FetchSGD: Communication-Efficient Federated Learning with Sketching

Daniel Rothchild* ! Ashwinee Panda*! Enayat Ullah? Nikita Ivkin3 Ion Stoica' Vladimir Braverman *

Joseph Gonzalez

Abstract

Existing approaches to federated learning suf-
fer from a communication bottleneck as well as
convergence issues due to sparse client participa-
tion. In this paper we introduce a novel algorithm,
called Fet chSGD, to overcome these challenges.
FetchSGD compresses model updates using a
Count Sketch, and then takes advantage of the
mergeability of sketches to combine model up-
dates from many workers. A key insight in the
design of Fet chSGD is that, because the Count
Sketch is linear, momentum and error accumu-
lation can both be carried out within the sketch.
This allows the algorithm to move momentum
and error accumulation from clients to the central
aggregator, overcoming the challenges of sparse
client participation while still achieving high com-
pression rates and good convergence. We prove
that Fet chSGD has favorable convergence guar-
antees, and we demonstrate its empirical effec-
tiveness by training two residual networks and a
transformer model.

1. Introduction

Federated learning has recently emerged as an important set-
ting for training machine learning models. In the federated
setting, training data is distributed across a large number
of edge devices, such as consumer smartphones, personal
computers, or smart home devices. These devices have
data that is useful for training a variety of models — for text
prediction, speech modeling, facial recognition, document
identification, and other tasks (Shi et al., 2016; Brisimi et al.,
2018; Leroy et al., 2019; Tomlinson et al., 2009). However,
data privacy, liability, or regulatory concerns may make it
difficult to move this data to the cloud for training (EU,

“Equal contribution !University of California, Berke-
ley, California, USA 2Johns Hopkins University, Baltimore,
Maryland 3Amazon. Correspondence to: Daniel Rothchild
<drothchild @berkeley.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1

Raman Arora?

2018). Even without these concerns, training machine learn-
ing models in the cloud can be expensive, and an effective
way to train the same models on the edge has the potential
to eliminate this expense.

When training machine learning models in the federated
setting, participating clients do not send their local data to
a central server; instead, a central aggregator coordinates
an optimization procedure among the clients. At each it-
eration of this procedure, clients compute gradient-based
updates to the current model using their local data, and they
communicate only these updates to a central aggregator.

A number of challenges arise when training models in the
federated setting. Active areas of research in federated learn-
ing include solving systems challenges, such as handling
stragglers and unreliable network connections (Bonawitz
et al., 2016; Wang et al., 2019), tolerating adversaries (Bag-
dasaryan et al., 2018; Bhagoji et al., 2018), and ensuring
privacy of user data (Geyer et al., 2017; Hardy et al., 2017).
In this work we address a different challenge, namely that of
training high-quality models under the constraints imposed
by the federated setting.

There are three main constraints unique to the federated set-
ting that make training high-quality models difficult. First,
communication-efficiency is a necessity when training on
the edge (Li et al., 2018), since clients typically connect to
the central aggregator over slow connections (~ 1Mbps)
(Lee et al., 2010). Second, clients must be stateless, since
it is often the case that no client participates more than once
during all of training (Kairouz et al., 2019). Third, the data
collected across clients is typically not independent and
identically distributed. For example, when training a next-
word prediction model on the typing data of smartphone
users, clients located in geographically distinct regions gen-
erate data from different distributions, but enough common-
ality exists between the distributions that we may still want
to train a single model (Hard et al., 2018; Yang et al., 2018).

In this paper, we propose a new optimization algorithm for
federated learning, called Fet chSGD, that can train high-
quality models under all three of these constraints. The crux
of the algorithm is simple: at each round, clients compute
a gradient based on their local data, then compress the gra-
dient using a data structure called a Count Sketch before

FetchSGD: Communication-Efficient Federated Learning with Sketching

sending it to the central aggregator. The aggregator main-
tains momentum and error accumulation Count Sketches,
and the weight update applied at each round is extracted
from the error accumulation sketch. See Figure 1 for an
overview of Fet chSGD.

FetchSGD requires no local state on the clients, and we
prove that it is communication efficient, and that it con-
verges in the non-i.i.d. setting for L-smooth non-convex

functions at rates O (T‘l/ 2) and O <T‘1/ 3) respectively

under two alternative assumptions — the first opaque and the
second more intuitive. Furthermore, even without maintain-
ing any local state, Fet chSGD can carry out momentum —
a technique that is essential for attaining high accuracy in
the non-federated setting — as if on local gradients before
compression (Sutskever et al., 2013). Lastly, due to prop-
erties of the Count Sketch, Fet chSGD scales seamlessly
to small local datasets, an important regime for federated
learning, since user interaction with online services tends
to follow a power law distribution, meaning that most users
will have relatively little data to contribute (Muchnik et al.,
2013).

We empirically validate our method with two image recog-
nition tasks and one language modeling task. Using models
with between 6 and 125 million parameters, we train on
non-i.i.d. datasets that range in size from 50,000 — 800,000
examples.

2. Related Work

Broadly speaking, there are two optimization strategies that
have been proposed to address the constraints of federated
learning: Federated Averaging (FedAvg) and extensions
thereof, and gradient compression methods. We explore
these two strategies in detail in Sections 2.1 and 2.2, but as a
brief summary, FedAvg does not require local state, but it
also does not reduce communication from the standpoint of
a client that participates once, and it struggles with non-i.i.d.
data and small local datasets because it takes many local
gradient steps. Gradient compression methods, on the other
hand, can achieve high communication efficiency. However,
it has been shown both theoretically and empirically that
these methods must maintain error accumulation vectors on
the clients in order to achieve high accuracy. This is ineffec-
tive in federated learning, since clients typically participate
in optimization only once, so the accumulated error has no
chance to be re-introduced (Karimireddy et al., 2019b).

2.1. FedAvg

FedAvg reduces the total number of bytes transferred dur-
ing training by carrying out multiple steps of stochastic
gradient descent (SGD) locally before sending the aggre-
gate model update back to the aggregator. This technique,

often referred to as local/parallel SGD, has been studied
since the early days of distributed model training in the data
center (Dean et al., 2012), and is referred to as FedAvg
when applied to federated learning (McMahan et al., 2016).
FedAvg has been successfully deployed in a number of
domains (Hard et al., 2018; Li et al., 2019), and is the most
commonly used optimization algorithm in the federated set-
ting (Yang et al., 2018). In FedAvg, every participating
client first downloads and trains the global model on their
local dataset for a number of epochs using SGD. The clients
upload the difference between their initial and final model
to the parameter server, which averages the local updates
weighted according to the magnitude of the corresponding
local dataset.

One major advantage of FedAvg is that it requires no lo-
cal state, which is necessary for the common case where
clients participate only once in training. FedAvgq is also
communication-efficient in that it can reduce the total num-
ber of bytes transferred during training while achieving the
same overall performance. However, from an individual
client’s perspective, there is no communication savings if
the client participates in training only once. Achieving high
accuracy on a task often requires using a large model, but
clients’ network connections may be too slow or unreliable
to transmit such a large amount of data at once (Yang et al.,
2010).

Another disadvantage of FedAvg is that taking many local
steps can lead to degraded convergence on non-i.i.d. data.
Intuitively, taking many local steps of gradient descent on
local data that is not representative of the overall data dis-
tribution will lead to local over-fitting, which will hinder
convergence (Karimireddy et al., 2019a). When training a
model on non-i.i.d. local datasets, the goal is to minimize
the average test error across clients. If clients are chosen
randomly, SGD naturally has convergence guarantees on
non-i.i.d. data, since the average test error is an expectation
over which clients participate. However, although FedAvg
has convergence guarantees for the i.i.d. setting (Wang
and Joshi, 2018), these guarantees do not apply directly
to the non-i.i.d. setting as they do with SGD. Zhao et al.
(2018) show that FedAvg, using K local steps, converges
as O (K/T) on non-i.i.d. data for strongly convex smooth
functions, with additional assumptions. In other words, con-
vergence on non-i.i.d. data could slow down as much as
proportionally to the number of local steps taken.

Variants of FedAvg have been proposed to improve its per-
formance on non-i.i.d. data. Sahu et al. (2018) propose
constraining the local gradient update steps in FedAvg by
penalizing the L2 distance between local models and the cur-
rent global model. Under the assumption that every client’s
loss is minimized wherever the overall loss function is mini-
mized, they recover the convergence rate of SGD. Karim-

FetchSGD: Communication-Efficient Federated Learning with Sketching

9 Sketch Aggregation e Momentum Accum.

- M- R -

Cloud

ol
@ TopK

Unsketch

e Error Accum.

/ t \

Gradient -
Sketches

Edge

o Local
Gradients

/ \

EE0000000C

Figure 1. Algorithm Overview. The Fet chSGD algorithm (1) computes gradients locally, and then send sketches (2) of the gradients to
the cloud. In the cloud, gradient sketches are aggregated (3), and then (4) momentum and (5) error accumulation are applied to the sketch.
The approximate top-k values are then (6) extracted and (7) broadcast as sparse updates to devices participating in next round.

ireddy et al. (2019a) modify the local updates in FedAvg to
make them point closer to the consensus gradient direction
from all clients. They achieve good convergence at the cost
of making the clients stateful.

2.2. Gradient Compression

A limitation of FedAvg is that, in each communication
round, clients must download an entire model and upload an
entire model update. Because federated clients are typically
on slow and unreliable network connections, this require-
ment makes training large models with FedAvg difficult.
Uploading model updates is particularly challenging, since
residential Internet connections tend to be asymmetric, with
far higher download speeds than upload speeds (Goga and
Teixeira, 2012).

An alternative to FedAvg that helps address this problem
is regular distributed SGD with gradient compression. It
is possible to compress stochastic gradients such that the
result is still an unbiased estimate of the true gradient, for
example by stochastic quantization (Alistarh et al., 2017)
or stochastic sparsification (Wangni et al., 2018). However,
there is a fundamental tradeoff between increasing compres-
sion and increasing the variance of the stochastic gradient,
which slows convergence. The requirement that gradients re-
main unbiased after compression is too stringent, and these
methods have had limited empirical success.

Biased gradient compression methods, such as top-k spar-
sification (Lin et al., 2017) or signSGD (Bernstein et al.,
2018), have been more successful in practice. These meth-
ods rely, both in theory and in practice, on the ability to
locally accumulate the error introduced by the compression
scheme, such that the error can be re-introduced the next
time the client participates (Karimireddy et al., 2019b). Un-
fortunately, carrying out error accumulation requires local
client state, which is often infeasible in federated learning.

2.3. Optimization with Sketching

This work advances the growing body of research applying
sketching techniques to optimization. Jiang et al. (2018) pro-
pose using sketches for gradient compression in data center
training. Their method achieves empirical success when gra-
dients are sparse, but it has no convergence guarantees, and
it achieves little compression on dense gradients (Jiang et al.,
2018, §B.3). The method also does not make use of error
accumulation, which more recent work has demonstrated
is necessary for biased gradient compression schemes to be
successful (Karimireddy et al., 2019b). Ivkin et al. (2019a)
also propose using sketches for gradient compression in data
center training. However, their method requires a second
round of communication between the clients and the param-
eter server, after the first round of transmitting compressed
gradients completes. Using a second round is not practical
in federated learning, since stragglers would delay comple-
tion of the first round, at which point a number of clients
that had participated in the first round would no longer be
available (Bonawitz et al., 2016). Furthermore, the method
in (Ivkin et al., 2019a) requires local client state for both
momentum and error accumulation, which is not possible
in federated learning. Spring et al. (2019) also propose
using sketches for distributed optimization. Their method
compresses auxiliary variables such as momentum and per-
parameter learning rates, without compressing the gradients
themselves. In contrast, our method compresses the gradi-
ents, and it does not require any additional communication
at all to carry out momentum.

