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Abstract

Large-scale distributed training of neural networks is often limited by network band-
width, wherein the communication time overwhelms the local computation time.
Motivated by the success of sketching methods in sub-linear/streaming algorithms,
we introduce SKETCHED-SGD4, an algorithm for carrying out distributed SGD by
communicating sketches instead of full gradients. We show that SKETCHED-SGD
has favorable convergence rates on several classes of functions. When considering
all communication – both of gradients and of updated model weights – SKETCHED-
SGD reduces the amount of communication required compared to other gradient
compression methods from O(d) or O(W ) to O(log d), where d is the number
of model parameters and W is the number of workers participating in training.
We run experiments on a transformer model, an LSTM, and a residual network,
demonstrating up to a 40x reduction in total communication cost with no loss in
final model performance. We also show experimentally that SKETCHED-SGD
scales to at least 256 workers without increasing communication cost or degrading
model performance.

1 Introduction

Modern machine learning training workloads are commonly distributed across many machines using
data-parallel synchronous stochastic gradient descent. At each iteration, W worker nodes split a
mini-batch of size B; each worker computes the gradient of the loss on its portion of the data, and then
a parameter server sums each worker’s gradient to yield the full mini-batch gradient. After using this
gradient to update the model parameters, the parameter server must send back the updated weights to
each worker. We emphasize that our method can naturally be extended to other topologies as well
(e.g. ring, complete, etc.) – in particular we would then communicate sketches over a minimum
spanning tree of the communication graph. However, for ease of exposition, in this work we focus
exclusively on the star topology. For a fixed batch size B, the amount of data each worker processes
– and therefore the amount of computation required – is inversely proportional to W . On the other
hand, the amount of communication required per worker is independent of W . Even with optimal
interleaving of the communication and computation, the total training time is at least the maximum
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of the per-worker communication time and per-worker computation time. Increasing the number of
workers W therefore yields an increasingly marginal reduction in the training time, despite increasing
the overall training cost (number of machines times training time) linearly in W .

Several approaches address this issue by using a large batch size to increase the per-worker computa-
tion time [You et al., 2017, Goyal et al., 2017]. However, theoretical and empirical evidence both
suggest that there is a maximum mini-batch size beyond which the number of iterations required
to converge stops decreasing, and generalization error begins to increase [Ma et al., 2017, Li et al.,
2014, Golmant et al., 2018, Shallue et al., 2018, Keskar et al., 2016, Hoffer et al., 2017]. In this
paper, we aim instead to decrease the communication cost per worker. We use a technique from
streaming algorithms called sketching, which allows us to recover favorable convergence guarantees
of vanilla SGD. In short, our algorithm has workers send gradient sketches of size O(log d) instead
of the gradients themselves. Although other methods for reducing the communication cost exist, to
our knowledge ours is the only one that gives a per-worker communication cost that is sub-linear in d
and constant in W . In practice, we show that our method achieves high compression for large d with
no loss in model accuracy, and that it scales as expected to large W .

2 Related Work

Most existing methods for reducing communication cost in synchronous data-parallel distributed
SGD either quantize or sparsify gradients. A number of quantization methods have been proposed.
These methods either achieve only a constant reduction in the communication cost per iteration
[Wen et al., 2017, Bernstein et al., 2018], or achieve an asymptotic reduction in communication cost
per iteration at the expense of an equal (or greater) asymptotic increase in the number of iterations
required [Alistarh et al., 2017]. Even in the latter case, the total communication required for all of
training sees no asymptotic improvement.

Other methods sparsify the gradients instead of quantizing each gradient element [Stich et al., 2018,
Alistarh et al., 2018, Lin et al., 2017]. A popular heuristic is to send the top-k coordinates of the
local worker gradients and then average them to obtain an approximate mini-batch gradient. These
methods can achieve good performance in practice, but they suffer from a few drawbacks. They
currently have no convergence guarantees, since the estimated mini-batch gradient can be very far
from the true mini-batch gradient (unless explicitly assumed, as in e.g. Alistarh et al. [2018]), which
precludes appealing to any known convergence result. Another drawback is that, although these
methods achieve high compression rates when the workers transmit gradients to the parameter server,
the return communication of the updated model parameters grows as O(W ): the local top-k of each
worker may be disjoint, so there can be as many as kW parameters updated each iteration. This
O(W ) communication cost is not just a technicality, since reducing the back-communication to O(k)
would require sparsifying the sum of the local top-k, which could hinder convergence. Because of
this scaling, local top-k methods suffer from poor compression in settings with large W .

