements qi with

frequency aqi(x) � (1 + ⇣)� kxk1 such that |aqi(x) �
baqi(x)|  3

2�⇣ kxk1.

In the context of privacy, Dwork et al. (2010a) were the

first to study the continual observation model within the

framework of differential privacy. They gave a matching up-

per and lower bound on the achievable accuracy for a large

class of functions; however, they do not place any space

restriction. Further, their bound does not address the setting

where we may be willing to allow a small multiplicative

approximation.

3. Sliding Window and Privacy

In view of Theorem 1, one may ask whether such reduction

works even with privacy, i.e., can we just take the off-the-

shelf algorithm for (↵1,↵2)-smooth functions and privatize

it. Unfortunately, this is not the case as we show next.

Following is a simple example when the sensitivity of a

smooth function can be arbitrarily large.

Example 2 (Frequency moment). Consider the problem of

privately computing the p-th frequency moment, Fp(x) :=
kxkp1, of an input stream x := (xt)t�1 with integer

entries. Braverman & Ostrovsky (2010) showed that

Fp(x) is (↵,↵p/pp)-smooth for p � 1. Consider two

adjacent streams S = (x1, · · · , xi, · · · , xt) and S0 =
(x1, · · · , x

0
i, · · · , xt). Fp(·) on the last w inputs for the

streams S and S0 would be

Fp = kxkp1 ;F 0
p = (ai(x) + 1)p + kxkp1 � (ai(x))

p,

where x is the vector formed by the last w updates. The

sensitivity of this function is |Fp � F 0
p| = (ai(x) + 1)p �

ai(x)
p, which can be arbitrariliy large if the vector has

entries in the set of natural numbers, N.

In fact, the following claim based on a standard packing

argument shows that we can have an arbitrary large addi-

tive error. A detailed proof appears in the supplementary

material.

Claim 1. Let " < 1 and p > 21+". Consider a set of data

streams x
(1)
[t�w+1,t], . . . , x

(p)
[t�w+1,t] 2 R

w such that

|Fp(x
(`)
[t�w+1])� Fp(x

(`0)
[t�w+1])| � ⇠

for some ⇠. Any "-differentially private algorithm for com-

puting Fp(·) must add noise at least ⇠/4.
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Therefore, in addition to the smoothness, we require some

additional assumption. One such assumption that is com-

mon in the literature of differential privacy is that is that of

Lipschitzness. Making these assumptions, we can privately

compute the `2 and `1 norm of the streamed vector in the

sliding window (see supplementary material).

Theorem 3. Let (xt)t�1 be the stream. For a window of size

w, let x be the vector formed by last w updates. Then there

is an efficient "-differentially private algorithm in the sliding

window model that uses O( 1
↵
logw) space and outputs an

estimate è
1 at any time t such that, with probability at least

1� �,

���è1 � kxk1
���  ↵ kxk1 +O

�
1
✏
log(1/�)

�
.

3.1. Private Heavy Hitter in the Sliding Window Model

We now turn our attention to privately estimate the heavy

hitters in the sliding window model. Chan et al. (2012) also

studied this problem under event-level privacy as studied in

this paper. Let X be the universe from which the elements

are picked. They consider that every update xt increases the

count of one element in the universe by one. In the vector

notation, every update is a vector xt 2 {0, 1}
|X|

and we are

interested in a |X| dimensional vector formed by the last

w updates. In this set-up, their algorithm incur an additive

error ✓w for a constant ✓ > 0.

In this section, we first present an algorithm with space

requirement sublinear in w while providing accuracy for

one-time release of the estimate (Theorem 4). We then show

that we can improve the total additive error to be sublinear

in w over the entire window while using sublinear space

(Theorem 5). We show the following result for Algorithm 1.

