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Abstract— While perturbation schemes for vehicle-to-vehicle
(V2V) communications can address data privacy concerns, they
can significantly compromise the performance of the speed
controllers of connected automated vehicles (CAVs) if such
controllers rely on the preview information available through
V2V in car-following scenarios. This paper presents a robust
predictive speed controller for a CAV when preview information
is provided through a privacy-guaranteed V2V communication
network. This is the first such controller that considers energy
and emissions concurrently. The impact of privacy assurance
in the communication data is studied, while inter-vehicular
distance constraint is guaranteed to be satisfied through a
robust design of the predictive controller using a robust control
invariant set. The robust optimal speed controller is shown to
reduce fuel consumption and emissions successfully while satis-
fying the constraints even in the presence of perturbations in the
V2V communication. Results suggest a need for an integrated
design procedure to achieve the best performance under a given
level of privacy guarantee and emissions requirements.

I. INTRODUCTION

Predictive speed control has shown high potential for
improving the eco-driving performance of a connected auto-
mated vehicle (CAV) by adjusting the vehicle speed based
on the upcoming traffic conditions [1]–[7]. In a car-following
scenario, the preview information available about the leader
vehicle can be leveraged by the CAV to estimate its future
driving environment and optimize its speed trajectory to
guarantee safety and improve the eco-driving performance.
Although a majority of the literature focuses on fuel economy
as the single eco-driving metric [2], [5], [8]–[10], previous
studies have shown that it is crucial to simultaneously
optimize emissions and fuel to avoid an increase in tailpipe
emissions [11], [12].

The preview information about the leader vehicle can
be obtained through velocity prediction [2], [8]–[10] and/or
vehicle-to-vehicle (V2V) communication [2]. Either case
presents a challenge for having an accurate preview. In the
former case, it is difficult to predict the motion of the lead
vehicle, as it needs to react to the movements of the other
traffic participants, creating high uncertainty. In the latter
case, even if the leader vehicle may know its future speed
trajectory perfectly, perturbations may be applied to the
information to be shared over V2V due to privacy concerns
[13]. Hence, achieving a robust eco-driving performance
while maintaining safety is an important challenge.

Some researchers have recognized this challenge and
shown that preview inaccuracy can have disastrous impact
on fuel-saving performance [2], [10]. They also developed
a chance constrained model predictive controller (MPC) and
a randomized MPC to reduce the risk of constraint viola-
tion and the fuel consumption at the same time. However,
constraint violations still exist.
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Fig. 1: Car-following traffic setup considered in this paper.

To resolve the constraint violation problem, provably-
correct controllers have been designed when uncertainties
exist in the speed preview. Controllers presented in [14],
[15] generate car-following trajectories and satisfy minimum
headway specifications, and controllers in [16]–[18] aim at
avoiding collision with front vehicle. The main method used
in the literature to synthesize the correct control variables
is the calculation of a robust control invariant set. However,
efforts typically focus only on the constraint satisfaction and
only consider the vehicle kinematic performance. The only
exception known to us is the work reported in [18], where the
authors report 12% energy saving using their robust adaptive
cruise controller compared with the non-optimized leader.
However, to the best of our knowledge, there does not yet
exist a fuel and emissions efficient controller that is robust
to errors in preview information.

Recognizing this gap, in this work, we design and study
an optimal speed controller that is robust to inaccuracies
in leader vehicle velocity and is capable of concurrently
optimizing fuel consumption and emissions. The formula-
tion of the optimal speed controller is presented, and the
effect of communication-imposed preview uncertainty on the
performance of the controller is analyzed when disturbances
are applied to shared information to guarantee privacy in
a V2V network. Speed previews are generated simulating
different levels of uncertainty and privacy guarantee through
two methods, namely, adding zero-mean Gaussian noise and
adopting the estimator-based method in [19].

II. PROBLEM SETUP

We consider a car-following scenario, where the ego-
vehicle follows a leader vehicle and optimizes its velocity
trajectory utilizing communicated information about the fu-
ture motion of the leader [19].