From another standpoint, all gradient compression techniques yield either biased or unbiased gradient
estimates. A number of quantization methods are crafted specifically to yield unbiased estimates,
such that the theoretical guarantees of SGD continue to apply [Alistarh et al., 2017, Wen et al., 2017].
However, even without these guarantees, a number of methods using biased gradient estimates were
also found to work well in practice [Bernstein et al., 2018, Seide et al., 2014, Strom, 2015]. Recently,
Stich et al. [2018], Karimireddy et al. [2019] gave convergence guarantees for this kind of biased
compression algorithm, showing that accumulating compression error locally in the workers can
overcome the bias in the weight updates as long as the compression algorithm obeys certain properties.
Our method falls into this category, and we prove that compressing gradients with sketches obeys
these properties and therefore enjoys the convergence guarantees in Stich et al. [2018]. In effect, we
introduce a method that extends the theoretical results of Stich et al. [2018] from a single machine
to the distributed setting. Concurrently with this work, Koloskova et al. [2019] also introduce a
distributed learning algorithm with favorable convergence guarantees, in which workers communicate
compressed gradients over an arbitrary network topology.

Prior work has proposed applying sketching to address the communication bottleneck in distributed
and Federated Learning [Konečnỳ et al., 2016, Jiang et al., 2018]. However, these methods either do
not have provable guarantees, or they apply sketches only to portions of the data, failing to alleviate
the Ω(Wd) communication overhead. In particular, Konečnỳ et al. [2016] propose “sketched updates"
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in Federated Learning for structured problems, and Jiang et al. [2018] introduce a range of hashing
and quantization techniques to improve the constant in O (Wd).

Another line of work that we draw from applies sketching techniques to learning tasks where the
model itself cannot fit in memory [Aghazadeh et al., 2018, Tai et al., 2018]. In our setting, we can
afford to keep a dense version of the model in memory, and we only make use of the memory-saving
properties of sketches to reduce communication between nodes participating in distributed learning.

3 Preliminaries

SGD. Let w ∈ R
d be the parameters of the model to be trained and fi(w) be the loss incurred

by w at the ith data point (xi, yi) ∼ D. The objective is to minimize the generalization error
f(w) = E

(xi,yi)∼D
[fi(w)]. In large-scale machine learning, this objective is typically minimized

using mini-batch stochastic gradient descent: given a step size ηt, at each iteration, w is updated
as wt+1 = wt − ηtgt, where gt = ∇w

∑

i∈M fi(w) is the gradient of the loss computed on
a minibatch M. If M is randomly selected, then the gradient estimates gt are unbiased: i.e.

E
[

gt|{wi}t−1
i=0

]

= ∇f(wt−1). As is standard, we further assume that the gt have bounded moment

and variance: E
[

‖gt‖22 |{wi}t−1
i=0

]

≤ G2 and E

[

‖gt −∇f(wt)‖22 |{wi}t−1
i=0

]

≤ σ2 for constants G

and σ. We adopt the usual definitions for smooth and strongly convex functions:

Definition 1 (Smooth strongly convex function). f : Rd → R is a L-smooth and µ-strongly convex
if the following hold ∀ w1,w2 ∈ R

d,

1. ‖∇f(w2)−∇f(w2)‖ ≤ L ‖w2 − w1‖ (Smoothness)

2. f(w2) ≥ f(w1) + 〈∇f(w1),w2 − w1〉+ µ
2 ‖w2 − w1‖2 (Strong convexity)

For smooth strongly convex functions, SGD converges at a rate of O
(

G2L
µT

)

[Rakhlin et al., 2012].

Count Sketch. Our primary interest is in finding large coordinates (or “heavy hitters”) of a gradient
vector g ∈ R

d. Heavy hitter sketches originated in the streaming model, where the vector g is defined
by a sequence of updates {(ij , wj)}nj=1, such that the j-th update modifies the ij-th coordinate of g
as gij += wj [Charikar et al., 2002, Cormode and Muthukrishnan, 2005, Braverman et al., 2017]. In
the streaming model, sketches must use memory sublinear in both d and n.

In this work we compress a gradient vector g into a sketch S(g) of size O( 1ε log d) using a Count
Sketch [Charikar et al., 2002]. A Count Sketch S(g) approximates every coordinate of g with an `2
guarantee: it is always possible to recover ĝi from S(g) such that g2i − ε‖g‖22 ≤ ĝ2i ≤ g2i + ε‖g‖22. In
addition, S(g) can approximate the `2 norm of the entire gradient. These two properties let a sketch
find every `2 heavy hitter, i.e. every coordinate i such that g2i > ε‖g‖22. With a small enough ε, the
set of heavy hitters can be used as approximation of top-k largest coordinates of gradient vector g.

Due to its linearity, the Count Sketch is widely adopted in distributed systems. Consider the case
of a parameter server and two workers hosting vectors g1 and g2. To reduce communication, both
workers can send the parameter server sketches S(g1) and S(g2) instead of the vectors themselves.
The parameter server can then merge these sketches as S(g) = S(g1 + g2) = S(g1) + S(g2). This
lets the parameter server find the approximate top-k largest coordinates in a vector distributed among
many workers. We defer a more detailed discussion of the Count Sketch to Appendix C.

4 Sketched SGD

In SKETCHED-SGD, each worker transmits a sketch of its gradient instead of the gradient itself, as
described above. The parameter server sums the workers’ sketches, and then recovers the largest
gradient elements by magnitude from the summed sketch. To improve the compression properties of
sketching, we then perform a second round of communication, in which the parameter server requests
the exact values of the top-k, and uses the sum of those in the weight update. This algorithm for
recovering top-k elements from a sketch is summarized in Algorithm 1.