Theorem 4. Let (xt)t�1 be the streamed vector with

xt 2 {0, 1}
|X|

. For a window of size w, let x :=
x[t�w+1,t] be the vector formed by last w updates, i.e.,

x =
PT

t=T�w+1 xt. Let ⇢ = 3�⇣
2 and � = (1 + ⇣)�,

k = O( 1
�
). Then the following holds:

1. PRIVATE-L1-HEAVY (described in Algorithm 1) is

"-differentially private in the sliding window model.

2. PRIVATE-L1-HEAVY satisfies the following with prob-

ability at least 1�3�: If aqi(x) � (1+⇣)� kxk1, then

(qi, aqi(x)) 2 LIST, then

|eaqi(x)� aqi(x)| 
3⇣�

2
kxk1 +O

✓
1

"
log

✓
k

�

◆◆
.

Further, LIST does not include any element

j 2 {1, . . . , n} such that its frequency xi <⇣
1� ⇣

2

⌘
� kxk1 � (2 � 13

4 ⇣)�⌧1 for ⌧1 as in Algo-

rithm 1; and (b)

Algorithm 1 PRIVATE-L1-HEAVY ((xt)t�1;w; "; (�, ⇣,�)

Require: A stream ((xt)t�1 with xt 2 R, COUNT-MIN

algorithm for estimating heavy hitter in the streaming

model, window size w, privacy parameter ", parameters

(�, ⇣,�) for COUNT-MIN algorithm.

Ensure: LIST := {(q1,eaq1(x)), . . . , (qk,eaqk(x))} of esti-

mates of heavy hitters, where k  1/�.

1: Maintain checkpoints t1, . . . , ts and corresponding es-

timates of
��x[1,t]

��
1
, . . . ,

��x[s,t]

��
1

using the sliding

window algorithm of Braverman & Ostrovsky (2010)

for `1 norm with ↵ = ⇣/2 as an approximation parame-

ter. Here s = O( 1
⇣
logw log(1/�)). Set k = O( 1

�
).

2: Compute
��bx[i,t]

��
1
=

��x[i,t]

��
1
+ Lap(2/") for all 1 

i  s.

3: Execute COUNT-MIN with parameters

(�, ⇣/4,�) on x[1,t] to compute a list bL :=
{(q1,baq1(x)), . . . , (qk,baqk(x))}.

4: Update: LIST  LIST [ {qi,eaqi(x)} if baqi(x) �⇣
(1� ⇣

2 )�
��bx[1,s]

��
1
� ⌧1

⌘
, where eaqi(x) = baqi(x) +

Lap(2/") and ⌧1 := O
�
1
"
log(1/�)

�
.

5: Output LIST.

3. The space required by PRIVATE-L1-HEAVY is

O
⇣

1
�⇣

logw log2(k/�) log n
⌘

and the update time

per new input is O( 1
⇣
logw log2(k/�)).

We note that the multiplicative approximation in the fre-

quency estimate of heavy hitter is the same as in Cormode

& Muthukrishnan (2005) (see Theorem 2). The cost of

privacy is in the form of additive error in the estimate of

the frequencies of heavy hitters and in the guarantee for

rejecting elements that have low frequencies. The cost of

the algorithm in the sliding window is in the form of an

s = O( 1
⇣
logw log(�/k)) factor increase in the space re-

quirement.

To compare with the non-private sliding window algorithm

for heavy hitters by Braverman et al. (2018b), we achieve

the same space bound (see Theorem 3 in Braverman et al.

(2018b)) and more flexibility in the approximation parame-

ter than their result. Our algorithm is arguably simpler than

theirs while affording us to extend easily to the continual

observation over the entire window (see Theorem 5). How-

ever, their algorithm is more general than ours. That is, their

algorithm can estimate lp-heavy hitters for 0 < p < 2.

For the accuracy bound, note that we can pick ⇣ and � to be

a small constant. In particular, we can pick ⇢ = ⇣� = 1
w1�κ

for a small constant  > 0 that would lead to a sublinear in

w accuracy bound while making sure that the space required

is also sublinear in w. This is in contrast with the non-private

algorithm of Braverman et al. (2018b).
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As a final remark, we note that all the constructions in this

paper can be extended to the case when xt 2 N
|X|, where

N denotes the set of natural numbers. However, for the ease

of presentation, we only present it for binary vector.