Konecny et al. (2016) propose using sketched updates to
achieve communication efficiency in federated learning.
However, the family of sketches they use differs from the
techniques we propose in this paper: they apply a combina-
tion of subsampling, quantization and random rotations.

FetchSGD: Communication-Efficient Federated Learning with Sketching

3. FetchSGD
3.1. Federated Learning Setup

Consider a federated learning scenario with C clients, where
the i client has samples D; drawn i.i.d. from distinct
unknown data distributions {P; }. We do not assume that 7;
are related. Let £ : W x X — R be a loss function, where
the goal is to minimize the weighted empirical average of
client risks:

f(w)=Efi(w)= D|Z| |1E £wx) (1)

Assuming that all clients have an equal number of data
points, this simplifies to the empirical average of client
risks:

fw) =Efi(w) =

Ol =
.Mm

LEPiﬁ(w,x).)

i=1%

For simplicity of presentation, we consider this unweighted
average (eqn. 2), but our theoretical results directly extend
to the the more general setting (eqn. 1).

In federated learning, a central aggregator coordinates an
iterative optimization procedure to minimize f with respect
to w, the parameters of the model. In every iteration, the
aggregator chooses W clients uniformly at random,! and
these clients download the current model, determine how to
best update the model based on their local data, and upload
a model update to the aggregator. The aggregator then com-
bines these model updates to update the model for the next
iteration. Different federated optimization algorithms use
different model updates and different aggregation schemes
to combine these updates.

3.2. Algorithm

At each iteration in Fet chSGD, the i participating client
computes a stochastic gradient gi using a batch of (or all
of) its local data, then compresses gﬁ using a data structure
called a Count Sketch. Each client then sends the sketch
S(gl) to the aggregator as its model update.

A Count Sketch is a randomized data structure that can com-
press a vector by randomly projecting it several times to
lower dimensional spaces, such that high-magnitude ele-
ments can later be approximately recovered. We provide
more details on the Count Sketch in Appendix C, but here
we treat it simply as a compression operator S(-), with the
special property that it is linear:

S(g1+82) =8(g1) +S(g2)

'n practice, the clients may not be chosen randomly, since
often only devices that are on wifi, charging, and idle are allowed
to participate.

Using linearity, the server can exactly compute the sketch
of the true minibatch gradient g' = Y gf given only the

S(gh)-
28@D=S<Z§>=

Another useful property of the Count Sketch is that, for a
sketching operator S(-), there is a corresponding decom-
pression operator U () that returns an unbiased estimate of
the original vector, such that the high-magnitude elements
of the vector are approximated well (see Appendix C for
details):
Top-k(U(S(g))) ~ Top-k(g).

Briefly, /(-) approximately “undoes” the projections com-
puted by S(+) for each row, and then takes a median across
rows to reduce the variance of the final estimate. See Ap-
pendix C for more details.

With the S(g!) in hand, the central aggregator could update
the global model with Top-k (U (¥; S(g!))) ~ Top-k (g').
However, Top-k(g') is not an unbiased estimate of g, so
the normal convergence of SGD does not apply. Fortunately,
Karimireddy et al. (2019b) show that biased gradient com-
pression methods can converge if they accumulate the error
incurred by the biased gradient compression operator and
re-introduce the error later in optimization. In Fet chSGD,
the bias is introduced by Top-k rather than by S(+), so the
aggregator, instead of the clients, can accumulate the error,
and it can do so into a zero-initialized sketch S, instead of
into a gradient-like vector:

=

1
s = W ;S(gf)
= Topk(U (75" +8¢)))
sg“ =S+, —S(a")

whtl — wt — A
where 7 is the learning rate.

In contrast, other biased gradient compression methods in-
troduce bias on the clients when compressing the gradients,
so the clients themselves must maintain individual error
accumulation vectors. This becomes a problem in federated
learning, where clients may participate only once, giving
the error no chance to be reintroduced in a later round.

Viewed another way, because S () is linear, and because er-
ror accumulation consists only of linear operations, carrying
out error accumulation on the server within S, is equivalent
to carrying out error accumulation on each client, and up-
loading sketches of the result to the server. (Computing the
model update from the accumulated error is not linear, but
only the server does this, whether the error is accumulated

FetchSGD: Communication-Efficient Federated Learning with Sketching

on the clients or on the server.) Taking this a step further, we
note that momentum also consists of only linear operations,
and so momentum can be equivalently carried out on the
clients or on the server. Extending the above equations with
momentum yields 1 W

s'=—Y"S(g)
pe

S, =ps) +5'

A = Topk(U (1S +5;)))
S =St 48, - S(8)
witl = wl — A,

FetchSGD is presented in full in Algorithm 1.

Algorithm 1 Fet chSGD

number of model weights to update each round k
learning rate 7

number of timesteps T

momentum parameter p, local batch size £

Client datasets {D,-}z(-:=1
Number of clients selected per round W
Input: Loss function £(model weights, datum)
Input: Sketching and unsketching functions S, U
1: Initialize S) and S to zero sketches
2: Initialize w using the same random seed on the clients and
aggregator
3: fort=1,2,---Tdo

Input:
Input:
Input:
Input:
Input:
Input:

4: Randomly select W clients c1, . .. cpy

5: loop {In parallel on clients {ci}}ll}

6: Dgwnload (possibly sparse) new model weights w —
w

7: Compute stochastic gradient gf on batch B; of size ¢:
glt = % Zﬁ':l VW[,(Wt,X]')

8: Sketch gi: St=8(gi) and send it to the Aggregator

9: end loop

10: Aggregate sketches S! = % Zivil f

11: Momentum: Sf, = pS{, 1 + &

12: Error feedback: Sf = #S!, + S

13: Unsketch: Af = Top-k(U(S}))

14: Error accumulation: S5 = St — S(Af)
15: Update w; 1 = wy — Af

16: end for

Output: {w;}|,

4. Theory

This section presents convergence guarantees for
FetchSGD. First, Section 4.1 gives the convergence of
FetchSGD when making a strong and opaque assumption
about the sequence of gradients. Section 4.2 instead makes
a more interpretable assumption about the gradients, and
arrives at a weaker convergence guarantee.

4.1. Scenario 1: Contraction Holds

To show that compressed SGD converges when using a
biased compression operator, existing methods first show

that their compression operator obeys a contraction property,
and then they appeal to Stich et al. (2018) for convergence
guarantees (Karimireddy et al., 2019b; Zheng et al., 2019;
Ivkin et al., 2019a). Specifically, for the convergence results
of Stich et al. (2018) to apply, the compression operator C
must be a T-contraction:

1IC0) = x| < (1 =1) [Ix]

Ivkin et al. (2019a) show that it is possible to satisfy this con-
traction property using Count Sketches to compress gradi-
ents. However, their compression method includes a second
round of communication: if there are no high-magnitude
elements in e;, as computed from S(et), the server can
query clients for random entries of e;. On the other hand,
FetchSGD never computes the ei, or e¢, so this second
round of communication is not possible, and the analysis
of Ivkin et al. (2019a) does not apply. In this section, we
simply assume that the contraction property holds along the
optimization path. Because Count Sketches approximate ¢
norms, we can phrase this assumption in terms of sketched
quantities that are actually computed in the algorithm:

Assumption 1 (Scenario 1). For the sequence of gradients
encountered during optimization, there exists a constant
0 < T < 1 such that the following holds

IS (et + (gt +pur—1) > < (1= T) IS(r (g + pus—1)) |

Theorem 1 (Scenario 1). Ler f be an L-smooth 2 non-
convex function and let g; denote stochastic gradients of

e
fi such thatIEHgiH2 < G? and G* := % Under
. , s _ 1-p .
Assumption 1, Fet chSGD, with step size j = T T

iterations, returns {w}]_ such that

. 2 4L —f* 1-p)o® | 2(1-1)G?
1. ming_q..TE| f(wy)]|© < (f(wo) /:/%+ (=p)® 4 2 TZTT)
2. The sketch uploaded from each participating client to the
parameter server is O (klog (AT /5)) bytes per round.

Note that the contraction factor T should be considered a
function of k, highlighting the trade-off between communi-
cation and utility.

Intuitively, Assumption 1 states that, at each time step, the
descent direction — i.e., the scaled negative gradient, in-
cluding momentum — and the error accumulation vector
must point in sufficiently the same direction. This assump-
tion is rather opaque, since it involves all of the gradient,
momentum, and error accumulation vectors, and it is not
immediately obvious that we should expect it to hold. To
remedy this, the next section analyzes Fet chSGD under a
simpler assumption that involves only the gradients. Note
that this is still an assumption on the algorithmic path, but it
presents a clearer understanding.

ZA differentiable function f is L-smooth if
IVf6) = V)l < Llx—yll ¥xy & dom(f).

FetchSGD: Communication-Efficient Federated Learning with Sketching

4.2. Scenario 2: Sliding Window Heavy Hitters

Gradients taken along the optimization path have been ob-
served to contain heavy coordinates (Shi et al., 2019; Li
et al., 2019). However, it would be overly optimistic to
assume that all gradients contain heavy coordinates. This
might break down, for example, in very flat regions of pa-
rameter space. Instead, we introduce a much milder assump-
tion: namely that there exist heavy coordinates in a sliding
sum of gradient vectors:

Definition 1. [(I,a)-sliding heavy®]

A stochastic process {gt}, is (I, «)-sliding heavy if, at any
iteration t, the gradient vector g; can be decomposed as
gt = gf] + gts, where gts is “signal” and g{\] is “noise”
with the following properties:

1. [Signal] With probability at least 1 — 6, for ev-
ery non-zero coordinate | of vector gf : At b with
h<t<t, h—hb<I:|L2g)l>a|L2gl

2. [Noise] g{\] is mean zero, symmetric and when nor-
malized by its norm, its second moment bounded as
T

lgel® =

Intuitively, this definition states that, if we sum up to I con-
secutive gradients, every coordinate in the result will either
be an a-heavy hitter, or will be drawn from some mean-zero
symmetric noise. When [= 1, part 1 of the definition re-
duces to the assumption that gradients always contain heavy
coordinates. Our assumption for general, constant [is sig-
nificantly weaker, as it requires the gradients to have heavy
coordinates in a sequence of [iterations rather than in every
iteration. The existence of heavy coordinates spread across
consecutive updates helps to explains the success of error
feedback techniques, which extract signal from a sequence
of gradients that may be indistinguishable from noise in any
one iteration. Note that both the signal and the noise scale
with the norm of the gradient, so both adjust accordingly as
gradients become smaller later in optimization.