Every iteration, only k values of each worker’s gradient are included in the final weight update.
Instead of discarding the remaining d− k gradient elements, it is important both theoretically and
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empirically to accumulate these elements in local error accumulation vectors, which are then added to
the next iteration’s gradient [Karimireddy et al., 2019, Stich et al., 2018]. This process is summarized
in Algorithm 2.

Algorithm 1 HEAVYMIX

Input: S - sketch of gradient g; k - parameter

1: Query ˆ̀2
2 = (1± 0.5)‖g‖22 from sketch S

2: ∀i query ĝ2i = g2i ±
1

2k
‖g‖22 from sketch S

3: H ←
{

i|ĝi ≥ ˆ̀2
2/k

}

and NH ←
{

i| ĝi < ˆ̀2
2/k

}

4: Topk = H ∪ randl(NH), where l = k − |H|
5: second round of communication to get exact values of Topk

Output: g̃: ∀i ∈ Topk : g̃i = gi and ∀i /∈ Topk : g̃i = 0

Algorithm 2 SKETCHED-SGD

Input: k, ξ, T,W
1: ηt ←

1

t+ξ
, qt ← (ξ + t)2, QT =

∑T

t=1
qt, a0 = 0

2: for t = 1, 2, · · ·T do
3: Compute stochastic gradient git Workeri
4: Error correction: ḡit = ηtg

i
t + ait−1 Workeri

5: Compute sketches Si
t of ḡit and send to Parameter Server Workeri

6: Aggregate sketches St =
1

W

∑W

i=1
Si
t Parameter Server

7: g̃t = HEAVYMIX(St, k) Parameter Server
8: Update wt+1 = wt − g̃t and send g̃t (which is k-sparse) to Workers Parameter Server
9: Error accumulation: ait = ḡit − g̃t Workeri

10: end for
Output: ŵT = 1

QT

∑T

t=1
qtwt

We now state convergence results for SKETCHED-SGD. Proofs are deferred to Appendix A.

Theorem 1 (strongly convex, smooth). Let f : Rd → R be a L-smooth µ-strongly convex function,
and let the data be shared among W workers. Given 0 < k ≤ d, 0 < α, andδ < 1, Algorithm 2

SKETCHED-SGD run with sketch size = O (k log(dT/δ), step size ηt =
1

t+ξ , with ξ > 2 + d(1+β)
k(1+ρ) ,

with β > 4 and ρ = 4β
(β−4)(β+1)2 after T steps outputs ŵT such that the following holds,

1. With probability at least 1− δ, E [f(ŵT )]− f(w∗) ≤ O
(

σ2

µT + d2G2L
k2µ2T 2 + d3G3

k3µT 3

)

2. The total communication per update is Θ(k log(dT/δ)W ) bits.

Remarks

1. The convergence rate for vanilla SGD is O(1/T ). Therefore, our error is larger the SGD error
when T = o((d/k)2), and approaches the SGD error for T = Ω((d/k)2).

2. Although not stated in this theorem, Stich et al. [2018] show that using the top-k coordinates of the
true mini-batch gradient as the SGD update step yields a convergence rate equivalent to that of
SKETCHED-SGD. We therefore use this “true top-k” method as a baseline for our results.

3. Note that the leading term in the error is O(σ2/T ) (as opposed to O(G2/T ) in [Stich et al., 2018]);
this implies that in setting where the largest minibatch size allowed is too large to fit in one machine,
and going distributed allows us to use larger mini-batches, the variance reduces by a factor W .
This reduces the number of iterations required (asymptotically) linearly with W .

4. As is standard, the above high probability bound can be converted to an expectation (over random-
ness in sketching) bound; this is stated as Theorem 6 in the Appendix A.

5. The result of [Karimireddy et al., 2019] allows us to extend our theorems to smooth nonconvex
and non-smooth convex functions; these are presented as Theorems 4 and 5 in the Appendix B..

Proof Sketch. The proof consists of two parts. First, we show that SKETCHED-SGD satisfies the
criteria in Stich et al. [2018], from which we obtain a convergence result when running SKETCHED-
SGD on a single machine. We then use properties of the Count Sketch to extend this result to the
distributed setting.
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For the first part, the key idea is to show that our heavy hitter recovery routine HEAVYMIX satisfies a
contraction property, defined below.

Definition 2 (τ -contraction [Stich et al., 2018]). A τ -contraction operator is a possibly randomized

operator comp : Rd → R
d that satisfies: ∀x ∈ R

d, E
[

‖x− comp(x)‖2
]

≤ (1− τ) ‖x‖2

Given a contraction operator with τ = k/d, and assuming that the stochastic gradients g are unbiased

and bounded as E

[

‖g‖2
]

≤ G2, choosing the step-size appropriately, Stich et al. [2018] give a

convergence rate of O
(

G2

µT + d2G2L
k2µ2T 2 + d3G3

k3µT 3

)

for sparsified SGD with error accumulation. As

stated in Lemma 1, HEAVYMIX satisfies this contraction property, and therefore inherits this
(single-machine) convergence result:

Lemma 1. HEAVYMIX, with sketch size Θ(k log(d/δ)) is a k/d-contraction with probability ≥ 1−δ.