A. Traffic scenario
The car-following traffic setup is shown in Fig. 1. The

leader vehicle is assumed to have an on-board broadcast
unit and to broadcast its perturbed speed for the next short
future time horizon. Any other vehicle in the broadcast range
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that has V2V capability has access to the broadcast [20].
The follower vehicle is assumed to be such a vehicle. It
is further assumed that the follower is equipped with a
front radar to measure the current inter-vehicular distance
and velocity of the lead vehicle. All this information is fed
into an MPC-based optimal speed controller on the follower
vehicle, which utilizes the model of the follower vehicle
to formulate an optimal control problem and generate a
speed trajectory. The perturbation applied to the broadcast
information aims at protecting the leader vehicle’s privacy
against the potential attacker, which is not the immediate
follower. The potential attacker vehicle also has access to
the broadcast information; however, it does not have access
to the radar information that the follower vehicle has. Note
that the perturbation mechanisms applied in this paper are not
capable of protecting privacy of the leader vehicle against the
follower vehicle.
B. Privacy-guaranteed perturbation methods

Two perturbations methods for private communication are
considered.

One simple method to protect privacy is to add inde-
pendent zero-mean Gaussian noise to the actual speed data,
and this serves as the baseline perturbation method in this
work. The disadvantage of this perturbation is that, as the
information in consecutive broadcasts is highly correlated,
an attacker can gather all the transmitted information and
make an inference about the actual data.

The second perturbation method is the estimator-based
method developed in [19]. In this method, the perturbed
speed ṽl(t) takes a convex combination of the actual speed
vl(t) and an estimation of true speed from the past informa-
tion v̂l(t|t−1), and adds zero-mean Gaussian noise n to the
combination:

ṽl(t) = (1−αt)v̂l(t|t−1)+αtvl(t)+n, (1)

αt is the weight factor. v̂l(t|t − 1) is the linear minimum
mean square error (LMMSE) estimator given as v̂l(t|t−1) =

µ̂t−1

(
1− ρ̂t−1

σ̂2
t−1

σ̂2
t−1+Var(n)

)
+ ρ̂t−1

σ̂2
t−1

σ̂2
t−1+Var(n)

ṽl(t − 1), where

µ̂t−1, ρ̂t−1 and σ̂2
t−1 are the estimated mean, variance

and autocorrelation, respectively, which are calculated us-
ing all the perturbed speed in the history. Specifically,
µ̂t−1 =

1
t−1 ∑

t−1
i=1 ṽl(i), σ̂2

t−1 = max{ 1
t−2 ∑

t−1
i=1(ṽl(i)− µ̂t−1)

2−
Var(n),0} and ρ̂t−1 =

∑
t−2
i=1(ṽl(i)−µ̂t−1)(ṽl(i+1)−µ̂t−1)

∑
t−2
i=1(ṽl(i)−µ̂t−1)2 .

By using the convex combination, less information about
the actual speed is revealed because the history information
(estimation) also contributes to the output. Therefore, noise
n with smaller variance can be sufficient to achieve the same
privacy guarantee compared with the baseline.

Two example trajectories of the randomly perturbed drive
cycle using the baseline and estimator-based methods are
shown in Fig. 2. The estimator-based method yields higher
accuracy measured in root mean square error (RMSE), and
is expected to yield better performance when it is used to
provide preview to the optimal speed controller.

C. Modeling for the MPC
In the MPC, a vehicle model is adopted from the literature

[12] to simulate the trajectory of the follower vehicle. Here
we summarize this model for completeness.

The follower vehicle is assumed to be a point-mass system,
with its discrete-time longitudinal dynamics modeled as:[

pf(k+1)
vf(k+1)

]
=
[1 Ts
0 1

][pf(k)
vf(k)

]
+

[
0.5T 2

s
Ts

]
af(k), (2)

where pf and vf are the position and the speed of the follower
vehicle, k is the step index, Ts is the sampling time, and
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Fig. 2: Transmitted information perturbed by the baseline method and the
estimator-based method under the same privacy guarantee.

af(k) is the acceleration of the follower vehicle. Using this
vehicle dynamics model, as well as the gear shift and engine
models adopted from [12], fuel rate ṁFuel, exhaust mass flow
rate ṁexh, engine raw NOx emissions ṁNOx.Eng and steady
state turbine (TB) out temperature TTB.ss are calculated using
look-up tables mapped with vehicle speed vf and acceleration
af.