Under this definition, we can use Count Sketches to capture
the signal, since Count Sketches can approximate heavy
hitters. Because the signal is spread over sliding windows of
size I, we need a sliding window error accumulation scheme
to ensure that we capture whatever signal is present. Vanilla
error accumulation is not sufficient to show convergence,
since vanilla error accumulation sums up all prior gradients,
so signal that is present only in a sum of I consecutive gra-
dients (but not in I + 1, or I + 2, etc.) will not be captured
with vanilla error accumulation. Instead, Fet chSGD uses a
sliding window error accumulation scheme, which can cap-
ture any signal that is spread over a sequence of at most [

3Technically, this definition is also parameterized by § and
B. However, in the interest of brevity, we use the simpler term
“(I, x)-sliding heavy” throughout the manuscript.

3 e4 (}&
€ error

accumulation
clean up

2

90000

Figure 2. Sliding window error accumulation

gradients. One simple way to accomplish this is to maintain
I error accumulation Count Sketches, as shown in Figure
2 for I = 4. Each sketch accumulates new gradients every
iteration, and beginning at offset iterations, each sketch is
zeroed out every [iterations before continuing to accumu-
late gradients. Under this scheme, at every iteration there
is a sketch available that contains the sketched sum of the
prior I’ gradients, for all I’ < I.

In practice, it is too expensive to maintain I error accumula-
tion sketches. Fortunately, this “sliding window” problem
is well studied in the sketching community (Datar et al.,
2002; Braverman and Ostrovsky, 2007), and it is possible
to identify heavy hitters that are spread over a sequence
of gradients with only log (I) error accumulation sketches.
Additional details on sliding window Count Sketch are in
Appendix D. Although we use a sliding window error accu-
mulation scheme to prove convergence, in all experiments
we use a single error accumulation sketch, since we find
that doing so still leads to good convergence.

Assumption 2 (Scenario 2). The sequence of gradients en-
countered during optimization form an (I, «)-sliding heavy
stochastic process.

Theorem 2 (Scenario 2). Let f be an L-smooth non-convex
function and let g; denote stochastic gradients of f; such

e .

that E||g;||* < G?, and G? = % Under Assumption
2, Fet chSGD, with step size 1] = VLT and p = 0 (no
momentum), in T iterations, with probability at least 1 — §,
returns {w;}!_; such that

. GVL((f(wo)—f*)+2(2—a)+212
L min B[V ()| g A L0 0120) oyp

2. The sketch uploaded from each participating client to
log(dT/5))
a2

the parameter server is O (bytes per round.

Remarks:

1. These guarantees are for the non-i.i.d. setting —i.e. f
is the average risk with respect to potentially unrelated
distributions (see eqn. 2).

2. The convergence rate in Theorem 1 matches that of un-

compressed SGD, while the rate in Theorem 2 is worse.

3. The proof uses the virtual sequence idea of Stich et al.

(2018), and can be generalized to other class of functions
like smooth, (strongly) convex etc. by careful averaging
(proof in Appendix B.2.2).

FetchSGD: Communication-Efficient Federated Learning with Sketching

5. Evaluation

We implement and compare Fet chSGD, gradient sparsifi-
cation (local top-k), and FedAvg using PyTorch (Paszke
et al., 2019).* We note the following differences between
the theoretical and empirical algorithms:

e We test on neural networks containing ReLU, whose loss
surfaces are not L-smooth.

e Our theory for Scenario 2 uses a sliding window Count
Sketch for error accumulation, but in practice we use a
vanilla Count Sketch.

e We use non-zero momentum (Theorem 1 allows momen-
tum, but Theorem 2 does not).

e For all methods, we employ momentum factor masking,
following Lin et al. (2017).

e On line 14 of Algorithm 1, we zero out the nonzero
coordinates of S(A!) in S! instead of subtracting S(Af).
Empirically, doing so stabilizes the optimization.

We focus our experiments on the regime of small local
datasets and non-i.i.d. data, since we view this as both an
important and relatively unsolved regime in federated learn-
ing. Gradient sparsification methods, which sum together
the local top-k gradient elements from each worker, do a
worse job approximating the true top-k of the global gra-
dient as local datasets get smaller and more unlike each
other. And taking many steps on each client’s local data,
which is how FedAvg achieves communication efficiency,
is unproductive since it leads to immediate local overfitting.
However, real-world users tend to generate data with sizes
that follow a power law distribution (Goyal et al., 2017), so
most users will have relatively small local datasets. Real
data in the federated setting is also typically non-i.i.d.

FetchSGD has a key advantage over prior methods in this
regime because our compression operator is linear. Small
local datasets pose no difficulties, since executing a step
using only a single client with N data points is equivalent to
executing a step using N clients, each of which has only a
single data point. By the same argument, issues arising from
non-i.i.d. data are partially mitigated by random client selec-
tion, since combining the data of participating clients leads
to a more representative sample of the full data distribution.

For each method, we report the compression achieved rela-
tive to uncompressed SGD in terms of total bytes uploaded
and downloaded.> One important consideration not captured
in these numbers is that in FedAvg, clients must download

4Code available at https://github.com/
kiddyboots216/CommEfficient. Git commit at the
time of camera-ready: 833ca44.

SWe only count non-zero weight updates when computing how
many bytes are transmitted. This makes the unrealistic assumption
that we have a zero-overhead sparse vector encoding scheme.

an entire model immediately before participating, because
every model weight could get updated in every round. In
contrast, local top-k and Fet chSGD only update a limited
number of parameters per round, so non-participating clients
can stay relatively up to date with the current model, reduc-
ing the number of new parameters that must be downloaded
immediately before participating. This makes upload com-
pression more important than download compression for
local top-k and Fet chSGD. Download compression is also
less important for all three methods since residential Internet
connections tend to reach far higher download than upload
speeds (Goga and Teixeira, 2012). We include results here
of overall compression (including upload and download),
but break up the plots into separate upload and download
components in the Appendix, Figure 6.

In all our experiments, we tune standard hyperparameters
on the uncompressed runs, and we maintain these same
hyperparameters for all compression schemes. Details on
which hyperparameters were chosen for each task can be
found in Appendix A. FedAvg achieves compression by
reducing the number of iterations carried out, so for these
runs, we simply scale the learning rate schedule in the it-
eration dimension to match the total number of iterations
that FedAvg will carry out. We report results for each com-
pression method over a range of hyperparameters: for local
top-k, we adjust k; and for Fet chSGD we adjust k and the
number of columns in the sketch (which controls the com-
pression rate of the sketch). We tune the number of local
epochs and federated averaging batch size for FedAvg, but
do not tune the learning rate decay for FedAvg because we
find that FedAvg does not approach the baseline accuracy
on our main tasks for even a small number of local epochs,
where the learning rate decay has very little effect.

In the non-federated setting, momentum is typically crucial
for achieving high performance, but in federating learning,
momentum can be difficult to incorporate. Each client could
carry out momentum on its local gradients, but this is inef-
fective when clients participate only once or a few times.
Instead, the central aggregator can carry out momentum
on the aggregated model updates. For FedAvg and local
top-k, we experiment with (pg = 0.9) and without (o = 0)
this global momentum. For each method, neither choice
of pg consistently performs better across our tasks, reflect-
ing the difficulty of incorporating momentum. In contrast,
FetchSGD incorporates momentum seamlessly due to the
linearity of our compression operator (see Section 3.2); we
use a momentum parameter of 0.9 in all experiments.

In all plots of performance vs. compression, each point
represents a trained model, and for clarity, we plot only
the Pareto frontier over hyperparameters for each method.
Figures 7 and 9 in the Appendix show results for all runs
that converged.

FetchSGD: Communication-Efficient Federated Learning with Sketching

CIFAR10 Non-i.i.d. 100W/10,000C

0.90 1
0.85 1
0.80 1

>

o

C0.75

=3

]

; 0.701 FetchSGD

2 0.65 4 Local Top-k (pg = 0.9)

A Local Top-k (pg =0)
0601 e FedAvg (o, =0.9)
0.55 - ® FedAvg (pg=0)
.\ ¢ Uncompressed

0.50

1 2 3 4 5 6 7 8 9
Overall Compression

CIFAR100 Non-i.i.d. 500W/50,000C

0.3 1 A

0.2 1 .\‘\‘
2 3 4

Overall Compression

o
wv
!

Test Accuracy
=}
N

=

Figure 3. Test accuracy achieved on CIFAR10 (left) and CIFAR100 (right). “Uncompressed” refers to runs that attain compression by
simply running for fewer epochs. Fet chSGD outperforms all methods, especially at higher compression. Many FedAvg and local top-k
runs are excluded from the plot because they failed to converge or achieved very low accuracy.

5.1. CIFAR (ResNet9)

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are im-
age classification datasets with 60,000 32 x 32 pixel color
images distributed evenly over 10 and 100 classes respec-
tively (50,000/10,000 train/test split). They are benchmark
datasets for computer vision, and although they do not have
a natural non-i.i.d. partitioning, we artificially create one
by giving each client images from only a single class. For
CIFAR10 (CIFAR100) we use 10,000 (50,000) clients, yield-
ing 5 (1) images per client. Our 7M-parameter model ar-
chitecture, data preprocessing, and most hyperparameters
follow Page (2019), with details in Appendix A.1. We report
accuracy on the test datasets.

Figure 3 shows test accuracy vs. compression for CIFAR10
and CIFAR100. In this setting with very small local datasets,
FedAvg and local top-k both struggle to achieve signif-
icantly better results than uncompressed SGD. Although
we ran a large hyperparameter sweep, many runs simply
diverge, especially for higher compression (local top-k) or
more local iterations (FedAvg). We expect this setting to
be challenging for FedAvg, since running multiple gradient
steps on only one or a few data points, especially points that
are not representative of the overall distribution, is unlikely
to be productive. And although local top-k can achieve
high upload compression, download compression is reduced
to almost 1, since summing sparse gradients from many
workers, each with very different data, leads to a nearly
dense model update each round.

5.2. FEMNIST (ResNet101)

The experiments above show that Fet chSGD significantly
outperforms competing methods in the regime of very small
local datasets and non-i.i.d. data. In this section we intro-

FEMNIST 3/3500 non-iid

1 a
0.80 A
g 0.75
I
=]
o
<
< ‘\‘\‘\ FetchSGD
o Local Top-k (pg =0.9)
A Local Top-k (pg=0) -+
0.65 ® FedAvg (py=0.9)
® FedAvg (py=0)
¢ Uncompressed
0.60 T T T T
2 4 6 8 10

Overall Compression
Figure 4. Test accuracy on FEMNIST. The dataset is not very non-

i.i.d., and has relatively large local datasets, but Fet chSGD is still
competitive with FedAvg and local top-k for lower compression.

duce a task designed to be more favorable for FedAvg, and
show that Fet chSGD still performs competitively.

Federated EMNIST is an image classification dataset with
62 classes (upper- and lower-case letters, plus digits) (Cal-
das et al., 2018), which is formed by partitioning the EM-
NIST dataset (Cohen et al., 2017) such that each client in
FEMNIST contains characters written by a particular per-
son. Experimental details, including our 40M-parameter
model architecture, can be found Appendix A.2. We report
the final accuracy of the trained models on the validation
dataset. The baseline run trains for a single epoch (i.e., each
client participates once).

FEMNIST was introduced as a benchmark dataset for
FedAvg, and it has relatively large local dataset sizes
(~ 200 images per client). The clients are split accord-

FetchSGD: Communication-Efficient Federated Learning with Sketching

GPT 4W/17,568C non-iid

26
24 4
z 227 FetchSGD
% Local Top-k (og=0.9)
2204 A Local Top-k (pg=0)
©
kel ® FedAvg (py=0.9)
s 184 ¢ Uncompressed
16 A / o=
¢
14 T T
10° 10!