This completes the first part of the proof. To extend SKETCHED-SGD to the distributed setting,
we exploit the fact that Count Sketches are linear, and can approximate `2 norms. The full proof is
deferred to Appendix A.

5 Empirical Results

5.1 Training Algorithm

In practice, we modify SKETCHED-SGD in the following ways

• We employ momentum when training. Following Lin et al. [2017], we use momentum correc-
tion and momentum factor masking. Momentum factor masking mitigates the effects of stale
momentum, and momentum correction is a way to do error feedback on SGD with momentum
[Karimireddy et al., 2019].

• We use the Count Sketch to identify heavy coordinates, however we perform an additional round
of communication to collect the exact values of those coordinates. In addition, to identify the top
k heavy coordinates, we query the Count Sketch, and then each of the workers, for the top Pk
elements instead; this is a common technique used with sketching to improve stability. The total
resulting communication cost is Pk + |S|+ k per worker, where |S| is the size of the sketch, and
the last k corresponds to the the updated model parameters the parameter server must send back to
the workers.

• We transmit gradients of the bias terms uncompressed. The number of bias terms in our models is
< 1% of the total number of parameters.

Our emperical training procedure is summarized in Algorithm 3.

Algorithm 3 EMPIRICAL TRAINING

Input: k, ηt,m, T
1: ∀i : ui, vi ← 0
2: Initialize wi

0 from the same random seed on each Worker.
3: for t = 1, 2, . . . T do
4: Compute stochastic gradient git Workeri
5: Momentum: ui ← mui + git Workeri
6: Error accumulation: vi ← vi + ui Workeri
7: Compute sketch Si

t of vi and send to Parameter Server Workeri

8: Aggregate sketches St =
1

W

∑W

i=1
Si
t Parameter Server

9: Recover the top-Pk coordinates from St: g̃t = topPk(St) Parameter Server
10: Query all workers for exact values of nonzero elements in g̃t; store the sum in g̃t Parameter Server
11: Send the k-sparse g̃t to Workers Parameter Server
12: update wi

t+1 = wi
t − ηtg̃t on each worker Workeri

13: ui, vi ← 0, for all i s.t. g̃it 6= 0 Workeri
14: end for

5.2 Sketching Implementation

We implement a parallelized Count Sketch with PyTorch [Paszke et al., 2017]. The Count Sketch
data structure supports a query method, which returns a provable ±ε‖g‖2 approximation to each
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Supplementary

A Proofs

Proof of Lemma 1. Given g ∈ R, the HEAVYMIX algorithm extracts all (1/k, `22)-heavy elements
from a Count Sketch S of g. Let ĝ be the values of all elements recovered from its sketch. For a
fixed k, we create two sets H (heavy), and NH (not-heavy). All coordinates of ĝ with values at least
1
k
ˆ̀2
2 are put in H , and all others in NH , where ˆ̀

2 is the estimate of ‖g‖2 from the Count Sketch.
Note that the number of elements in H can be at most k. Then, we sample uniformly at random
l = k − |H| elements from NH , and finally output its union with H . We then do a second round of
communication to get exact values of these k elements.

Note that, because of the second round of communication in HEAVYMIX and the properties of the
Count Sketch, with probability at least 1− δ we get the exact values of all elements in H . Call this
the “heavy hitters recovery” event. Let gH be a vector equal to g at the coordinates in H , and zero
otherwise. Define gNH analogously. Conditioning on the heavy hitters recovery event, and taking
expectation over the random sampling, we have

E

[

‖g − g̃‖2
]

= ‖gH − ḡH‖2 + E

[

‖gNH − randl (gNH)‖2
]

≤
(

1− k − |H|
d− |H|

)

‖gNH‖2 ≤
(

1− k − |H|
d− |H|

)(

1− |H|
2k

)

‖g‖2

Note that, because we condition on the heavy hitter recovery event, ḡH = gH due to the second
round communication (line 9 of Algorithm 3). The first inequality follows using Lemma 1 from Stich
et al. [2018]. The second inequality follows from the fact that the heavy elements have values at least
1
k
ˆ̀2
2 ≥ 1

2k ‖g‖2, and therefore ‖gNH‖2 = ‖g‖2 − ‖gH‖2 ≤
(

1− |H|
2k

)

‖g‖2 .

Simplifying the expression, we get

E

[

‖g − g̃‖2
]

≤
(

2k − |H|
2k

)(

d− k

d− |H|

)

‖g‖2 =

(

2k − |H|
2k

)(

d

d− |H|

)(

1− k

d

)

‖g‖2 .

Note that the first two terms can be bounded as follows:
(

2k − |H|

2k

)(

d

d− |H|

)

≤ 1 ⇐⇒ kd− |H| d ≤ kd− 2k |H| ⇐⇒ |H| (d− 2k) ≥ 0

which holds when k ≤ d/2 thereby completing the proof.