We consider the follower vehicle to be a diesel vehi-
cle equipped with a selective catalytic reduction (SCR)
aftertreatment system. For those vehicles, the tailpipe NOx
emissions are determined by 1) the engine raw NOx emis-
sions, and 2) the reduction efficiency ηAFT, which is largely
affected by the catalyst temperature [21]. The turbine out-
let gas temperature, TTB, is the input temperature of the
aftertreatment system, and the thermal dynamics of TTB is
modeled as [12]:

TTB(k+1) = TTB(k)+
Ts

τ
(TTB.ss(k)−TTB(k)), (3)

with τ being the time constant, which is a function of
the exhaust mass flow rate ṁexh. Both ṁexh and TTB.ss are
functions of the vehicle velocity vf and acceleration af. Then,
the tailpipe NOx emissions are obtained using

ṁNOx.TP = ṁNOx.Eng(1−ηAFT), (4)

where ηAFT and can be calculated using an aftertreatment
thermal model and an efficiency model, with inputs TTB, ṁexh
and ambient temperature Tair:

ηAFT = fη(TTB, ṁexh,Tair). (5)

D. Optimization objective function for the MPC
The goal of the MPC-based optimal speed controller is

to reduce fuel consumption and tailpipe NOx emissions
concurrently. Instead of penalizing the fuel and tailpipe NOx,
which requires a complicated model, we set the objective
function to be a weighted sum of squared acceleration
and squared difference in turbine temperature from a pre-
designed threshold Tthr, when the previewed turbine temper-
ature is lower than the threshold; i.e.,

J(t) =
NP−1

∑
k=0

(
af(k|t)2+

w(TTB(k|t)−Tthr)
2 ·H (Tthr−TTB(k|t))

)
,

(6)

where H is the Heaviside step function, NP is the prediction
horizon, w is the equivalence factor to balance fuel con-
sumption and emissions, and the notation •(k|t) refers to the



predicted value of the variable • at time step (t+k) given the
information at time step t. The term af(k|t) in the objective
function (6) represents fuel consumption, since reducing
large acceleration and deceleration is shown to effectively
reduce the vehicle fuel consumption [3], [12]. Similarly,
increasing the turbine temperature has been shown experi-
mentally as an effective method to increase the temperature
of the SCR system on the downstream [22]. This formulation
aims to strike a balance between reducing acceleration and
maintaining turbine temperature, and it has been shown that
this formulation is able to balance fuel consumption and
tailpipe NOx emissions [23].

III. PREDICTIVE SPEED CONTROLLER DESIGN

The MPC-based speed controller is taking an iterative
approach, deciding at every time step the optimal speed tra-
jectory for the next horizon while satisfying pre-defined state
and input constraints. In this paper, we consider constraints
on maximum/minimum acceleration and velocity:

af ∈U = [−af,af], (7)

v≤ vf(k+1|t)≤ v, (8)
and following distance constraints based on a minimum and
maximum time headway (τ1,τ2) policy [24] with (dc1,dc2)
as the standstill distances:

pl(k+ t +1)− pf(k+1|t)≥ τ1vf(k+1|t)+dc1, (9a)
pl(k+ t +1)− pf(k+1|t)≤ τ2vf(k+1|t)+dc2, (9b)

where pl denotes the position of the leader vehicle.
A. Original MPC

We consider the following optimal control problem as the
original MPC, which is adopted from a similar formulation
in [23]:

min
U,ε

J(t)+ cε ε, (10a)

subject to af(k|t) ∈U (10b)
v≤ vf(k+1|t)≤ v (10c)

p̂l(k+ t +1)− pf(k+1|t)≥ τ1vf(k+1|t)+dc1− ε (10d)
p̂l(k+ t +1)− pf(k+1|t)≤ τ2vf(k+1|t)+dc2 + ε (10e)

ε ≥ 0 (10f)
af(0|t) ∈U (10g)
Eqns. (2) and (3). (10h)

for k = 0,1, ...,NP−1.
U =

[
af(0|t) af(1|t) · · · af

(
(NP−1)|t

)]T and ε are
the decision variables of the optimal control problem. p̂l is
the prediction of the position of the leader (pl) calculated
using the speed preview, and we assume the leader follows
the same dynamics as (2). (10b) to (10e) are essentially the
constraints (7), (8), (9a) and (9b) when the prediction of
position instead of the actual position is available.

Different from [23], a slack variable ε is used here to
change a hard (distance) constraint into a soft one and
penalize the constraint violation in the cost function with a
scaling factor cε . A large value for cε is chosen. Introducing
ε avoids feasibility problems that may happen when hard
constraints are used. Note that a feasible solution to this
optimal control problem can always be found, but feasibility
does not guarantee the satisfaction of the constraints (9a)
and (9b) as p̂l may not be equal to pl.