Proof. We first give the correctness proof. Let x :=
x[t�w+1,t] be the vector formed by the window. Let��x[1,t]

��
1
, . . . ,

��x[s,t]

��
1

be the value of the norm of the

checkpoints and
��bx[1,t]

��
1
, . . . ,

��bx[s,t]

��
1

be the private esti-

mates of these vectors. Then, with probability at least 1��,

8i 2 [s],
����x[i,s]

��
1
�
��bx[i,s]

��
1

��  ⌧1.

The correctness proof now relies on two lemmata: Lemma 2

which states that the heavy elements are included in LIST

and Lemma 3 which guarantees that non-heavy elements

are discared with high probability.

Lemma 2. Let L = {(q1, aq1(x)), . . . , (qk, aqk(x))}

be the true list of heavy hitters, bL :=
{(q1,baq1(x)), . . . , (qk,baqk(x))} be the list of heavy hitters

(and their estimated frequency) returned by the COUNT-

MIN algorithm, and eL := {(q1,eaq1(x)), . . . , (qk,eaqk(x))}
be the private computation of the heavy hitters. Then

if aqi � (1 + ⇣)� kxk1, then (qi,eaqi(x)) 2 LIST with

probability at least 1� 2�.

Proof. We prove Lemma 2 using two claims. Claim 2 guar-

antees that heavy elements are returned in Step 2 of the algo-

rithm and Claim 3 asserts that these elements are included

in LIST. The proofs of these claims rely on Theorem 2 and

the approximation guarantee of Lemma 1.

Claim 2 (Heavy hitters are included in bL). If aqi(x) �
(1+⇣)� kxk1, then qi 2 bL with probability at least 1��/k.

Proof. First note that the output, `, by the algorithm

of Braverman & Ostrovsky (2010) is x[1,t]. Therefore, x[1,t]

is such that

(1� ↵)
��x[1,t]

��
1
 kxk1  (1 + ↵)

��x[1,t]

��
1
. (1)

Moreover, by the construction of Braverman & Ostrovsky

(2010), the window starts after the first checkpoint and

before the second check-point. That is x is a subsequence of

x[1,t]. Therefore, if aqi(x) � (1 + ⇣)� kxk1, then we have

the following set of inequalities:

aqi(x[1,t]) � aqi(x) � (1 + ⇣)� kxk1
� (1 + ⇣)(1� ↵)�

��x[1,t]

��
1
.

Since ↵ = ⇣/2 and ⇣ < 1/2, we have

(1+⇣)(1�↵) = (1+⇣)(1�⇣/2) � (1+
⇣

2
� ⇣2

2
) � (1+

⇣

4
).

This implies aqi(x[1,t]) � (1 + ⇣/4)�
��x[1,t]

��
1

and using

Theorem 2, it will be detected with probablity at least 1�
�/k. This completes the proof of the Claim 2.

Claim 3 (Heavy hitters are included in LIST). If aqi(x) �
� kxk1, then the algorithm includes qi in LIST with proba-

bility at least 1� �/k.

Proof. Using equation (1), if aqi(x) � (1 + ⇣)� kxk1, then

we have the following:

baqi(x[1,t]) � aqi(x[1,t])� ⇢
��x[1,t]

��
1

(Theorem 2)

� aqi(x)� ⇢
��x[1,t]

��
1

(by definition)

� aqi(x)�
⇢

(1� ↵)
kxk1 (Lemma 1)

�
✓
1 + ⇣ � 3⇣

2(1� ↵)

◆
� kxk1 .

Since ⇣
(1�↵) > 0 and

��bx[1,t]

��
1


��x[1,t]

��
1
+ ⌧1 

(1+⇣)�
(1�↵) kxk1 + ⌧1, we have that qi is included in LIST with

probability at least 1� �. Claim 3 follows.