A.1 Proof of the main theorem

Proof of Theorem 1. First note that, from linearity of sketches), the top-k (or heavy) elements from

the merged sketch St =
∑W

i=1 S
i
t are the top-k of the sum of vectors that were sketched. We have

already shown in Lemma 1 that that extracting the top-k elements from ST using HEAVYMIX gives
us a k-contraction on the sum of gradients. Moreover since the guarantee is relative and norms are
positive homogeneous, the same holds for the average, i.e. when dividing by W . Now since the
average of stochastic gradients is still an unbiased estimate, this reduces to SKETCHED-SGD on one
machine, and the convergence therefore follows from Theorem 2.

A key ingredient is the result in the one machine setting, stated below.

Theorem 2. Let f : R
d → R be a L-smooth µ-strongly convex function. Given T > 0 and

0 < k ≤ d, 0 < δ < 1, and a τk-contraction, Algorithm 2 SKETCHED-SGD with sketch size

O (k log(dT/δ)) and step size ηt =
1

t+ξ , with ξ > 1 + 1+β
τk(1+ρ) , with β > 4 and ρ = 4β

(β−4)(β+1)2 ,

after T steps outputs ŵT such that with probability at least 1− δ

E [f(ŵT )]− f(w∗) ≤ O

(

σ2

µT
+

G2L

τ2
kµ

2T 2
+

G3

τ3
kµT

3

)
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Proof of Theorem 2. The proof, as in Stich et al. [2018], just follows using convexity and Lemmas
3,2 and fact 3. The lemmas which are exactly same as Stich et al. [2018], are stated as facts. However,
the proofs of lemmas, which change are stated in full for completeness, with the changes highlighted.

From convexity we have that

f

(

1

QT

T
∑

i=1

qtwt

)

− f(w∗) ≤ 1

QT

T
∑

t=1

qtf(wt)− f(w∗) =
1

QT

T
∑

t=1

qt (f(wt)− f(w∗))

Define εt = f(wt)− f(w∗), the excess error of iterate t. From Lemma 2 we have,

E

[

‖w̃t+1 − w∗‖2
]

≤
(

1− ηtµ

2

)

E

[

‖w̃t − w∗‖2
]

+ σ2η2t −
(

1− 2

ξ

)

εtηt + (µ+ 2L)E
[

‖at‖2
]

ηt

Bounding the last term using Lemma 3, with probability at least 1− δ, we get,

E

[

‖w̃t+1 − w∗‖2
]

≤
(

1− ηtµ

2

)

E

[

‖w̃t − w∗‖2
]

+ σ2η2t −
(

1− 2

ξ

)

εtηt +
(µ+ 2L)4βG2

τ2k (β − 4)
η3t

where τk is the contraction we get from HEAVYMIX. We have alreay show that τk ≤ k
d .

Now using Lemma 3 and the fist equation, we get,

f

(

1

QT

T
∑

i=1

qtwt

)

− f(w∗) ≤
µξ4E

[

‖w0 − w∗‖2
]

8(ξ − 2)QT
+

4T (T + 2ξ)ξσ2

µ(ξ − 2)QT
+

256(µ+ 2L)βξG2T

µ2(β − 4)τ2k (ξ − 2)QT

Note that ξ > 2 + 1+β
τk(1+ρ) . Moreover QT =

∑T
t=1 qt =

∑T
t=1(ξ + t)2 ≥ 1

3T
3 upon expanding and

using the conditions on ξ. Also ξ/(ξ − 2) = O (1 + 1/τk).

Finally using σ2 ≤ G2 and Fact 1 to bound E

[

‖w0 − w∗‖2
]

≤ 4G2/µ2 completes the proof.

Lemma 2. Let f : Rd → R be a L-smooth µ-strongly convex function, and w∗ be its minima. Let
{wt}t be a sequence of iterates generated by Algorithm 2.

Define error εt := E [f(wt)− f(w∗)] and w̃t+1 = w̃t − ηtgt be a stochastic gradient update step at

time t, with E

[

‖gt −∇f(wt)‖2
]

≤ σ2, E
[

‖gt‖2
]

≤ G2 and ηt =
1

µ(t+ξ) , ξ > 2 then we have,

E

[

‖w̃t+1 − w∗‖2
]

≤
(

1− ηtµ

2

)

E

[

‖w̃t − w∗‖2
]

+ σ2ηt −
(

1− 2

ξ

)

εtηt + (µ+ 2L)E
[

‖at‖2
]

ηt

Proof. This is the first step of the perturbed iterate analysis framework Mania et al. [2015]. We
follow the steps as in Stich et al. [2018]. The only change is that the proof of Stich et al. [2018] works

with bounded gradients i.e. E
[

‖g‖2
]

≤ G2. This assumption alone, doesn’t provide the variance

reduction effect in the distributed setting. We therefore adapt the analysis with the the variance bound

E

[

‖g −∇f(w)‖2
]

≤ σ2.