After solving for the optimal U , only U(1) = af(0|t) is
applied to the follower vehicle, and then the MPC is solved
again with updated states. For the original MPC, we do not
impose any additional constraint on af(0|t) except the pre-
defined constraint (7).

B. Robust MPC
Because of the potential existence of collisions and head-

way constraint violations due to the inaccurate speed preview,
using the original MPC formulation above may lead to
violation of the speed or position constraints. To avoid
possible violation of the distance constraints in the executed
follower vehicle profile, we first use a feedback controller to
compute the safe action set U ∗(t) at time t:

U ∗(t) = U ∗(d(t),vf(t),vl(t)). (11)

The set U ∗(t) denotes the set of all admissible accelerations
af(0|t) at time t that ensure existence of a trajectory for
the follower vehicle, which always satisfies velocity and
headway constraints (8), (9a) and (9b) for an uncertain (but
bounded) leader vehicle acceleration trajectory. More details
are provided later in this section.

After obtaining U ∗(t) from the feedback controller, we
add this new constraint on af(0|t) to the original MPC (10).

min
U,ε

J(t)+cε ε, (12a)

subject to Eqns. (10b) - (10f) (12b)
af(0|t) ∈U ∗(d(0|t),vf(0|t),vl(0|t)) (12c)

Eqns. (2) and (3). (12d)

The new MPC formulation in (12) has the following
features: 1) Keeping ε as in the original MPC formulation
ensures persistent feasibility. 2) Using (12c) ensures that
the speed profile of the follower at time t is robust to
uncertainty in the leader speed preview, as guaranteed by
(18). 3) Satisfaction of the distance constraints (10d) and
(10e) with ε = 0 is not guaranteed throughout the horizon.

C. Calculation of the safe action set U ∗

Here we present the steps to calculate U ∗, the safe action
set, from a robust control invariant set inside an admissible
set X . We start with the definition of an invariant set.

Consider the leader-follower system with states x =
[d vf vl]

T , and system dynamics represented as:

x(k+1) = Ax(k)+Baf(k)+Gal(k),

A =

[
1 −Ts Ts
0 1 0
0 0 1

]
,B =

[
−T 2

s /2
Ts
0

]
,G =

[
T 2

s /2
0
Ts

]
,

(13)

since we assume the leader follows the same dynamics as
(2). In the above equations, vl and al represent the velocity
and acceleration of the leader vehicle. We define the set of
admissible states as:

X = {x ∈ R3 : dc1 + τ1vf ≤ d ≤ dc2 + τ2vf,0≤ vf,vl ≤ v}.
(14)

The set Ω∗ is a robust control invariant set of X if:

∀x(k) ∈Ω
∗,∃af(k) ∈U ,s.t. x(k+1) ∈Ω

∗,∀al(k) ∈W
(
x(k)

)
,

(15)
where W is the set of possible disturbances (leader acceler-
ations) defined as:

W
(
x(k)

) def
= {al(k) ∈ R1 : al ≤ al(k)≤ al,xl(k+1) ∈X }.

(16)
To find Ω∗, we introduce the Pre(X ) operator, which gives
the one-step (backward) robustly controllable set of set X :

Pre(X )
def
={x(k) ∈ R3 : ∃af(k) ∈U ,s.t.

x(k+1) ∈X ,∀al(k) ∈W
(
x(k)

)
}.

(17)

Calculation of Ω∗ relies on finding the fixed point for the
Pre(X ) operator using the following iterative algorithm:



Algorithm 1 Calculation of Ω∗

Initialize Ω0 = X

While Ωk 6⊆Ωk+1

Ωk+1 = X ∩Pre(Ωk)

End
Return Ω

∗ = Ωk+1

TABLE I: Parameters for the example in Sec. III-E

Parameter Description Range

v,v min,max speed 0,30 [m/s]
af,af min,max follower acceleration −6,6 [m/s2]
al,al min,max leader acceleration −3,3 [m/s2]
τ1,τ2 min,max time headway 1,4 [s]

dc1,dc2 min,max standstill distance 0,10 [m]
Ts sampling time 1 [s]

Calculation of Pre(Ωk) from Ωk is done using the Multi-
Parametric Toolbox [25] in Matlab and following the steps
proposed in [26].