Combining Claim 2 and Claim 3 completes the proof of

Lemma 2

Claim 4. If (qi,eaqi(x)) 2 LIST, then |aqi(x)� eaqi(x)| 
3⇢
2 kxk1+ ⌧2 with probability at least 1��/k, where ⌧2 :=
O
�
1
"
log(1/�)

�
.

Proof. Using triangle inequality, we have |aqi(x) �
eaqi(x)|  |aqi(x)�baqi(x)|+|baqi(x)�eaqi(x)|  3⇢

2 kxk1+
⌧2 with probability at least 1� �/k.

We next prove that with high probability, elements that do

not occur with considerable frequency are not included.

Lemma 3 (Non-heavy elements are not included). Algo-

rithm 1 does not include any element with frequency smaller

than (1 � c1⇣)� kxk1 � (2 � 13
4 ⇣)�⌧1 with probability at

least 1� �.

Proof. Let (aq1(x), . . . , aqk(x)), (baq1(x), . . . ,baqk(x)),
and (eaq1(x), . . . ,eaqk(x)) be as before. Let � = (1 + ⇣)�
and ⇢ = 3

2⇣�. Then (1� ⇣/2)� = (1+ ⇣)�� 3
2⇣� = ��⇢.

We want to prove that no element qi is included in LIST if

its frequency is below (�� 3⇢) kxk1 � (2� � 7
2⇢)⌧1.

If qi was included in LIST, then we have

baqi(x[t1,t]) � (�� ⇢)(
��bx[t1,t]

��
1
� ⌧1). That is,

aqi(x[t1,t]) � baqi(x[t1,t])�
3⇢

2

��bx[t1,t]

��
1

�
✓
�� ⇢� 3⇢

2

◆��bx[t1,t]

��
1
� (�� ⇢)⌧1

=

✓
�� 5⇢

2

◆��bx[t1,t]

��
1
� (�� ⇢)⌧1

�
✓
�� 5⇢

2

◆��x[t1,t]

��
1
�
✓
2�� 7⇢

2

◆
⌧1



Sublinear Space Private Algorithms Under the Sliding Window Model

with probability at least 1 � �/k. Further, we have the

following:

kxk1 = aqi(x) +
X

j 6=qi

aj(x),

��x[t1,t]

��
1
= aqi(x[t1,t]) +

X

j 6=qi

aj(x[t1,t]).

Now using equation (1), kxk1 � (1� ↵)
��x[t1,t]

��
1
. Com-

bined with aj(x[t1,t]) � aj(x) � 0, this implies that

aqi(x) � aqi(x[t1,t])� ⇢
3

��x[t1,t]

��
1
. That is,

aqi(x) �
✓
�� 5⇢

2
� ⇢

3

◆��x[t1,t]

��
1
�
✓
2�� 7⇢

2

◆
⌧1

=

✓
�� 17⇢

6

◆��x[t1,t]

��
1
�
✓
2�� 7⇢

2

◆
⌧1

� (�� 3⇢) kxk1 �
✓
2�� 7⇢

2

◆
⌧1.

This completes the proof of Lemma 3 by putting the value

of � and ⇢.

Combining Lemmata 2 and 3 with Claim 4 completes the

proof of accuracy guarantee of Theorem 4.

For the privacy proof, recall that we consider event level

privacy and the universe size is publicly known. Every user

at a time epoch picks an element in the universe; thereby,

contributing a counter of one to the frequency xt. As such,

preserving the privacy of an event (or user if a user is re-

stricted to contribute just once) means preserving the pri-

vacy of the estimates of the heavy hitters. Note that we

use a private estimate of kxk1. This is reminiscent of the

Numeric- Sparse algorithm (Dwork & Roth, 2014). The

privacy proof follows just like Numeric-Sparse algorithm

using the fact that every entry of the COUNT-MIN can

change by at most 1 under the adjacency relation considered

in this paper. For the space bound, Cormode & Muthukrish-

nan (2005) showed that any instance of COUNT-MIN uses

O( 1
�
log(1/�) log(|X|)) space. Using Lemma 1, the total

space required is s ·O
�
��1 log(1/�) log(|X|)

�
as required.