‖w̃t+1 − w∗‖2 = ‖w̃t+1 − w̃t + w̃t − w∗‖2 = ‖w̃t+1 − w̃t‖2 + ‖w̃t − w∗‖2 + 2 〈w̃t − w∗, w̃t+1 − w̃t〉
= η2t ‖gt‖2 + ‖w̃t − w∗‖2 + 2 〈w̃t − w∗, w̃t+1 − w̃t〉 = η2t ‖gt −∇f(wt)‖2 + η2t ‖∇f(wt)‖2 + ‖w̃t − w∗‖2

+ 2ηt 〈gt −∇f(wt),∇f(wt)〉+ 2ηt 〈w∗ − w̃t, gt〉

Taking expectation with respect to the randomness of the last stochastic gradient, we have that the term

〈gt −∇f(wt),∇f(wt)〉 = 0 by E [gt] = ∇f(wt). Moreover, the term E [gt −∇f(wt)]
2 ≤ σ2. We

expand the last term as,

〈w∗ − w̃t,∇f(wt)〉 = 〈w∗ − wt,∇f(wt)〉+ 〈wt − w̃t,∇f(wt)〉
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The first term is bounded by µ-strong convexity as,

f(w∗) ≥ f(wt) + 〈∇f(wt),w
∗ − wt〉+

µ

2
‖wt − w∗‖2

⇐⇒ 〈∇f(wt),w
∗ − wt〉 ≤ f(w∗)− f(wt)−

µ

2
‖wt − w∗‖2

≤ −εt +
µ

2
µ ‖w̃t − wt‖2 −

µ

4
‖w∗ − w̃t‖2

where in the last step, we define εt := f(wt) − f(w∗) and use ‖u + v‖2 ≤ 2(‖u‖2 + ‖v‖2). The

second term is bounded by using 2 〈u, v〉 ≤ a ‖u‖2 + 1
a ‖v‖2 as follows,

2 〈wt − w̃t,∇f(wt)〉 ≤ 2L ‖wt − w̃t‖2 +
1

2L
‖∇f(wt)‖2

Moreover, from Fact 2, we have ‖∇f(wt)‖2 ≤ 2Lεt. Taking expectation and putting everything
together, we get,

E

[

‖w̃t+1 − w∗‖2
]

≤
(

1− µηt
2

)

E

[

‖w̃t − w∗‖2
]

+ η2t σ
2

+ (µ+ 2L) ηtE
[

‖wt − w̃t‖2
]

+
(

2Lη2t − ηt
)

εt

We now claim that the last term 2Lη2t − ηt ≤ − ξ−2
ξ ηt or equivalently 2Lη2t −

(

1− ξ−2
ξ

)

ηt ≤ 0.

Note that this is a quadratic in ηt which is satisfied between its roots 0 and 1
Lξ . So it suffices to show

is that our step sizes are in this range. In particular, the second root (which is positive by choice of
ξ) should be no less than step size. We have ηt =

1
µ(t+ξ) , ηt ≤ 1

µξ ∀ t, the second root 1
Lξ ≥ 1

µξ

because smoothness parameter L ≥ µ, the strong convexity parameter, or equivalently the condition
number κ := L/µ ≥ 1. Combining the above with at = wt − w̃t, we get,

E

[

‖w̃t+1 − w∗‖2
]

≤
(

1− µηt
2

)

E [‖w̃t − w∗‖] + η2t σ
2

+ (µ+ 2L) ηtE
[

‖at‖2
]

−
(

1− 2

ξ

)

ηtεt

Fact 1. Rakhlin et al. [2012] Let f : Rd → be a µ-strongly convex function, and w∗ be its minima.

Let g be an unbiased stochastic gradient at point w such that E
[

‖g‖2
]

≤ G2, then

E

[

‖w − w∗‖2
]

≤ 4G2

µ2

Fact 2. For L-smooth convex function f with minima w∗, then the following holds for all points w,

‖∇f(w)−∇f(w∗)‖2 ≤ 2L(f(w)− f(w∗))

Fact 3. Stich et al. [2018] Let {bt}t≥0 , bt ≥ 0 and {εt}t≥0 , εt ≥ 0 be sequences such that,

bt+1 ≤
(

1− µηt
2

)

bt − εtηt +Aη2 +Bη3

for constants A,B > 0, µ ≥ 0, ξ > 1. Then,

1

QT

T−1
∑

t=0

qtεt ≤
µξ3b0
8QT

+
4T (T + 2ξ)A

µQT
+

64TB

µ2QT

for ηt =
8

µ(ξ+t) , qt = (ξ + t)2, QT =
∑T−1

t=0 qt ≥ T 3

3

14



Fact 4. Stich et al. [2018] Let {ht}t>0 be a sequence satisfying h0 = 0 and

ht+1 ≤ min

{

(1− τ/2)ht +
2

τk
η2tA, (t+ 1)

t
∑

i=0

η2iA

}

for constant A > 0, then with ηt =
1

t+ξ with ξ > 1 + 1+β
τk(1+ρ) , with β > 4 and ρ = 4β

(β−4)(β+1)2 , for

t ≥ 0 we get,

ht ≤
4β

(β − 4)
· η

2
tA

τ2k

Lemma 3. With probability at least 1− δ

E

[

‖at‖2
]