The range of input that allows the state to remain inside
Ω∗, U ∗(x), is calculated by:

U ∗(x) def
= {af ∈U : Ax+Baf+Gal ∈Ω

∗,∀al ∈W (x)}, (18)

with current states x = [d vf vl]
T ∈ Ω∗. Since Ω∗ is a

union of polyhedra, the above set U ∗(x) of af is a union
of intervals, and the end points can be solved using linear
programming to find the maximum/minimum af that satisfies
(18).

D. Numerical problems in calculation of robust control
invariant set

All the sets above are convex polyhedra represented by
linear inequalities, or non-convex polyhedra represented by
unions of convex polyhedra. Although this algorithm works
for a variety of systems, the algorithm may not terminate
due to numerical issues, and manual termination may lead
to an over-approximation, which is no more robust control
invariant [14]. A way to avoid this issue and always pro-
duce a robust control invariant set is to use the Inside-out
algorithm [14], [27]. The key is to first find a small robust
control invariant set Ω̃ contained in Ω0, and then expand
into a larger invariant set Ω∗ by calculating its one-step
robustly controllable set. The union of a small robust control
invariant set and its one-step robustly controllable set is still
robustly control invariant, since there exist a control input
that will bring any point in this union back into the small
robust control invariant set.

E. Numerical example
As a numerical example, we consider the speed and

acceleration constraints in (10) to have the parameters in
Table I. Then, the set of admissible states (14) is set up to
be:

X = {x ∈ R3 : vf ≤ d ≤ 10+4vf,0≤ vf,vl ≤ 30}. (19)

After performing the Inside-out algorithm, Ω∗ used in this
paper is a union of polyhedra, as shown in Fig. 3.

IV. RESULTS

Four scenarios are tested to evaluate the different eco-
following controller frameworks:
S1. OMPC-base: Original MPC with speed preview gener-

ated using the baseline perturbation

Fig. 3: The set X of admissible states and the robust control invariant set
Ω∗ calculated through the Inside-out algorithm.

TABLE II: Root Mean Square Error of perturbed drive cycle (m/s) with
baseline perturbation and estimator-based at different privacy levels.

Privacy Level (PL) Baseline Estimator-based
1 2.0 1.5
2 4.0 2.1
3 6.0 2.9
4 8.0 3.7

S2. OMPC-est: Original speed controller with speed pre-
view generated using the estimator-based perturbation

S3. RMPC-base: Robust speed controller with speed pre-
view generated using the baseline perturbation

S4. RMPC-est: Robust speed controller with speed preview
generated using the estimator-based perturbation

Each scenario is tested with the leader vehicle’s broad-
cast speed profile perturbed to privacy guarantee levels of
[1,2,3,4], associated with cases where baseline perturbation
is using Gaussian noise with RMSE [2,4,6,8] m/s. The
RMS estimation errors of the leader vehicle speed using the
perturbed data are shown in Table II with the estimator-
based method showing better accuracy than the baseline
method under the same privacy level [19]. Similar to the
previous work, the follower vehicle speed is optimized for
the last 880s (the second bag of FTP drive cycle) and the
equivalence factor w is swept from 0 to 0.5 with a step
size of 0.1. A detailed aftertreatment model and emission
model are utilized to evaluate ηAFT in (5), the efficiency of
the aftertreatment, and ṁNOx.TP, the tailpipe emissions in (4)
[12].

A. Robust collision avoidance

The total time that the headway minimum or maximum
distance constraints are violated is shown in Fig. 4 for
different test scenarios and privacy levels. As shown, with the
original MPC formulation the headway constraint violations
happen even when the estimator-based perturbation method
with small preview errors is used. However, using the robust
MPC design, the controller is persistently feasible and can
always satisfy both the pre-defined minimum and maximum
headway constraints as the time trace in Fig. 5 shows, inde-
pendent of the perturbation size and privacy level. Fig. 4 also
indicates that although the speed preview is more accurate
when the estimator-based perturbation method is used, the
time for constraint violation is longer compared to the base-
line data perturbation method. Thus, this observation further
motivates the use of a provably robust speed controller to
guarantee constraint satisfaction.
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B. Fuel consumption and tailpipe emissions
The degradation of the controller performance due to