The update time follows from the fact that the update algo-

rithm of Braverman & Ostrovsky (2010) is O(s) and that of

every COUNT-MIN sketch is O(log(1/�)).

This completes the proof of Theorem 4.

Theorem 4 assumes that the estimate of the frequencies of

heavy hitters is produced just once. However, there are

scenarios when we would like to estimate the frequencies of

heavy hitters more than once. The following result follows

as a simple corollary to Theorem 4 and the composition

theorem of differential privacy (Dwork & Roth, 2014).

Corollary 1. Let x be as in Theorem 4. Suppose Algo-

rithm 1 releases the estimate of heavy hitters at most r
times. Let ⇢ = 3�⇣

2 and � = (1 + ⇣)�. Algorithm 1 is

"-differentially private in the sliding window model, and

it outputs LIST = {(q1,ea1(x)), . . . , (qkeak(x))} in each of

the release such that with probability at least 1�O(�),

|eaqi(x)� aqi(x)|  ⇢ kxk1 +O

✓
1

"
log(1/�)

◆

for all aqi(x) � � kxk1. Further, it does not include any

element qi such that its frequency aqi(x) < (��3⇢) kxk1�
(2� � 7⇢

2 )⌧1 for ⌧1 as in Algorithm 1 and a universal con-

stant c1. Furtheremore, the space required by Algorithm 1

is O
⇣

1
⇢
logw log2(1/�) log |X|

⌘
and the update time per

new input is O( 1
⇣
logw log2(1/�)).

3.2. Private Heavy Hitter Over the Entire Window

To reduce the additive error over the entire window, we

divide the window into equal disjoint sub-windows of sizep
w and run the first three steps of Algorithm 1 on each

of the sub-window. We then output the list by using the

aggregate of all the
p
w COUNT-MIN sketches and the esti-

mate of the norms of the vector formed by the partitioned

window. Here, we exploit the linearity of COUNT-MIN

sketch and `1 norm. We present the details of this algorithm

in the supplementary material. We refer to this algorithm

as PRIVATE-HEAVY. Using the analysis as in Section 3.1

and the result of Chan et al. (2011) (that is, every estimate

requires evaluation of
p
w sub-windows and every element

occurs exactly
p
w times over all the estimates – correspond-

ing to the sub-window it is in), we arrive at the following

result.

Theorem 5. Let (xt)t�1 be the streamed vector with xt 2
{0, 1}

|X|
and x =

PT
t=T�w+1 xt. Let ⇢ = 3�⇣

2 and � =

(1 + ⇣)�, k = O( 1
�
). Then the following holds:

1. PRIVATE-HEAVY is "-differentially private algorithm

in the sliding window model.

2. It outputs LIST = {(q1, exq1), . . . , (qk, exqk)} such that,

with probability at least 1 � O(�), simultaneously

over the entire window, following holds: For all xqi �
(1+⇣)� kxk1, where xqi is the value of qi-th coordinate

in x,

|exqi � xqi | 
3⇣�

2
kxk1 +O

✓
w3/4

"
log(w/�)

◆
.

Further, LIST does not include any element qi such

that xqi <
⇣
1� ⇣

2

⌘
� kxk1 �O(w

3/4

"
log(w/�))

3. The space required by PRIVATE-HEAVY is

O
⇣p

w
⇢

logw log2(w/�)
⌘
.
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Algorithm 2 PRIVATE-HEAVY ((xt)t�1;w; "; �;�; k)

Require: A stream (xt)t�1, where xt 2 R, COUNT-MIN

algorithm for estimating heavy hitter in the streaming

model, window size w, privacy parameter ", parameters

(�, ⇣,�) for COUNT-MIN .

Ensure: LIST := {(q1,eaq1(x)), . . . , (qk,eak(x))}.