Overall Compression

GPT2 Train Loss Curves

9.0
FedAvg (5.0x)
8.5 —— FedAvg (2.0x)
—— Local Top-k (59.9x)
8.0+ —— Local Top-k (7.1x)
FetchSGD (7.3x)
475 —— FetchSGD (3.9x)
i Uncompressed (1.0x)
‘©
= 7.0
6.5+
6.0 -
5.5 T T T T
0 1000 2000 3000 4000
Iterations

Figure 5. Left: Validation perplexity achieved by finetuning GPT2-small on PersonaChat. FetchSGD achieves 3.9 compression
without loss in accuracy over uncompressed SGD, and it consistently achieves lower perplexity than FedAvg and top-k runs with similar
compression. Right: Training loss curves for representative runs. Global momentum hinders local top-k in this case, so local top-k runs

with pe = 0.9 are omitted here to increase legibility.

ing to the person who wrote the character, so the data is less
non-i.i.d. than our per-class splits of CIFAR10. To maintain
a reasonable overall batch size, only three clients participate
each round, reducing the need for a linear compression oper-
ator. Despite this, Fet chSGD performs competitively with
both FedAvg and local top-k for some compression values,
as shown in Figure 4.

For low compression, Fet chSGD actually outperforms the
uncompressed baseline, likely because updating only k pa-
rameters per round regularizes the model. Interestingly,
local top-k using global momentum significantly outper-
forms other methods on this task, though we are not aware
of prior work suggesting this method for federated learning.
Despite this surprising observation, local top-k with global
momentum suffers from divergence and low accuracy on
our other tasks, and it lacks any theoretical guarantees.

5.3. PersonaChat (GPT2)

In this section we consider GPT2-small (Radford et al.,
2019), a transformer model with 124M parameters that is
used for language modeling. We finetune a pretrained GPT2
on the PersonaChat dataset, a chit-chat dataset consisting
of conversations between Amazon Mechanical Turk work-
ers who were assigned faux personalities to act out (Zhang
et al., 2018). The dataset has a natural non-i.i.d. partition-
ing into 17,568 clients based on the personality that was
assigned. Our experimental procedure follows Wolf (2019).
The baseline model trains for a single epoch, meaning that
no local state is possible, and we report the final perplexity
(a standard metric for language models; lower is better) on
the validation dataset in Figure 5.

Figure 5 also plots loss curves (negative log likelihood)
achieved during training for some representative runs. Some-
what surprisingly, all the compression techniques outper-
form the uncompressed baseline early in training, but most
saturate too early, when the error introduced by the com-
pression starts to hinder training.

Sketching outperforms local top-k for all but the highest
levels of compression, because local top-k relies on local
state for error feedback, which is impossible in this setting.
We expect this setting to be challenging for FedAvg, since
running multiple gradient steps on a single conversation
which is not representative of the overall distribution is
unlikely to be productive.

6. Discussion

Federated learning has seen a great deal of research interest
recently, particularly in the domain of communication effi-
ciency. A considerable amount of prior work focuses on de-
creasing the total number of communication rounds required
to converge, without reducing the communication required
in each round. In this work, we complement this body of
work by introducing Fet chSGD, an algorithm that reduces
the amount of communication required each round, while
still conforming to the other constraints of the federated
setting. We particularly want to emphasize that Fet chSGD
easily addresses the setting of non-i.i.d. data, which often
complicates other methods. The optimal algorithm for many
federated learning settings will no doubt combine efficiency
in number of rounds and efficiency within each round, and
we leave an investigation into optimal ways of combining
these approaches to future work.

FetchSGD: Communication-Efficient Federated Learning with Sketching

Acknowledgements

This research was supported in part by NSF BIG-
DATA awards IIS-1546482, 11S-1838139, NSF CAREER
award IIS-1943251, NSF CAREER grant 1652257, NSF
GRFP grant DGE 1752814, ONR Award N00014-18-1-
2364 and the Lifelong Learning Machines program from
DARPA/MTO. RA would like to acknowledge support pro-
vided by Institute for Advanced Study.

In addition to NSF CISE Expeditions Award CCF-1730628,
this research is supported by gifts from Alibaba, Amazon
Web Services, Ant Financial, CapitalOne, Ericsson, Face-
book, Futurewei, Google, Intel, Microsoft, Nvidia, Scotia-
bank, Splunk and VMware.

References

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In Advances
in Neural Information Processing Systems, pages 1709—
1720, 2017.

Noga Alon, Yossi Matias, and Mario Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and system sciences, 58(1):137-147,
1999.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah
Estrin, and Vitaly Shmatikov. How to backdoor federated
learning, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd: Compressed
optimisation for non-convex problems. arXiv preprint
arXiv:1802.04434, 2018.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal,
and Seraphin Calo. Analyzing federated learning through
an adversarial lens. arXiv preprint arXiv:1811.12470,
2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure ag-
gregation for federated learning on user-held data. arXiv
preprint arXiv:1611.04482, 2016.

Vladimir Braverman and Rafail Ostrovsky. Smooth his-
tograms for sliding windows. In 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’07),
pages 283-293. IEEE, 2007.

Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin,
Jelani Nelson, Zhengyu Wang, and David P Woodruff.

Bptree: an /5 heavy hitters algorithm using constant mem-
ory. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems,
pages 361-376, 2017.

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Ol-
shevsky, Ioannis Ch Paschalidis, and Wei Shi. Federated
learning of predictive models from federated electronic
health records. International journal of medical informat-

ics, 112:59-67, 2018.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu,
Tian Li, Jakub Konecny, H. Brendan McMahan, Virginia
Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings, 2018.

Moses Charikar, Kevin Chen, and Martin Farach-Colton.
Finding frequent items in data streams. In International

Colloquium on Automata, Languages, and Programming,
pages 693-703. Springer, 2002.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. Emnist:
Extending mnist to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pages 2921-2926, May 2017. doi: 10.1109/IJICNN.2017.
7966217.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Mot-
wani. Maintaining stream statistics over sliding windows.
SIAM journal on computing, 31(6):1794—-1813, 2002.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, An-
drew Senior, Paul Tucker, Ke Yang, et al. Large scale
distributed deep networks. In Advances in neural infor-
mation processing systems, pages 1223-1231, 2012.

EU. 2018 reform of eu data protection rules, 2018. URL
https://tinyurl.com/ydaltt5g.

Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differen-
tially private federated learning: A client level perspec-
tive, 2017.

Oana Goga and Renata Teixeira. Speed measurements of
residential internet access. In International Conference
on Passive and Active Network Measurement, pages 168—
178. Springer, 2012.

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ra-
maswamy, Francoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. Federated

FetchSGD: Communication-Efficient Federated Learning with Sketching

learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard
Nock, Giorgio Patrini, Guillaume Smith, and Brian
Thorne. Private federated learning on vertically parti-
tioned data via entity resolution and additively homo-
morphic encryption. arXiv preprint arXiv:1711.10677,
2017.

Nikita Ivkin, Zaoxing Liu, Lin F Yang, Srinivas Suresh
Kumar, Gerard Lemson, Mark Neyrinck, Alexander S
Szalay, Vladimir Braverman, and Tamas Budavari. Scal-
able streaming tools for analyzing n-body simulations:
Finding halos and investigating excursion sets in one pass.
Astronomy and computing, 23:166—-179, 2018.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah,
Vladimir Braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed sgd with sketching.

In Advances in Neural Information Processing Systems,
pages 13144-13154, 2019a.

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin
Jin. Qpipe: Quantiles sketch fully in the data plane.
In Proceedings of the 15th International Conference on

Emerging Networking Experiments And Technologies,
pages 285-291, 2019b.

Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui.
Sketchml: Accelerating distributed machine learning with
data sketches. In Proceedings of the 2018 International
Conference on Management of Data, pages 1269-1284,
2018.

Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adria Gascén, Badih Ghazi, Phillip B. Gibbons,
Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie
He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Mar-
tin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konecny, Aleksandra Korolova, Farinaz Koushan-
far, Sanmi Koyejo, Tancrede Lepoint, Yang Liu, Prateek
Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgiir, Ras-
mus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage,
Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U.
Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramer, Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen
Zhao. Advances and open problems in federated learning,
2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank J. Reddi, Sebastian U. Stich, and

Ananda Theertha Suresh. Scaffold: Stochastic controlled
averaging for on-device federated learning, 2019a.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U
Stich, and Martin Jaggi. Error feedback fixes signsgd
and other gradient compression schemes. arXiv preprint
arXiv:1901.09847, 2019b.

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Pe-
ter Richtarik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communica-
tion efficiency, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multi-
ple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto,
2009.

Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and
Song Chong. Mobile data offloading: How much can
wifi deliver? In Proceedings of the 6th International
Conference, pages 1-12, 2010.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gis-
selbrecht, and Joseph Dureau. Federated learning for
keyword spotting. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6341-6345. IEEE, 2019.

He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in
edge: Deep learning for the internet of things with edge
computing. IEEE network, 32(1):96-101, 2018.

Tian Li, Zaoxing Liu, Vyas Sekar, and Virginia Smith. Pri-
vacy for free: Communication-efficient learning with
differential privacy using sketches. arXiv preprint
arXiv:1911.00972, 2019.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J
Dally. Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

Zaoxing Liu, Nikita Ivkin, Lin Yang, Mark Neyrinck, Ger-
ard Lemson, Alexander Szalay, Vladimir Braverman,
Tamas Budavari, Randal Burns, and Xin Wang. Streaming
algorithms for halo finders. In 2015 IEEE 11th Interna-
tional Conference on e-Science, pages 342-351. IEEE,
2015.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, et al. Communication-efficient learning of
deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

Jayadev Misra and David Gries. Finding repeated elements.
Science of computer programming, 2(2):143-152, 1982.

FetchSGD: Communication-Efficient Federated Learning with Sketching

Lev Muchnik, Sen Pei, Lucas C Parra, Saulo DS Reis, José S
Andrade Jr, Shlomo Havlin, and Hernan A Makse. Ori-
gins of power-law degree distribution in the heterogeneity
of human activity in social networks. Scientific reports, 3
(1):1-8, 2013.

Shanmugavelayutham Muthukrishnan et al. Data streams:
Algorithms and applications. Foundations and Trends®)
in Theoretical Computer Science, 1(2):117-236, 2005.

David Page. How to train your resnet, Nov
2019. URL https://myrtle.ai/
how-to-train-your—resnet/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 32, pages 8024-8035. Curran Associates, Inc., 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsu-
pervised multitask learners. OpenAl Blog, 1(8):9, 2019.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,
Ameet Talwalkar, and Virginia Smith. On the conver-
gence of federated optimization in heterogeneous net-
works. arXiv preprint arXiv:1812.06127, 2018.

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon
See. Understanding top-k sparsification in distributed
deep learning. arXiv preprint arXiv:1911.08772, 2019.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu
Xu. Edge computing: Vision and challenges. IEEE
internet of things journal, 3(5):637-646, 2016.

Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and An-
shumali Shrivastava. Compressing gradient optimizers
via count-sketches. arXiv preprint arXiv:1902.00179,
2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin
Jaggi. Sparsified sgd with memory. In Advances in Neural
Information Processing Systems, pages 4447-4458, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momen-
tum in deep learning. In International conference on
machine learning, pages 1139-1147, 2013.

Mark Tomlinson, Wesley Solomon, Yages Singh, Tanya
Doherty, Mickey Chopra, Petrida [jumba, Alexander C
Tsai, and Debra Jackson. The use of mobile phones as
a data collection tool: a report from a household survey
in south africa. BMC medical informatics and decision
making, 9(1):51, 2009.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified
framework for the design and analysis of communication-
efficient sgd algorithms, 2018.

Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K
Leung, Christian Makaya, Ting He, and Kevin Chan.
Adaptive federated learning in resource constrained edge
computing systems. IEEE Journal on Selected Areas in
Communications, 37(6):1205-1221, 2019.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang.
Gradient sparsification for communication-efficient dis-
tributed optimization. In Advances in Neural Information
Processing Systems, pages 1299-1309, 2018.

Thomas Wolf. How to build a state-of-the-art conversational
ai with transfer learning, May 2019. URL https://
tinyurl.com/ryehijbt.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C Delangue,
A Moi, P Cistac, T Rault, R Louf, M Funtowicz, et al.
Huggingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771, 2019.

Laurence T Yang, BW Augustinus, Jianhua Ma, Ling Tan,
and Bala Srinivasan. Mobile intelligence, volume 69.
Wiley Online Library, 2010.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng
Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Fran-
coise Beaufays. Applied federated learning: Improv-
ing google keyboard query suggestions. arXiv preprint
arXiv:1812.02903, 2018.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam,
Douwe Kiela, and Jason Weston. Personalizing dialogue
agents: I have a dog, do you have pets too?, 2018.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-
iid data, 2018.

Shuai Zheng, Ziyue Huang, and James Kwok.
Communication-efficient distributed blockwise momen-
tum sgd with error-feedback. In Advances in Neural
Information Processing Systems, pages 11446-11456,
2019.

FetchSGD: Communication-Efficient Federated Learning with Sketching

The Appendix is organized as follows:

e Appendix A lists hyperparameters and model architectures used in all experiments, and includes plots with additional
experimental data, including results broken down into upload, download and overall compression.

e Appendix B gives full proofs of convergence for Fet chSGD.
e Appendix C describes the Count Sketch data structure and how it is used in Fet chSGD.

e Appendix D provides the high level idea of the sliding window model and describes how to extend a sketch data
structure to the sliding window setting.

A. Experimental Details

We run all experiments on commercially available NVIDIA Pascal, Volta and Turing architecture GPUs.

A.1. CIFAR

In all non-FedAvg experiments we train for 24 epochs, with 1% of clients participating each round, for a total of 2400
iterations. We use standard train/test splits of 50000 training datapoints and 10000 validation. We use a triangular learning
rate schedule which peaks at epoch 5. We use the maximum peak learning rate for which the uncompressed runs converge:
0.3 for CIFARI10, and 0.2 for CIFAR100. We use this learning rate schedule for all compressed runs. FedAvg runs for
fewer than 24 epochs, so we compress the learning rate schedule in the iteration dimension accordingly. We do not tune the
learning rate separately for any of the compressed runs.

We split the datasets into 10,000 (CIFAR10) and 50,000 (CIFAR100) clients, each of which has 5 (CIFAR10) and 1
(CIFAR100) data point(s) from a single target class. In each round, 1% of clients participate, leading to a total batch size of
500 for both datasets (100 clients with 5 data points for CIFAR10, and 500 clients with 1 data point for CIFAR100). We
augment the data during training with random crops and random horizontal flips, and we normalize the images by the dataset
mean and standard deviation during training and testing. We use a modified ResNet9 architecture with 6.5M parameters for
CIFAR10, and 6.6M parameters for CIFAR100. We do not use batch normalization in any experiments, since it is ineffective
with the very small local batch sizes we use. Most of these training procedures, and the modified ResNet9 architecture we
use, are drawn from the work of Page (2019).

FetchSGD, FedAvg and local top-k each have unique hyperparameters that we search over. For Fet chSGD, we try a
grid of values for k and the number of columns in the sketch. For k we try values of [10, 25, 50, 75, 100] x 103. For the
number of columns we try values of [325, 650, 1300, 2000, 3000] x 103. We also tune k for local top-k, trying values of
[325, 650, 1300, 2000, 3000, 5000] x 103. We present results for local top-k with and without global momentum, but not
with local momentum: with such a low participation rate, we observe anecdotally that local momentum performs poorly,
since the momentum is always stale, and maintaining local momentum and error accumulation vectors for the large number
of clients we experiment with is computationally expensive. The two hyperparameters of interest in FedAvg are the total
number of global epochs to run (which determines the compression), and the number of local epochs to perform. We run a
grid search over global epochs of [6, 8, 12] (corresponding to 4 <, 3 X, and 2x compression), and local epochs of [2,3,5].

Figure 6 shows the Pareto frontier of results with each method for CIFAR10 and CIFAR100 broken down into upload,
download, and overall compression. Figure 7 shows all runs that converged for the two datasets. For CIFAR10, 1 Fet chSGD
run, 3 local top-k runs, and all FedAvg runs using global momentum diverged. For CIFAR100, 1 local top-k run and all
FedAvg runs using global momentum diverged.

A.2. FEMNIST

The dataset consists of 805,263 28 x 28 pixel grayscale images distributed unevenly over 3,550 classes/users,
with an average of 226.83 datapoints per user and standard deviation of 88.94. We further pre-
process the data using the preprocessing script provided by the LEAF repository, using the command:
./preprocess.sh -s niid --sf 1.0 -k 0 -t sample. Thisresultsin 706,057 training samples and 80,182
validation samples over 3,500 clients. 6

OLeaf repository: https://tinyurl.com/u2w3twe

FetchSGD: Communication-Efficient Federated Learning with Sketching

We train a 40M-parameter ResNet101 with layer norm instead of batch norm, using an average batch size of ~ 600 (but
varying depending on which clients participate) with standard data augmentation via image transformations and a triangular
learning rate schedule. When we train for 1 epoch, the pivot epoch of the learning rate schedule is 0.2, and the peak learning
rate is 0.01. When we train for fewer epochs in FedAvg, we compress the learning rate schedule accordingly.

For Fet chSGD we grid-search values for k and the number of columns. For Fet chSGD we search over k in [50, 100,
200] x103. and the number of sketch columns in [1, 2, 5, 10] x10°. For local top-k we search over k in [10, 20, 50, 100,
200, 500, 1000, 2000, 5000, 10000, 20000] x 103. We do not use local momentum for local top-k, since each client only
participates once. For FedAvg, we search over the number of global epochs in [0.125, 0.1667, 0.25, 0.5], the number of
local epochs in [1,2,5], and the local batch size in [10,20,50]. Figure 8 shows the Pareto frontier of results for each method,
broken down into upload, download, and overall compression. Figure 9 shows all results that converged.

True Top-k (GPT2)

E 15.00 - —— True top-k
c ——=- Uncompressed
© 14.75 A
©
S
= 14.50 -
>

103 10°

k

Figure 10. Validation perplexity on PersonaChat for a range of k using true top-k. For k /= 10°, true top-k provides some regularization,
increasing performance over the uncompressed baseline. For larger k, the use of momentum factor masking degrades performance.

A.3. PersonaChat

The non-i.i.d. nature of PersonaChat comes from the fact that different Mechanical Turk workers were provided with
different “personalities,” which are short snippets, written in English, containing a few salient characteristics of a fictional
character. We preprocess the dataset by creating additional tokens denoting the persona, context, and history, and feed these
as input to a 124M-parameter GPT2 (Radford et al., 2019) model created by HuggingFace (Wolf et al., 2019) based on
the Generative Pretrained Transformer architecture proposed by OpenAl (Radford et al., 2019). We further augment the
PersonaChat dataset by randomly shuffling the order of the personality sentences, doubling the size of the local datasets.

We use a linearly decaying learning rate of 0.16, with a total minibatch size of ~ 64 including the personality augmentation.
This can vary depending on which workers participate, as the local datasets are unbalanced.

FetchSGD, FedAvg and local top-k each have unique hyperparameters which we need to search over. For Fet chSGD
we try 6 points in a grid of values for k and the number of columns. For Fet chSGD, we search over k in [10, 25, 50,
100, 200] x 103, and over the number of sketch columns in [1240, 12400] x 103. For local top-k, we search over k in [50,
200, 1240, 5000] x10%. For FedAvg, we search over the number of global epochs in [0.1, 0.2, 0.5] (10x, 5X, and 2x
compression) and the number of local epochs in [2,5,10]. We always use the entire local dataset for each local iteration.

We report the perplexity, which is the average per word branching factor, a standard metric for language models. Although
we use the experimental setup and model from Wolf et al. (2019), our perplexities cannot be directly compared due to the
modifications made to the choice of optimizer, learning rate, and dataset augmentation strategy. Table 1 shows perplexities,
with standard deviations over three runs, for representative runs for each compression method. Learning curves for these
runs are shown in Figure 5. Local top-k consistently performs worse on this task when using global momentum (see Figure
5), so we only include results without momentum. Local momentum is not possible, since each client participates only once.

Plots of perplexity vs. compression, broken down into upload, download, and overall compression, can be found in Figure 8.

We note that Fet chSGD approximates an algorithm where clients send their full gradients, and the server sums those
gradients but only updates the model with the k highest-magnitude elements, saving the remaining elements in an error

FetchSGD: Communication-Efficient Federated Learning with Sketching

accumulation vector. We explore this method, called true top-k, briefly in Figure 10, which shows the method’s performance
as a function of k. For intermediate values of k, true top-k actually out-performs the uncompressed baseline, likely because
it provides some regularization. For large k, performance reduces because momentum factor masking inhibits momentum.

Method k PPL Download Upload Total
Compression Compression Compression
Uncompressed - 149+£0.02 1x 1x 1x
Local Top-k | 50,000 19.3+0.05 30.3% 2490 x 60 x

Local Top-k | 500,000 17.14+0.02 3.6% 248 x 7.1x
FedAvg (2 local iters) - 163402 2% 2x 2%
FedAvg (5 local iters) - 20.14+0.02 5x 5x 5x

Sketch (1.24M cols) | 25,000 15.8 +0.007 3.8 100 % 7.3%

Sketch (12.4M cols) | 50,000 14.8 +0.002 2.4x 10x 3.9x%

Table 1. Validation perplexities, with standard deviations measured over three different random seeds, for representative runs with
FetchSGD, local top-k, and FedAvg on GPT2. Loss curves for these hyperparameter settings can be found in Figure 5.