increased uncertainty in the speed preview is shown in Fig. 6.
The results show a monotonic increase in the vehicle fuel
consumption and tailpipe emissions when standard deviation
of the preview error increases due to increasing privacy lev-
els. The energy and emission conscious predictive controller
with the robust formulation can reduce both fuel and tailpipe
emissions with up to 4% fuel saving even using a data privacy
as high as level 3, which means the standard deviation of
the Gaussian error is more than 1/3 of the actual speed
(with 6 m/s RMSE). This demonstrates the robustness of
the presented controller formulation. Fig. 6 also shows how
the fuel-NOx performance improves when the safe robust
MPC is used, which reduces the absolute value of the input
accelerations. With the original MPC, due to the large errors
in the speed preview, the follower vehicle observes the leader
as an aggressive driver; thus, it reacts aggressively to the
leader vehicle maneuvers to keep the headway distance. This
behavior results in a more energy-demanding trajectory and
sacrifices the performance on fuel and emissions.

The effect of perturbation method on fuel-NOx perfor-
mance of the robust speed controller is shown in Fig. 7.
Since the estimator-based perturbation method provides more
accurate speed information compared to the baseline pertur-
bation method, the speed controller performance improves
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normalized with the corresponding values when the vehicle is driven with
the nominal FTP speed trajectory, i.e., the same drive cycle as the leader.
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using the robust speed controller.

and lower fuel consumption can be achieved at for a given
tailpipe emissions level. Therefore, with the robust fuel and
emissions conscious MPC formulation and estimator-based
perturbation method in the V2V communication, the follower
vehicle improves the fuel consumption without increasing the
tailpipe emissions even with a privacy level as high as 4.

C. Potentials with an integrated design procedure
1) Perturbation mechanism: Baseline perturbation with

privacy level 1 provides a better input for the robust speed
controller than the particular design considered for the
estimator-based perturbation, which has the same privacy
guarantee and less RMSE. Thus, it remains as an open
question what measure should be used to evaluate the quality
of preview. Theoretically, there should exist a well-tuned
perturbation mechanism that performs no worse than the
baseline, since the baseline is the special case of selecting
the share on the speed estimation to be 0 in the convex
combination in Sec. II-B. Further, as mentioned in Sec. II-
B, better estimation methods may be used to improve es-
timation accuracy without adding privacy leakage. Thus,
this expresses the need for future studies to consider the
application of the perturbed information in the design process
of the perturbation method to find a design that achieves best
controller performance (e.g., fuel-NOx trade-off) under the
same privacy guarantee.
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Fig. 8: Fuel consumption and NOx emissions varying with equivalence
factor w under different privacy levels using the estimator-based perturbation
method. Cross marker shows the most fuel efficient choice of w with 10%
emissions improvement. Privacy level 0 represents the case with accurate
preview.

2) Speed controller parameterization: If preview uncer-
tainty is known ahead of time, then it would be possible to
design the equivalence factor based on the level of uncer-
tainty for largest fuel efficiency and maintain certain level of
NOx emissions. Fuel and emissions performances vary with
privacy level and choice of equivalence factor w as shown in
Fig. 8. This figure also provides a map-based approach for
w selection under fuel consumption or emissions constraints.
For instance, if privacy level is required to be 2 and 10%
improvement is desired in NOx emissions compared with
following the leader trajectory exactly, choosing w≈ 0.13 as
shown by the cross marker in the figure leads to the largest
fuel efficiency improvement (between 10%-20%). If the level
of uncertainty is not known beforehand, it may be adapted
as better knowledge is obtained about the uncertainty while
the controller is running.

V. CONCLUSIONS

An application of predictive speed planning for CAVs in a
car-following scenario is studied considering the uncertainty
in preview information due to privacy considerations. A
robust energy and emissions-efficient optimal speed con-
troller is developed for a diesel-powered ego vehicle and is
shown in simulation to guarantee constraint satisfaction for
inter-vehicular distance under preview error. Simulations also
show the effectiveness of this robust controller to improve
fuel and emissions performances with large preview error.
Further improvements are achieved when an estimator-based
privacy-guaranteeing perturbation method is used. Due to the
different behaviors of fuel and emissions when privacy and
thus uncertainty level increases, as well as the observation
that the perturbation method that has a smaller root mean
square error does not always lead to a better controller per-
formance, results suggest inclusion of the privacy level into
the design process for preview perturbation and the optimal
speed controller to achieve better controller performance.
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