1: Divide the window in to
p
w smaller window,

W1,W2, . . . ,Wp
w.

2: for i = 1 . . . ,
p
w do

3: Maintain checkpoints t1, . . . , ts and correspond-

ing estimates of

���x(i)
[1,t]

���
1
, . . . ,

���x(i)
[s,t]

���
1

using the

sliding window algorithm of Braverman & Ostro-

vsky (2010) for `1 norm in the window Wi with

↵ = ⇣/2 as an approximation parameter. Here

s = O( 1
�
logw log(1/�)). Set k = 1/�.

4: Compute

���bx(i)
[j,t]

���
1

=
���x(i)

[j,t]

���
1

+

Lap(2
p
w logW/") for all 1  j  s.

5: Form COUNT-MIN sketch of x
(i)
[j,t] for 1  j  s

with parameters (�, ⇣/4,�/k) to form a vector y
(i)
[j,t].

6: Privatize by adding Lap(2
p
w/✏) to each entry of

the vector y
(i)
[j,t]. Let the resulting vector be z

(i)
[j,t].

7: end for

8: Compute
��bx[1,t]

��
1

=
P

i

���bx(i)
[1,t]

���
1
. Use y[1,s] :=

P
i y

(i)
[1,t], the combined COUNT-MIN, to construct

a list bL = {(q1,ba1(x)), . . . , (qk,bak(x))} of es-

timated non-private heavy hitters. Let eL =
{(q1,ea1(x)), . . . , (qk,eak(x))}.

9: Include: (qi,eaqi(x)) in LIST if baqi(x) �⇣
(1� ⇣

2 )�
��bx[1,s]

��
1
�O

⇣
w3/4

"
log(1/�)

⌘⌘
.

10: Output LIST.

To make a fair comparison with Chan et al. (2012), we set

⇢ = 1p
w

and c = O(1). When kxk1 = Ω(w3/4), this gives

a non-trivial accuracy guarantee. In particular, in the setting

of Chan et al. (2012), we achieve non-trivial accuracy in

O(
p
w) space if 1

w1/4 fraction of the updates are non-zero.

3.3. Space Lower Bound for Single Output

In the previous section, we gave an efficient differentially

private algorithm for heavy hitters in the sliding window

model using sublinear space. A natural question one can

ask is whether it is possible to estimate heavy hitters in

space independent of window size? We show that it is not

the case and we need at least O(logw) space even if we

want a constant multiplicative approximation. We do this

by reducing the problem of computing private heavy hitter

in the sliding window model to one-way communication

complexity of augmented index problem (AIND):

Definition 5 (Augmented Index Problem (AIND)). Alice

has a string x 2 {0, 1}
p

and Bob has an index i 2 [p] along

with x1, . . . , xi. The players wish to compute the value of

xi, the i-th coordinate of x.

Miltersen et al. (1995) showed that solving the AIND using

one round of communication is hard, even if the players

have shared randomness, requires Ω(p) bits. We show a

reduction showing that if we can estimate heavy hitters in

space o( 1
�
logw), then it can be used to solve AIND with

communication O(p) for appropriate choice of p, thereby

contradicting the result of Miltersen et al. (1995). This gives

us the following theorem; a detailed proof can be found in

the supplementary material.

Theorem 6. Any differentially private algorithm that re-

turns the (⇣, �, 2/3, w)-heavy hitters in the sliding window

model requires Ω
⇣

1
�⇣

logw
⌘

bits.

4. Discussion and Future Work

Our technique gives a new way to design and analyse dif-

ferentially private algorithm in the sliding window model

to give a non-trivial accuracy bound while using just o(w)
space. This significantly improves the best known result for

heavy hitters. We also showed a lower bound on the space

required by differentially private algorithm in the sliding

window model.

Our results pose several interesting open questions. One

important question is to understand the optimal space re-

quirement of private heavy hitter algorithm simultaneously

over the entire window. Another question is to understand

whether we can improve the accuracy guarantee to be poly-

logarithmic in w.
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