FetchSGD: Communication-Efficient Federated Learning with Sketching

CIFAR10 Non-i.i.d. 100W/10,000C

0.90 1 m FetchSGD
Local Top-k (pg =0.9) |
0.85 1 A Local Top-k (pg =0)
0.80 1 ® FedAvg (py=0.9)
g ® FedAvg (o, =0)
5 0.75 4 ¢ Uncompressed
ot
< 0.70 A
0
[}
= 0.65 A
0.60 -
0.55 A .\
0.50 -+ T T T T T T T T
1 2 3 4 5 6 7 8 9
Upload Compression
(a) CIFAR10 Upload Compression
CIFAR10 Non-i.i.d. 100W/10,000C
0.90 1 \
0.85 b
0.80 -
>
O
©0.751
=}
st
% %77 m FetchSGD
A 0.65 - Local Top-k (og=0.9)
A Local Top-k (pg = 0)
0.60 A ® FedAvg (py=0.9)
0.55 - ® FedAvg (o, =0)
\ ¢ Uncompressed
0.50 - T T T T T T T T
1 2 3 4 5 6 7 8 9
Download Compression
(c) CIFAR10 Download Compression
CIFAR10 Non-i.i.d. 100W/10,000C
0.90 -
0.85
0.80 1
>
1o}
©0.751
=}
ot
% %77 m FetchSGD
A 0.65 - Local Top-k (og=0.9)
A Local Top-k (pg = 0)
0.60 A ® FedAvg (pg=0.9)
0.55 - ® FedAvg (pg=0)
.\ ¢ Uncompressed
0.50 T T T T T T T T

= o
N
w

4 5 6 7 8 9
Overall Compression

(e) CIFAR10 Overall Compression

CIFAR100 Non-i.i.d. 500W/50,000C

0.6

©
n
)

Test Accuracy
o
N

|

1

00 25 50 7.5 10.0 125
Upload Compression

15.0 17.5 20.0

(b) CIFAR100 Upload Compression
CIFAR100 Non-i.i.d. 500W/50,000C

. -\-

0.6

o
]
)

Test Accuracy
o
Y
)

;

02 \\

1.0 15 2.0 2.5 3.0 3.5 4.0
Download Compression

(d) CIFAR100 Download Compression
CIFAR100 Non-i.i.d. 500W/50,000C

0.6
0.5 1 ®
>
(&)
I
3
S 0.4 1
<
il
E 0.3 1
0.2 1 ‘\‘\‘
1 2 3 4 5 6

Overall Compression

(f) CIFAR100 Overall Compression

Figure 6. Upload (top), download (middle), and overall (bottom) compression for CIFAR10 (left) and CIFAR100 (right). To increase
readability, each plot shows only the Pareto frontier of runs for the compression type shown in that plot. All runs that converged are shown

in Figure 7.

FetchSGD: Communication-Efficient Federated Learning with Sketching

Test Accuracy

Test Accuracy

Test Accuracy

CIFAR10 Non-i.i.d. 100W/10,000C

0.90 14 FetchSGD
Local Top-k (og=0.9)
0.85 - ¢ A Local Top-k (py=0)
0.80 - ¢ ® FedAvg (py=0.9)
® FedAvg (pg=0)
0.75 1 ¢ Uncompressed
0.70 A
A
0.65 1
0.60 1
0.55 1
o ’
0.50 T T T T T T T T
1 2 3 4 5 6 7 8 9
Upload Compression
(a) CIFAR10 Upload Compression
CIFAR10 Non-i.i.d. 100W/10,000C
0.90 ¢
0.85 ¢
0.80 1 ¢
0.75 A
0.70 1 ‘A FetchSGD
0.65 - Local Top-k (og=10.9)
A A Local Top-k (pg =0)
0.60 - N ® FedAvg (pg=0.9)
0.55 1 ® FedAvg (p;=0)
o ¢ ¢ Uncompressed
0.50 = T T T T T T T T
1 2 3 4 5 6 7 8 9
Download Compression
(c) CIFAR10 Download Compression
CIFAR10 Non-i.i.d. 100W/10,000C
0.90 14
0.85 ¢
0.80 1 ¢
0.75 A
0701 4 N FetchSGD
0.65 4 Local Top-k (pg =0.9)
A A Local Top-k (pg =0)
0.60 N ® FedAvg (pg=0.9)
0.55 1 ® FedAvg (o, =0)
0 ¢ ¢ Uncompressed
0.50 T T T T T T T T

Figure 7. Upload (top), download (middle), and overall (bottom) compression for CIFAR10 (left) and CIFAR100 (right).

1 2 3 4 5 6 7 8 9
Overall Compression

(e) CIFAR10 Overall Compression

Test Accuracy

Test Accuracy

Test Accuracy

CIFAR100 Non-i.i.d. 500W/50,000C

*
0.6 -
¢
0.5 1 o
¢
0.4
¢
A A A
0.3 A
[]
0.2 A °
[]
ofo 2j5 5fo 7j5 1C;.0 12I.5 15I.0 17I.5 20I.O
Upload Compression
(b) CIFAR100 Upload Compression
CIFAR100 Non-i.i.d. 500W/50,000C
)
0.6 -
¢
0.5 A o
¢
0.4 -
¢
Aa
0.3 1 A
[]
0.2 A °
([
le lj5 2j0 2j5 3j0 3j5 4j0
Download Compression
(d) CIFAR100 Download Compression
CIFAR100 Non-i.i.d. 500W/50,000C
*
0.6 1
¢
0.5 1 o
¢
0.4 1
¢
A AA,
0.3 1 A
[]
0.2 A °
[
1 2 3 4 5 6

Overall Compression

(f) CIFAR100 Overall Compression

FetchSGD: Communication-Efficient Federated Learning with Sketching

FEMNIST 3/3500 non-iid

0.80 A
3 0.75
e
]
1o}
2
£ 0.70 - FetchSGD
A ' Local Top-k (og =0.9)
A Local Top-k (0g=0) -
0.65 - ® FedAvg (py=0.9)
® FedAvg (o, =0)
¢ Uncompressed
0.60 T T T T T
0 10 20 30 40 50
Upload Compression
(a) FEMNIST Upload Compression
FEMNIST 3/3500 non-iid
0.80 -.
3 0.75
e
=}
]
= 0.704 FetchSGD
A Local Top-k (pg = 0.9)
A Local Top-k (pg =0)
0.65 ® FedAvg (p;=0.9)
® FedAvg (p,=0) 7
¢ Uncompressed
0.60 T T T T
2 4 6 8 10
Download Compression
(c) FEMNIST Download Compression
FEMNIST 3/3500 non-iid
0.80 -. h
3 0.75
e
=}
o
; 0 ‘\‘\‘\ FetchSGD
A Local Top-k (pg = 0.9)
A Local Top-k (pg=0) A
0.65 ® FedAvg (p;=0.9)
® FedAvg (p,=0)
¢ Uncompressed
0.60 T T T T
2 4 6 8 10

Figure 8. Upload (top), download (middle), and overall (bottom) compression for FEMNIST (left) and PersonaChat (right). To increase
readability, each plot shows only the Pareto frontier of runs for the compression type shown in that plot. All results are shown in Figure 9.

Overall Compression

(e) FEMNIST Overall Compression

Validation PPL

Validation PPL

Validation PPL

GPT 4W/17,568C non-iid

26
24 A
22 1 FetchSGD
Local Top-k (pog =0.9)
204 A Local Top-k (pog=0)
® FedAvg (p;=0.9)
184 ¢ Uncompressed
6] /
¢
14 T T T T
10° 10! 107 103
Upload Compression
(b) PersonaChat Upload Compression
. GPT 4W/17,568C non-iid
24 A
221 FetchSGD
Local Top-k (pg = 0.9)
201 A LocalTop-k(og=0) 2
® FedAvg (p;=0.9)
184 ¢ Uncompressed
16
¢
14 T T
10° 10!
Download Compression
(d) PersonaChat Download Compression
26 GPT 4W/17,568C non-iid
24 A
22 1 FetchSGD
Local Top-k (pg = 0.9)
204 A Local Top-k (pog=0)
® FedAvg (pg=0.9)
18 ¢ Uncompressed
16 A e o
¢ &
14 T T
10° 10

Overall Compression

(f) PersonaChat Overall Compression

FetchSGD: Communication-Efficient Federated Learning with Sketching

FEMNIST 3/3500 non-iid

|
0.80 -
P []
8 =
20754 e ' =
e
3 8e0° "
[v] A,00
3 !i m FetchSGD
% 0.70 4
A ° : A Local Top-k (og=0.9)
° .. A Local Top-k (pg = 0)
0651 o ! : ® FedAvg (pg=0.9)
: ® FedAvg (py=0)
[¢ Uncompressed
0.60 T T T T T
0 10 20 30 40 50
Upload Compression
(a) FEMNIST Upload Compression
FEMNIST 3/3500 non-iid
[]
m FetchSGD
Local Top-k (pg =0.9)
0.80 P-K {0g
° A Local Top-k (pg = 0)
-] ® FedAvg (p,=0.9)
Zors{® o ™ l e FedAvg (pg=0)
é ™ s ¢ Uncompressed
O A O °
< A A ! o
*ﬁ 0.70 A .
F] A o A []
3 []
A [J
0.65 ° . °
(]
o
[J
0.60 T T T T
2 4 6 8 10
Download Compression
(c) FEMNIST Download Compression
FEMNIST 3/3500 non-iid
[]
u B FetchSGD
Local Top-k (p, =0.9)
0.80 4 P-k (pg
] ° A Local Top-k (pg =0)
- [] ® FedAvg (p;=0.9)
§ 0.75 A ° u] ' ® FedAvg (pg=0)
é m s ¢ Uncompressed
g sa 2 $
J(é 0.70 A
A9
[. H a
: []
[}
0.65 ° °
o 0
[]
[}
0.60 T T T T
2 4 6 8 10

Overall Compression

(e) FEMNIST Overall Compression

Validation PPL

Validation PPL

Validation PPL

GPT 4W/17,568C non-iid

26
24 4
221 m FetchSGD
Local Top-k (g =0.9)
201 A Local Top-k (pog=0)
® FedAvg (pg=0.9)
184 ¢ Uncompressed
16 /
¢ .—___,_——_———I
14 T T T T
10° 10! 102 103
Upload Compression
(b) PersonaChat Upload Compression
GPT 4W/17,568C non-iid
26
24
221 m FetchSGD
Local Top-k (og=0.9)
201 A LocalTop-k(og=0) 2
® FedAvg (p;=0.9)
184 ¢ Uncompressed
16 ././.
¢
14 T T
10° 10t
Download Compression
(d) PersonaChat Download Compression
-6 GPT 4W/17,568C non-iid
24 4
[
2] B FedSketchedSGD
Local Top-k (pg =0.9)
A Local Top-k (py =0)
201 o FedAvg (pg = 0.9)
® FedAvg (pg=0)
181 ¢ Uncompressed
A
A
16 4 ° o ,A []
n []
¢]
14 T T
10° 10t

Overall Compression

(f) PersonaChat Overall Compression

Figure 9. Upload (top), download (middle), and overall (bottom) compression for FEMNIST (left) and PersonaChat (right).