≤ 4β

(β − 4)
· η

2
tG

2

τ2k

Proof of Lemma 3. The proof repeats the steps in Stich et al. [2018] with minor modifications. In
particular, the compression is provided by the recovery guarantees of Count Sketch, and we do a
union bound over all its instances. We write the proof in full for the sake of completeness. Note that

at = at−1 + ηt−1gt−1 − g̃t−1

We first claim that E
[

‖at‖2
]

≤ tη2tG
2. Since a0 = 0, we have at =

∑t
i=1(ai − ai−1) =

∑t−1
i=0(ηigi − g̃i). Using (

∑n
i=1 ai)

2 ≤ (n+ 1)
∑n

i=1 a
2
i and taking expectation, we have

E

[

‖at‖2
]

≤ t
t−1
∑

i=0

E

[

‖ηigi − g̃i‖2
]

≤ t
t−1
∑

i=0

η2iG
2

Also, from the guarantee of Count Sketch, we have that, with probability at least 1 − δ/T , the
following holds give that our compression is a τk contraction.

Therefore

‖at+1‖2 ≤ (1− τk) ‖at + ηtgt‖2

Using inequality (a+ b)2 ≤ (1 + γ)a2 + (1 + γ−1)b2, γ > 0 with γ = τk
2 , we get

‖at+1‖2 ≤ τk

(

(1 + γ) ‖at‖2 +
(

1 + γ−1
)

η2t ‖gt‖2
)

≤ (2− τk)

2
‖at−1‖2 +

2

τk
η2t ‖gt‖2

Taking expectation on the randomness of the stochastic gradient oracle, and using E

[

‖gt‖2
]

≤ G2,

we have,

E

[

‖at+1‖2
]

≤ (2− τk)

2
E

[

‖at‖2
]

+
2

τk
η2tG

2

Note that for a fixed t ≤ T this recurrence holds with probability at least 1− δ/T . Using a union
bound, this holds for all t ∈ [T ] with probability at least 1− δ. Conditioning on this and using Fact 4
completes the proof.
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B Auxiliary results

We state the result of Stich et al. [2018] in full here.

Fact 5 ([Stich et al., 2018]). Let f : Rd → R be a L-smooth µ-strongly convex function. Given

T > 0 and 0 < k ≤ d, sparsified SGD with step size ηt =
1

t+ξ , with ξ > 1 + d(1+β)
k(1+ρ) , with β > 4

and ρ = 4β
(β−4)(β+1)2 , after T steps outputs ŵT :

E [f(ŵT )]− f(w∗) ≤ O
(

G2

µT
+

d2G2L

k2µ2T 2
+

d3G3

k3µT 3

)

.

We now state theorem which uses on the norm bound on stochastic gradients. It follows by directly
plugging the fact the HEAVYMIX is a k/d-contraction in the result of Stich et al. [2018].

Theorem 3. Let f : R
d → R be a L-smooth µ-strongly convex function . Given T > 0 and

0 < k ≤ d, 0 < δ < 1, Algorithm 2 on one machine, with access to stochastic gradients such that

E

[

‖g‖2
]

≤ G2, with sketch size O (k log(dT/δ)) and step size ηt =
1

t+ξ , with ξ > 1+ d(1+β)
k(1+ρ) , with

β > 4 and ρ = 4β
(β−4)(β+1)2 , after T steps outputs ŵT such that with probability at least 1− δ:

E [f(ŵT )]− f(w∗) ≤ O
(

G2

µT
+

d2G2L

k2µ2T 2
+

d3G3

k3µT 3

)

.

Theorem 4 ((non-convex, smooth)). Let {wt}t≥0 denote the iterates of Algorithm 2 one one machine,

on an L-smooth function f : Rd → R. Assume the stochastic gradients g satisfy E[g] = ∇f(w) and

E[‖g‖22] ≤ G2, and use a sketch of size O(k log(dT/δ)), for 0 ≤ δ ≤ 1. Then, setting η = 1/
√
T + 1

with probability at least 1− δ:

min
t∈[T ]

‖∇f(wt)‖2 ≤ 2f0
√

(T + 1)
+

LG2

2
√
T + 1

+
4L2G2(1− k/d)

(k/d)2(T + 1)
,

where f0 = f(w0)− f?.

Theorem 5 ((convex, non-smooth)). Let {wt}t≥0 denote the iterates of Algorithm 2 one one machine,

on a convex function f : Rd → R. Define w̄t = 1
T

∑T
t=0 wt. Assume the stochastic gradients g

satisfy E[g] = ∇f(w) and E[‖g‖22] ≤ G2, and use a sketch of size O(k log(dT/δ)), for 0 ≤ δ ≤ 1.

Then, setting η = 1/
√
T + 1, with probability at least 1− δ:

E[f(w̄t)− f?] ≤ ‖w0 − w?‖2
√

(T + 1)
+

(

1 +
2
√

1− k/d

k/d

)

G2

√
T + 1

.