FetchSGD: Communication-Efficient Federated Learning with Sketching

B. Theoretical properties
B.1. Proof of Theorem 1

We first verify that the stochastic gradients constructed are stochastic gradients with respect to the empirical mixture, and we
calculate its second moment bound. At a given iterate w, we sample W clients uniformly from C clients at every iteration,
and compute g = % Z}ll gi, where g; are stochastic gradients with respect to the distribution D; on client i. This stochastic
gradient is unbiased, as shown below.

g = BBl = 5y o (1
W

C 1 C
)Z gi = Ezvfz

i=1 D i=1

The norm of the stochastic gradient is bounded:

S LG
Z:gHzH =G

1 1 l
W i=1"1

i€B,|B|=W

This proof follows the analysis of compressed SGD with error feedback in Karimireddy et al. (2019b), with additional momen-
tum. Let C(x) = top-k(U(S(x))), the error accumulation then is S(e;+1) = S(7(pur—1 + g¢) +er) — S(C(n(pus—1 +
gt) +e¢)). Consider the virtual sequence Wy = w¢ — e; — ﬂut_l. Upon expanding, we get

Wi =wi 1 —C((ous2+gi-1) +e1) +C(n(pus2+gi-1) +e1) —n(pwr2+g1) —e1— 117_pput71

= Wi — €1 — g1 — HPur—2 — %(Puhz +8t-1)

Wi 1 —€—-1—71 (1 + lfp) gt—1 —1p (1 + lfp) us—2
np Uy — 7
—p T—p

gt—1

=Wi_1—6€-1— 8t—1
1

~ __n
Wi-1 1-p
So this reduces to an SGD-like update but with a scaled learning rate. Applying L-smoothness of f, we get,
- - N - L, 2
Ef(We1) < f(We) + (VW) Wip1 = W) + o [[Wepq — We|

2
< F(90) ~ T E (VS (50),80) + 5 Bl

Ui - Lip?
iy (Vf(Wi), Vf(we)) + WJEII&IF

IN
=™
>
|
_

22
<) = s IV A P+ s (19 Fwa) P+ NV £00) = V)) +

_ Ul 2 nL? _ 2)
< Y _ = _
< f(Wy) 20-7) |V f(we)]|=+ 20 _p)]EHWf w||” + Ly“o
2
117_p +L172c72

et +

2
= F81) = 5 IV Fw) P+ g

U1
0

We now need to bound Het + 1 put 1 H . However, we never compute or store e; or Uy, since the algorithm only maintains

2
sketches of e; and u;. Instead, we will bound HS er) + 1’7‘0 S(ut,l)H . This is sufficient because (1 —€) [|x|| < ||S(x)]| <

FetchSGD: Communication-Efficient Federated Learning with Sketching

(1+4¢€) ||x||, for a user-specified constant epsilon. Note that HS(et + %ut_l)u (|S(et)|| + (#) 1S (u;— 1)||>

We bound ||S(uy_1)|| first:
2
= (1+€)G\?
< (2 NETS ||) < (5229)
i=1 P
For the other term, we expand it and bound as

IS(en I < (1 =) [l (pS(w1) + S(ge-1)) + S(er—1) |
<=7 (A+7[8ler)I* + 1+ 1/7)72 IS (w)]?)
1+1/7)(1+€)?p>G?
<=7 () (e P O ITE)
o 2001 _ i 202
<y (1+e)7(1 T)(1+72)) (1+1/7)1°G
i=0 (1 —p)
1+€)?(1—1)(1+1/9)y%G?
1-(1-1@+7)
where in the second inequality, we use the inequality (a + b)? < (1 +)a® + (1 +1/9)b%. As argued in Karimireddy

2 22
et al. (2019b), choosing y = %

2
[S(u;-1)

3 (11 o) suffices to upper bound the above with <
Plugging everything in, choosing 77 < (1 — p) /2L, and rearranging, we get that
21 gL2 4(1+€)2(1 — T)2G2

—0) (1 i
< T (f(Wt) -]Ef<Wt+1) + 2(1 — P) (1 — 6’)2’2_'2(] — p)2 + L;720'2> .

Averaging and taking expectations gives us

IV f (w2

T o wn) — F* 2 2 o 22
min BFw)|” < 7 S BNV <) o e 211 = ph

Finally, choosing € = 1/k and setting 7 = 2L f finishes the proof.

Also, note that setting the momentum p = 0 in the above, we recover a guarantee for Fet chSGD with no momentum

Corollary 1. For a L-smooth non-convex function f, Fet chSGD, with no momentum, under Assumption 1, with stochastic
gradients of norm bounded by G and variance bounded by 02, in T iterations, returns Wt such that

wa) — F* 2 62 - T 2
min | flw)|? < U202 CX e

B.2. Proof of Theorem 2
B.2.1. WARM-UP: I = 1 (WITHOUT ERROR ACCUMULATION)

Let us first consider a simple case where we only use the heavy hitters in the current gradient with no error accumulation.
The update is of the form

wip1 = wi — C(1gt)

Note that C here is FindHeavy,,. Consider the virtual sequence W; = Z (ﬂgl C(#ng;)). Upon expanding, we get

t—1 t—2

Wi =wi_1 —Cygi—1) — Y (18i — C(1gi)) = wi—1 —) (18i — C(18:)) — 18—1 = W1 — g1
i=1 i=1

FetchSGD: Communication-Efficient Federated Learning with Sketching

Therefore Wy — wy = — Yi_ (r]gl C(#ngi))- In the following analysis we will see that we need to control ||[W; — w||.
From L-smoothness of f,

Bf(141) < f(8) + B{VF(50), W1 — W) + 5 B[y —

2
= f(%r) ~ B (VS (),) + g

B ~ LGZT]2
< f(We) = {Vf(Wi) = Vf(wi) + Vf(we), V(wr)) + =5
~ ZLGZ
< () = IV IP + 2 (IVFwe) P + V() = Vf w)|IP) + 15
- - 2LG?
< £) = LIV £) P+ LB — i+ T
where in the third inequality, we used (u,v) < %(||u|| + vl) Note we need to bound ||W; — wy||

‘. Our compression operator C(x) = FindHeavy, (U(S(x))) i.e. it recovers all a heavy coor-

HZ C(ngi) — 18i)
dinates from x. Every (1, a) sliding heavy sequence of gradients by assumption contains at least one a-heavy hitter in every
gradient with probability 1 — & and our compression operator recovers all of them.Therefore, by Assumption 1, x — C(x)
only has the heavy-hitter estimation error plus non-heavy noise. Therefore, conditioned on the heavy hitter recovery event,
W — w is estimation error + noise. The first term — the estimation error — is the sketch’s heavy-hitter estimation error, and
it has mean zero and is symmetric. This is because the the count sketch produces unbiased estimates of coordinates, and
because it uses uniformly random hash functions, the probability to output a value of either side of the mean is equal. The
second term — the noise — also has mean zero and is symmetric, by Assumption 1. Formally, the estimation error and noise
are of the form z; = ||g;|| &;, where the ¢’s are mutually independent and independent of ||g;||. Hence, z; is symmetric noise
of a constant (independent) scale relative to the gradient size. It is therefore the case that

t—1
) (estimation error;) + (noise;)
i=1

C(ngi) —ngi) =7

[Wi —wi]| =

Eicom) s -1

Note that since the g;’s are dependent because they are a sequence of SGD updates, the z;’s are also dependent. However
since the &;’s are independent with mean zero, E[||g;|| &;|F;] = 0, where F; is the filtration of events before the £ iteration.
So the stochastic process {||g;|| ffi}le forms a martingale difference sequence. For a martingale difference sequence

{x;}L,, it holds that

2
T T,T
“Ex|| = Z]E||xi—]Exi||2+ Y E(xj — Ex; xj — Ex;).
i= i,j=1i#]f

Fori > j, [E(x; — Ex;, x; — Ex;) = [E;E(x; — [Ex;,x; — Ex;)|j = 0. Applying this, we get
J j j j j i)l g

2 2
-1 t-1 t=1
2 2 2 2
E(Y (Clngi) —ngi)| = 18| = Y Elllgill &ill™ = n* }_ Ellz:|~,
i=1 i=1 i=1
where in the last equality, we applied the martingale difference result noting that the random variable z; = ||g;| {; are mean

zero. We will now look how heavy coordinates and noise coordinates contribute to the norm of z;. Let z$*!™21" and z['¢
be the estimation error vector and noise vector, respectively. Potentially all coordinates have noise, and some of these also
Zhoise ||2

. . 2 . . . 2 . . 2
have estimation error, so we can decompose ||z;||“ = ||zstimation 4 Zhoise|| = < 7 (|| zestimation

From Lemma 2 in (Charikar et al., 2002), for each bucket in the Count Sketch, the variance in estimation is at most the ¢
norm of the tail divided by the number of buckets b. Since the tail has mass at most (1 — a) G2, for each coordinate j, we

FetchSGD: Communication-Efficient Federated Learning with Sketching

2 s 8¢
o s@
X
8 82 83 8 85 86 & 8 89 & 81 8 83 8 85 8 & 8 89 8o
(a) Naive sliding window (b) Adaptive sliding window

Figure 11. Approximating ¢, norm on sliding windows.

N2
have lE((zfl)],)2 < %. There is at most 1/a? heavy coordinates present, and the number of buckets b is chosen to
be larger than 1/a2. Thus]EHZ;?S“ma“O“H < é . % <(1- a)G2. Also,]EHZ;"““H < ﬁGZ, since the noise only
occupies a B fraction of the the gradient, so its norm is at most SG2.

Plugging this in, taking ||V f(w)|| to the left hand side, averaging and taking expectation with respect to all randomness,
we get that

tE}?{‘T]E“Vf(Wf”F < 21:1]E||¥f()| < (f(W%)T f) +722(1 — & + B)G2LT + Ly G?

Finally choosing 17 = W, we get,

2 _ GVL((f(wo) — f*) +2(1—a+p))) , GVL
= T1/3 T2/3

min E[[Vf(we)]]

Note that the analysis above holds conditioned on the success of the Count Sketch data structure and on the event that the
first statement in Definition 1 holds at every iteration, which happens with probability 1 — 2T§ by union bound. This leads
to the size of the sketch provided in Theorem 2.

B.2.2. GENERAL CASE: ANY I (WITH ERROR ACCUMULATION)

Intuition. We first give some motivation for why the (I, «) sliding heavy assumption helps. Definition 1 specifies the
structure of the noise included in every gradient, s.t. the growth of the norm of the noise is bounded by O(\/f). Intuitively,
discarding the noise during the training does not greatly hurt the convergence. However noise does hurt the recovery of
heavy coordinates. A Count Sketch finds heavy coordinates in the entire input, which is 7g; + e;, but coordinates are heavy
only on an interval of length at most I. For example, half way to convergence, ||e¢|| will grow up to O (\/ T/ 2) , while
coordinates heavy on an interval of size I are bounded by O (I) < /T /2. To avoid this problem, we suggest regularly
cleaning up the error accumulation: error collected on steps 1, ..., — I can not contain the signal that is not recovered at the
moment t. However, a similar argument shows that maintaining e; over the last I updates is not sufficient due to variability

in how wide of an interval the heavy coordinate can be spread over. Therefore we suggest maintaining I windows {ei}iil
of sizes {1,2,...,I}, cleaning up each error accumulation sketch every I updates correspondingly (see Figure 11a). In this

configuration, at any moment ¢ and for any I’ (see Definition 1), there exist j s.t. error accumulation e]t was cleaned up at time
moment f — I’, and that Count Sketch can detect the signal from g; 1. This approach finds heavy coordinates in any suffix of
updates (g;_y/,...,g¢) for I' < I. Recall that we maintain accumulated error inside sketches, thus maintaining I windows
requires I sketches. Though sketch operations are very efficient and its memory size is sub-linear, linear dependency on [is
unfavorable and limits the choice of I. Finding heavy coordinates in sliding windows of streaming data is a well studied
area with several algorithms to find heavy coordinates (Braverman and Ostrovsky, 2007; Datar et al., 2002). In Appendix D
we briefly discuss sliding window techniques and how they can help to reduce the number of sketches to log (I).