Our high probability bounds of Theorem 2 can be converted to bounds in expectation, stated below.

Theorem 6. Let f : R
d → R be a L-smooth µ-strongly convex function. Given T > 0 and

0 < k ≤ d, 0 < δ < 1, and a τk-contraction, Algorithm 2 one one machine, with sketch size

O (k log(dT/δ)) and step size ηt =
1

t+ξ , with ξ > 1 + 1+β
τk(1+ρ) , with β > 4 and ρ = 4β

(β−4)(β+1)2

and δ = O
(

k
poly(d)

)

after T steps outputs ŵT such that

EAE [f(ŵT )]− f(w∗) ≤ O

(

σ2

µT
+

G2L

τ2
kµ

2T 2
+

G3

τ3
kµT

3

)

Proof. Lemma 1 gives that with probability at least 1 − δ, HEAVYMIX is a k/d contraction. We
leverage the fact that the elements of countsketch matrix are bounded to convert it to bound in
expectation. As in the proof of lemma 1, given g ∈ R, the HEAVYMIX algorithm extracts all
(1/k, `22)-heavy elements from a Count Sketch S of g. Let ĝ be the values of all elements recovered
from its sketch. For a fixed k, we create two sets H (heavy), and NH (not-heavy). All coordinates

of ĝ with values at least 1
k
ˆ̀2
2 are put in H , and all others in NH , where ˆ̀

2 is the estimate of ‖g‖2
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Both the Count Sketch and the Count-Min Sketch, which is a similar algorithm presented by Cormode
and Muthukrishnan [2005] that achieves a ±ε`1 guarantee, gained popularity in distributed systems
primarily due to the mergeability property formally defined by Agarwal et al. [2013]: given a sketch
S(f) computed on the input vector f and a sketch S(g) computed on input g, there exists a function
F , s.t. F (S(f), S(g)) has the same approximation guarantees and the same memory footprint as
S(f + g). Note that sketching the entire vector can be rewritten as a linear operation S(f) = Af , and
therefore S(f + g) = S(f) + S(g). We take advantage of this crucial property in SKETCHED-SGD,
since, on the parameter server, the sum of the workers’ sketches is identical to the sketch that would
have been produced with only a single worker operating on the entire batch.

Besides having sublinear memory footprint and mergeability, the Count Sketch is simple to implement
and straight-forward to parallellize, facilitating GPU acceleration [Ivkin et al., 2018].

Charikar et al. [2002] define the following approximation scheme for finding the list T of the top-k
coordinates: ∀i ∈ [d] : i ∈ T ⇒ gi ≥ (1− ε)θ and gi ≥ (1 + ε)θ ⇒ i ∈ T , where θ is chosen to be
the k-th largest value of f .

Theorem 7 (Charikar et al., 2002). Count Sketch algorithm finds approximate top-k coordinates with

probability at least 1− δ, in space O
(

log d
δ

(

k +
‖gtail‖2

2

(εθ)2

))

, where ‖gtail‖22 =
∑

i/∈top k g
2
i and θ is

the k-th largest coordinate.

Note that, if θ = α‖g‖2, Count Sketch finds all (α, `2)-heavy coordinates and approximates their

values with error ±ε‖g‖2. It does so with a memory footprint of O
(

1
ε2α2 log d

)

.

Algorithm 4 Count Sketch [Charikar et al., 2002]

1: function init(r, c):
2: init sign hashes {sj}

r

j=1
and bucket hashes {hj}

r

j=1

3: init r × c table of counters S
4: function update(i, fi):
5: for j in 1 . . . r:
6: S[j, hj(i)] += sj(i)fi
7: function estimate(i):
8: init length r array estimates
9: for j in 1, . . . , r:

10: estimates[r] = sj(i)S[j, hj(i)]
11: return median(estimates)

D Model Training Details

We train three models on two datasets. For the first two models, we use code from the OpenNMT
project Klein et al. [2017], modified only to add functionality for SKETCHED-SGD. The command
to reproduce the baseline transformer results is

python train.py -data $DATA_DIR -save_model baseline -world_size 1
-gpu_ranks 0 -layers 6 -rnn_size 512 -word_vec_size 512
-batch_type tokens -batch_size 1024 -train_steps 60000
-max_generator_batches 0 -normalization tokens -dropout 0.1
-accum_count 4 -max_grad_norm 0 -optim sgd -encoder_type transformer
-decoder_type transformer -position_encoding -param_init 0
-warmup_steps 16000 -learning_rate 1000 -param_init_glorot
-momentum 0.9 -decay_method noam -label_smoothing 0.1
-report_every 100 -valid_steps 100

The command to reproduce the baseline LSTM results is

python train.py -data $DATA_DIR -save_model sketched -world_size 1
-gpu_ranks 0 -layers 6 -rnn_size 512 -word_vec_size 512
-batch_type tokens -batch_size 1024 -train_steps 60000
-max_generator_batches 0 -normalization tokens -dropout 0.1
-accum_count 4 -max_grad_norm 0 -optim sgd -encoder_type rnn
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