Proof. In the general case, we have an error accumulation data structure S;, which takes the sketches of the the new
gradient S(g;). The data structure is essentially a function of the last I gradients, and has a function FindHeavy, which

FetchSGD: Communication-Efficient Federated Learning with Sketching

returns a vector C; which captures the heavy coordinates in the sum of the last I’ gradients, for any I’ < I. We use this to
update the model, and after this, the data structure is updated to forget C; as well as anything other than the last I gradients.
For the sake of clarity, we first assume there exists such a data structure. We will later describe how to use count sketches to
create such a data structure as well as discuss an efficient implementation. The procedure is formalized below.

St+1 = Insert(St, 75(gt))
Ct = FindHeavy(S;.1)
Wiy =W — Gt

St11 = Update(S;1 1, Cy)

As in the warm-up case, consider a virtual sequence

t—1
—()_ngi—Ci)
i=1
t—1

=wi1—Cr1— () ngi— C)
i-1
2
=wi1—) ngi—Ci— g
i—1

= Wi_1 —8t-1

We have Wy — wy = Ef;% ngi —C

N =
—wi=) ng' +Y ng’ — Y. Ci
izl i—1 i—1

where glN is the noise and gis represents signal. Vi < t — I , the sliding window Count Sketch data structure will recover all
the signal, and for ¢t — I < i < t, some signal remains, to be recovered in future steps. Since the gradients are bounded in
norm, the norm of the sum of the past I gradients, from which signal has yet to be recovered, can be bounded as IG. As
shown in the warm-up case, we argue that

t t t

Wi —wi =Y (g — C; ngz—ZCi+ Y. 78
i=1 i=1 i=t—14+1
t—1I

= Zeshmatlon error; -+ noise; + Z ngi = Zzﬂ- Z ngi
i=t—1+1 i=t—1+1

This follows because the sliding window data structure recovers all the signal in the sum of last I gradients. Then, by the
triangle inequality we get
2

+ 2% 12 G?

t—1

Y zi

i=1

lwe —wil* <2

We now similarly argue that z; forms a martingale difference sequence and therefore we have

t
E|\w; — wi||* < 2E[| Y z]| + 27 12G? < 2(1 — a + B)*G? + 25212 G?
i=1

FetchSGD: Communication-Efficient Federated Learning with Sketching

Repeating the steps in the warm-up case: using L-smoothness of f, we get

3 3 L. _ 2LG?
Ef (W) < f(%1) = 2 [VA(wn)|* + T2 wos —wi? + T2

i L 2LG?
< flwn) = 2w rewo P + L2 (20— wt PG + 2P267) + L
Taking ||V f(w¢)]| to the left hand side, averaging and taking expectation with respect to all randomness, and choosing

_ 1
n= GVLT2 we get

2 GVL((f(wo) = f) +2(1—a+p)+2I%) GVL
= T1/3 T2/3

in
min B[V (w)]

The first part of the theorem is recovered by noting that 8 < 1. For the second part, note that the size of sketch needed to

capture a-heavy hitters with probability at least 1 — § is O (%&) ; taking a union bound over all T iterations recovers

the second claim in the theorem.

Implementation. We now give details on how this data structure is constructed and what the operations correspond to.
For all heavy coordinates to be successfully recovered from all suffixes of the last I gradient updates (i.e. VI’ < I, to recover
heavy coordinates of Zf:tf p 11&i) we can maintain I sketches in the overlapping manner depicted in Figure 11a. That is,
every sketch is cleared every [iterations. To find heavy coordinates, the FindHeavy() method must query every sketch and
return the united set of heavy coordinates found; Insert() appends new gradients to all I sketches; and Update() subtracts
the input set of heavy coordinates from all I sketches. Although sketches are computationally efficient and use memory
sub-linear in d (a Count Sketch stores O (log (d)) entries), linear dependency on I in unfavorable, as it limits our choice
of I. Fortunately, the sliding window model, which is very close to the setting studied here, is thoroughly studied in the
streaming community (Braverman and Ostrovsky, 2007; Datar et al., 2002). These methods allow us to maintain a number
of sketches only logarithmic in I. For a high level overview we refer the reader to Appendix D.

Are these assumptions necessary? We have discussed that un-sketching a sketch gives an unbiased estimate of the
gradient: EU/(S(g)) = g, so the sketch can be viewed as a stochastic gradient estimate. Moreover, since Top-k, error
feedback and momentum operate on these new stochastic gradients, existing analysis can show that our method converges.
However, the variance of the estimate derived from unsketching is ©(d), in the worst-case. By standard SGD analysis, this

gives a convergence rate of O (d /NT) , which is optimal since the model is a function of only these new O (d)-variance

stochastic gradients. This establishes that even without any assumptions on the sequence of gradients encountered during
optimization, our algorithm has convergence properties. However this dimensionality dependence does not reflect our
observation that the algorithm performs competitively with uncompressed SGD in practice, motivating our assumptions and
analysis.

C. Count Sketch

Streaming algorithms have aided the handling of enormous data flows for more than two decades. These algorithms operate
on sequential data updates, and their memory consumption is sub-linear in the problem size (length of stream and universe
size). First formalized in (Alon et al., 1999), sketching (a term often used for streaming data structures) facilitates numerous
applications, from handling networking traffic (Ivkin et al., 2019b) to analyzing cosmology simulations (Liu et al., 2015). In
this section we provide a high-level overview of the streaming model, and we explain the intuition behind the Count Sketch
(Charikar et al., 2002) data structure, which we use in our main result. For more details on the field, we refer readers to
(Muthukrishnan et al., 2005).

Consider a frequency vector g € R? initialized with zeros and updated coordinate by coordinate in the streaming fashion —
i.e. at time ¢ update (a;, w;) changes the frequency as g,,+ = w;. Alon et al. (1999) introduces the AMS sketch, which can
approximate ||g|| with only constant memory. Memory footprint is very important in streaming settings, as d is usually

FetchSGD: Communication-Efficient Federated Learning with Sketching

assumed to be too large for g to fit into the memory. The AMS sketch consists of a running sum S initialized with 0, and a
hash function % that maps coordinates of ¢ into 41 in an i.i.d. manner. Upon arrival of an update (a;, w;), the AMS sketch
performs a running sum update: S += h(a;)w;. Note that at the end of the stream, IE(S) = Y_' ; h(a;)w; can be reorganized

as per coordinate [E(S) = 27:1 (h(]) Yia=j} w,-) = 2?11 h(j)g;j, where g; is the value of j-th coordinate at the end of the

stream. The AMS sketch returns S as an estimation of ||g||%: E(S?) = [E(Z}Ll h(j)zg]z) + E(Z}i:1 h(j)h(j')gigi)- I h
is at least 2-wise independent second, then both IE/(j)/(j') and the second term are 0. So IE(S?) = IE(27:1 gjz) = |lglI?,
as desired. Similarly, Alon et al. (1999) show how to bound the variance of the estimator (at the cost of 4-wise hash
independence). The AMS sketch maintains a group of basic sketches described above, so that the variance and failure

probability can be controlled directly via the amount of memory allocated: an AMS sketch finds ¢, = ||g|| = ¢||g|| using
O(1/€%) memory.

The Count Sketch data structure (Charikar et al., 2002) extends this technique to find heavy coordinates of the vector. A
coordinate 7 is (&, ¢)-heavy (or an («, ¢5)-heavy hitter) if ¢; > «/||g||. The intuition behind the Count Sketch is as follows:
the data structure maintains a hash table of size ¢, where every coordinate j € [d] is mapped to one of the bins, in which
an AMS-style running sum is maintained. By definition, the heavy coordinates encompass a large portion of the ¢, mass,
so the ¢, norm of the bins where heavy coordinates are mapped to will be significantly larger then that of the rest of the
bins. Consequently, coordinates mapped to the bins with small £, norm are not heavy, and can be excluded from list of
heavy candidates. Repeating the procedure O(log (d)) times in parallel reveals the identities of heavy coordinates and
estimates their values. Formally, a Count Sketch finds all («, £;)-heavy coordinates and approximates their values with
+e||g|| additive error. It requires O(ﬁ log (d)) memory. Algorithm 2 depicts the most important steps in a Count Sketch.
For more details on the proof and implementation, refer to (Charikar et al., 2002).

Algorithm 2 Count Sketch (Charikar et al., 2002)

1: function init(7, c):
2: init r X c table of counters S

r

3: for each row 7 init sign and bucket hashes: {(hjs-, h]b)})
]:

4: function update((a;, w;)):

50 forjinl...r: S[jh(i)] +=hS(i)w;

6: function estimate(7):

7: init length 7 array estimates

8: forjinl,...,r:

9: estimates[r] = h]S(z)S[], h]b(z)]
10: return median(estimates)

For Fet chSGD, an important feature of the Count Sketch data structure is that it is linear — i.e., S(g1) + S(g2) = S(g1+ g2)-
This property is used when combining the sketches of gradients computed on every iteration, and to maintain error
accumulation and momentum. We emphasize that while there are more efficient algorithms for finding heavy hitters, they
either provide weaker /1 approximation guarantees (Muthukrishnan et al., 2005) or support only non-negative entries of
the vector (Misra and Gries, 1982; Braverman et al., 2017). The structure of the Count Sketch allows for high amounts of
parallelization, and the operations of a Count Sketch can be easily accelerated using GPUs (Ivkin et al., 2018).

D. Sliding Windows

As was mentioned in Appendix C, the streaming model focuses on problems where data items arrive sequentially and their
volume is too large to store on disk. In this case, accessing previous updates is prohibited, unless they are stored in the
sketch. In many cases, the stream is assumed to be infinite and the ultimate goal is to approximate some function on the
last n updates and to “forget” the older ones. The sliding window model, introduced in (Datar et al., 2002), addresses
exactly this setting. Recall the example from Appendix C: given a stream of updates (a;, w;) to a frequency vector g (i.e.
(gt)a,+ = wy), approximating the ¢, norm of g in the streaming model implies finding 7, = ||| % €||g|| On the other
hand, in the sliding window model one is interested only in the last 72 updates, i.e. (> = ||gr — g¢—n|l £ €l|gt — gt—nl|-

One naive solution is to maintain 7 overlapping sketches, as in Fig. 11a. However, such a solution is infeasible for larger 7.
Currently there are 2 major frameworks to adopt streaming sketches to the sliding window model: exponential histograms,

FetchSGD: Communication-Efficient Federated Learning with Sketching

by Datar et al. (2002), and smooth histograms, by Braverman and Ostrovsky (2007). For simplicity, we will provide only the
high level intuition behind the latter one. Maintaining all n sketches as in Fig. 11a is unnecessary if one can control the
growth of the function: neighboring sketches differ only by one gradient update, and the majority of the sketches can be
pruned. Braverman and Ostrovsky (2007) show that if a function is monotonic and satisfies a smoothness property, then
the sketches can be efficiently pruned, leaving only O (log (1)) sketches. As in Fig. 11b, ||SU|| < (1+¢)[|SD], so
any value in the intermediate suffixes (which were pruned earlier) can be approximated by the closest sketch ||S (@) ||. For
more details on how to construct this data structure, and for a definition of the smoothness property, we refer readers to
Braverman and Ostrovsky (2007).

